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Abstract

We study variants of Kleinberg’'s small-world model where we start withdimensional
grid and add a random directed edge from each node. The probabiitandom edge is to
v is proportional tad(u, v)~" whered(u, v) is the lattice distance andis a parameter of the
model.

For ak-dimensional grid, we show that these graphs have poly-log expected diameter when
k < r < 2k, but have polynomial expected diameter whern 2k. This shows an interesting
phase-transition between small-world and “large-world” graphs.

We also present a general framework to construct classes of small-world grapi¥ with)
expected diameter, which includes several existing settings such as Kleinberg’s grid-based and
tree-based settings [15].

We also generalize the idea of ‘adding links with probabititythe inverse distance’ to
design small-world graphs. We use semi-metric and metric functions to abstract distance to
create a class of random graphs where almost all pairs of nodes are connected by a path of
lengthO(log n), and using only local information we can find paths of poly-log length.

1 Introduction

Small-world networks are being used and studied in many disciplines, including the social and nat-
ural sciences. These networks possess a striking property, the so called small-world phenomenon,
also often spoken of as “six degrees of separation” (between any two people in the United.States)
Since many real networks exhibit small-world properties, a number of network models have been
proposed as a framework to study this phenomenon. Watts and S. Strogatz [23] introduced a ran-
dom graph setting to model certain small-world graphs. This model features two main properties,
low average path length and significant clustering. Wesaseall-world graphgo mean graphs with
poly-log (expected) diameters, to focus on this property of small separation between nodes.
Recently, Kleinberg [16] proposed a family of small-world networks to study another com-
pelling aspect of Milgram’s findings: a greedy algorithm using only local information can construct
short paths. Kleinberg adds directed long-range random links to an undirected lattice net-
work. The long-range links have a non-uniform distribution which favors arcs to close nodes over
more distant ones. These graph models have generated considerable interest and recent work. Ap-
plications have been found using Kleinberg’s or related small-world models to decentralized search
protocols in peer-to-peer systems [21, 24], and gossip protocols for a communication network [14].
Kleinberg's model starts with a simplasegraph and randomly adds new arcs. The base graph
models local “contacts”. The additional random links model long-range contacts which can connect

*This work was supported by NSF grant CCR-85961. A preliminary version is to appear in ACM-Siam Proc. of
Symposium on Discrete Algorithms, 2005.

'Milgram discovered this in his pioneering work in the 1960’s [22], and recent work by Dodds et al. suggests its still
true [9].



distant components. This greatly shrinks the diameter of the graph. Thus we see a promising
formula: a simple base graph plus some random links can add nice properties (such as Kleinberg’s
setting with expected small diameter and short greedy paths for-alpairs). Kleinberg's setting is

a very specific one, so we ask: what are the essential features, underlying the distribution of random
links and the grid structure which produce these nice properties? We address this question in two
ways. First, we mostly complete the picture of the diameter problem in Kleinberg’s grid-based
setting by identifying the critical point where the graph changes from expected poly-log to expected
polynomial diameter, depending on how much we favor links to close nodes. Then we construct
a framework, which starts with an arbitrary base graph and some general rules for adding random
arcs. We then refine our model to identify properties which lead to small expected diameter. Further
refinement allows us to find short paths using local information only.

Some of our graphs have small expected diameter, yet need not use a distance measure to de-
scribe the random link distributién Kleinberg’s models (grid-based setting [16], tree-based and
group-induced settings [15]) and several other well-known small-world graphs fit our abstract mod-
els and thus can be analyzed using our general results on diameter and routing. Moreover, we
introduce or generalize several techniques used for bounding a graph’s diameter.

We briefly review Kleinberg’s setting then summarize our results in the next subsection. Klein-
berg’s basic model uses a two-dimensional grid as a base with long-range random links added be-
tween any two nodes andv with a probability proportional ta—2(u, v), the inverse square of the
lattice distance betweanandv. In the basic model, each node has an undirelcteal link to each
of its four grid neighbors and one directiohg-rangerandom link. A straightforward extension of
this basic model is to have multiple random links from each node and ksbraensional grid for
anyk = 1,2,3...; also use an inversé” power distribution (of the random links), for any real
constantr, instead ofr = 2.

In [20], we proved a tigh®(log n) bound for the expected diameter of Kleinberg’s extended
model: for ak-dimensional grid and an inversé? power distribution wher) < r < k, i.e. for
0 < r < 2inthe2-D case. However, the diameter problem for> k was open before this
paper. Note that the complexity of greedy routing in Kleinberg’s grid-based setting has already
been analyzed. For = k it takesO(log? n) expected steps while for # k, greedy routing takes
expected polynomial time[16, 2, 20, 11].

1.1 Our results

First, we mostly complete the analysis of the diameter of Kleinberg’s grid-based setting.kFor a

D grid, we show that the model still has poly-log expected diameter vikthenr < 2k, but has
polynomial expected diameter when> 2k. However, interestingly enough, the case- 2k is

still open, though our initial experiments suggest that the model is a large-world. In particular, for
Kleinberg's1-D model, for any- < 2 the expected diameter is upper-bounded by poly-log functions
(O(logn) for r < 1), however, forr > 2, the expected diameter can be lower bounded by a (low-
degree) polynomial function. This shows a phase-transition between small-world and “large-world”
graphs.

We also present a framework to construct several classes of small-world grapte (Wit )
expected diameter. These include several existing settings such as Kleinberg’s grid-based and tree-
based settings [15]. Our framework starts with a very abstract class of random graphs, then we
gradually add in conditions to achieve more refined classes, which are more likely small-world
candidates.

We also design graphs with poly-log greedy-like paths. Again, we start with a general class,

2Thus, links no longer favor close nodes over distant nodes.



based on an abstract semi-metric function (abstracted from the use of distance), and then add in
refining criteria to construct a hierarchy of classes with interesting properties. As a result, we obtain
an abstract class of random graphs such that under some easy conditions, almost all pairs of nodes
are connected by a path of lengfl{log n), and using only local information we can find paths of
expected poly-log length.

1.2 Related work

There has been considerable work on the small-world phenomenon. See [17] for early surveys and
[16] for a more recent account on modeling small-world networks. Before Kleinberg's model, Watts
and Strogatz [23] proposed randomly rewiring the edges of a ring lattice each with a probability
parametep. Watts and Strogatz observed that for smathe model reflects many practical small-
world networks with small typical path length and a non-negligible clustering coefficient. Kleinberg
has generalized his basic model in several ways in [15] including a generalization that encompasses
both lattice-based and tree-based (“taxonomic” or “hierarchical”) small-world networks.

The diameter of random graphs is a classic problem [5, 6, 7, 10] but most results use uniformly
distributed arcs. Bollobas and Chung [6], study a graph model very similar to Watts and Strogatz in
[23] with the nodes of a cycle (or a “ring”) randomly matched to form additional long-range links.
The closest diameter work with non-uniform arc probabilities is on long-range percolation graphs
(LRPGs) which have been used to study physical properties. As in Kleinberg’s model, a grid with
(undirected) local links is augmented by long-range random links whose probability is inversely
related to their distance. Note that in contrast to Kleinberg’s model, the added links are undirected,
and the degree of a node is not fixed. Thus the analysis techniques for LRPGs are somewhat different
than those to analyze Kleinberg’s and related models. Benjamini and Berger study the diameter of
1-D LRPGs [3] and Coppersmith et al. extend thiskt® grids [8]. Both papers prove diameter
results which show how the expected diameter changes as the arc probability parameters change.
Biskup improves these results by proving tighter bounds [4]. These papers show there are critical
points where the expected diameter changes from constant, to poly-log and then to polynomial as
the probability parameter changes. We show some similar transitions occur in Kleinberg’s setting.

There have also been several recent papers which analyze greedy routing in other small-world
like networks [1, 2, 15, 18, 20, 11]. Though our focus is on diameter results, we show how to in-
corporate greedy-like routing (to find short paths) into an abstract class which already has expected
O(logn) diameter.

The structure of the paper. We present new diameter results for Kleinberg’s grid settings, which
complement previous diameter results. sBiwe start with the most basic setting, i.e. the (one-
dimensional) cycle augmented by random links.

We then generalize our approachéi (for analyzing Kleinberg’'s grid model) and introduce
several abstract families of random graphs which can be constructors for small-worlds. From these
abstract families, by adding some proper additional conditions, we obtain different classes of small-
world graphs with poly-log expected diameter.§Bwe create classes with short paths which can
be found by decentralized algorithms (using local information only), and present a generalization
of §3’s results.

2 Preliminaries

To generalize Kleinberg's small-world models, we develop an abstract class of random graphs,
which includes Kleinberg's small-world settings (in [16, 15]). We then use this abstract class as a
platform to create a general framework to analyze the diameter (and other related issues) in a variety
of settings.



Consider the following random assignment (or matching) operation: for a givenmnoda
graphG, make a random trial under a specific distribution rute select another node We write

this asv &% worv = R, (u). For example, in Kleinberg’s basic grid settingis defined as having
v & with probability proportional to the inverse square of the lattice distance betweaadw,

i.e. Prlv & u] o< d=2(u,v). We can think of a random graph constructor using this operation
which forms a family of random graphs. We use a given base gfamnd a compatible graph

constructor, where each additiorfal v) link (with v & w) is called a random link. Random links
are generated for a node, not for pairs of nodes as in traditional random grafttis operation is
implicitly used in Kleinberg’s small-world models [16, 15].

We restrict the distribution rulesY we use to ones which have the following property: each
R call performs an independent trial. Multipk, calls on the same input node)( also are inde-
pendent trials. We now define an abstract class of random graphs, which includes all of Kleinberg’s
small-world settings.

Definition 1. Given a set of undirected base grapHs a distribution+ and a constant integer
g > 1, a Family of Random Graph$RG(H, 7, q) consists of graphs, each of which is a base
graph H € ‘H plusq out-going random linksgenerated under distribution for each node.

All the families of random graphs we consider in this paper/areg families. For example,
Kleinberg’s basic grid model ([16]) is&RG(H, 7, q) family, whereH consists of all. x n grids
(n=1,2,3...), ¢ =1, andr is the inverse square distribution. Note that there is no restriction on
the set of fixed edgeF in the base graphs. For example, the fixed edges can be the local links in
Kleinberg's grid model, a complete graph, or nothing at all as in Kleinberg’s tree-based model.

We now consider some useful basic lemmas. Consider a fafnity FRG(H, T, q) and a graph
G € F, which has base grapti = (V, E).

Lemma 1. For any graphG from a family#RG(H, 7, q), any two disjoint subset of verticésand
T chosen without any knowledge of the random links f&nthe probability of having a random
link from some node ii$ to at least one node iff, is Pr[S — T] > 1 — e~ ¢I7lIS| (where
e = €(S,T) denotes the minimum value Bi-[R(u) = v| for all w € S andv € T').

Proof. Given an arbitrary node € S, let p denotePr[u ‘misses’T], i.e. none of they random
links from u goes to any node i, and similarly, letP = Pr[S ‘misses’T’|. A given random link
from u goes tdl” with probability at least|T’|, therefore it is easy to see that< (1—¢|7|)?. Using
the basic calculus fadt+ z < e*, we havep < e~%71, Now combining all the events ‘misses’
T for eachu € S, we haveP < e~ ITlISI ThereforePr(S — T)=1—-P >1—e ¢TSI O

We use lemma 1 where usually the size§'@indT are large enough so thaf'||.S| = Q(log n)
and thus, forsomé > 0, Pr[S — T] > 1 — O(n—e), which tends td whenn goes to the infinity.
So, almost surelyl" is apart fromS by just one random link.

Lemma 2. If each ofn events{ B;}!_; occurs with probability at least — p, wherep < 1/n, then
the combining evemt}"_, B; occurs with probability at least — np

Proof. Using the Union Bound law, we haver[U_; B;] < U™, Pr[B;] < np, hencePr[N_, B;] =
1— PrlUr,B;] >1—np, O

Note that lemma 2 applies even if tli are not independent.

3Even when we use undirected random links, we can consider that: each:rysteerates and, so, “owns” certain
random links, while some other random links also incident. tare not owned by, but by some other nodes (which
generated these links)

“They are directed by our default assumption.



Figure 1: I* is ¢&-complete with directed random edges crossing between any two subsegments affength

3 Diameter transitions in Kleinberg’s model

For simplicity, we first look at thé-D setting and then extend our results to more general settings.
DefineC(r,n) as the setting where nodes are labeled, 2,...,n» — 1 and each nodeé has2
undirectedocal links: to (i — 1) mod n and(i + 1) mod n for 0 < i < n — 1. Each node

also has one directed random link to some ngdé i. The probability its random link is tg, is
proportional toi — j|", wherer > 0 is a parameter to be specified. oK r < 1 this cycle setting

is known to have expectetilog n) diameter [20]. We now consider the diameteCéf, n) when

r> 1.

3.1 TheC(r,n) setting with 1 < r < 2.

We present our notation and basic definitions, then a sketch of our basic approach, and finally our
theorems and proofs in detalil.

Forr > 1, the normalized coefficient = 1/(2 ngl d=") = 6(1); in fact, ﬁ <L < Ci
for n large enough, wheré', = >°>° i~" is a constant depending eronly. So,Pr[i — j] =
Lli —j|7" = 6(]i — j|~"). Let;(u) or I} denote a ‘segment’ of length starting at node, i.e.
I ={u,(u+1) modn,...,(u+1—1) mod n}.

Consider segment of lengthz for some arbitrary node. Let0 < ¢ < 1. Divide I into z' ¢
(disjoint) subsegments of lengi. Let D¢(I%) = {.J1, Ja, ..., J,1-¢ } be this set of subsegments,
i.e. Jp = Le(u+ (k—1)2f) for 1 < k < 2%, For simplicity, we assume®, z'~¢ and the like are
integers.

Definition 2. For each nodey, I} is (-complete if for any ordered pair of segments, (J;) from
D¢(IY), there is an edge frond; to J;, (see figure 1).

Let §5(I¥) be the diameter of the subgraph induced by nodes in the sedtheHere,d(1Y) is
a random variable with a value for each instance of our random graph (once the random links are
set). E[6(IY)] is independent of position, so we lety, = E[6(IY)].

The main idea. In order to upper bound the diameter of our random graph inltdssetting,
we use a probabilistic recurrence apprdackive establish a (probabilistic) relation between the
diameter of a segment and that of a smaller one. In particular, we &late (the diameter of a
segment of length) to §(1,,), wherey = z¢ for some¢ € (0, 1). Intuitively, with high probability,
d(I) is bounded by a constant multiple &fZ, ). Thus, we use standard recurrence techniques to

®If we think of a super-graph with thé;’s as it's nodes then these crossing links make it a complete graph
SAlthough our approach is similar to Karp’s [13], his theorems necessity conditions are not met here.



boundd,, (the graph’s expected diameter) basedgnfor a small initial lengthe (00, IS upper
bounded by a poly-log function af).

We use this crucial observatiot; is almost surelyt-complete forr and¢ < 1 large enough.
So,6(1;) is almost surely not larger than twice the maximum diameter of any subsegniex{tin.
We formalize the above ideas in the following lemmas and then prove our main theorem. The next
two results follow directly.

Lemma 3. If a segmenf¥ is {-complete thed (1Y) <2 max 6(J) +
JGD&(I:E)

Corollary 1. If I* is ¢&-complete for each = 0..n-1 then maz (1Y) <2 maz 6(Ly) + 1.

Note that ford < ¢ < .5, I is noté-complete for any:. Sincez$, the number of random links
from nodes in a subsegmehte D¢(1,,), is smaller tham!~¢ —1, the number of other subsegments
Ji € Dg([x).

Lemmad. Forr/2<¢<1(1 <r<2),
Pr[I%is¢- completeyu =0.n—1]>1—-n"2
1
for z > ¢In2%-r n, where¢ = (10C, )25 T,
Proof. We need to lower bound the probability of the event that there exists an edge connecting

J, and J; for all possible pairs{Ja, Jy). Using lemma 1Pr[J, — J,] > 1 — e~ l/allZel where
€ = €(Jq, Jp). = |Jy| = 2%, €(Ja, Jp) > La™" > 5Lx~"/C, andgq = 1, SO

PrJ, — Jy) > 1 — e b X0 51 om s /O (1)

I, is ¢&-complete if there exists an arc betwegnand.J, for all possible pairg.J,, J,). The number
of such pairs is< 2= hence using lemma 2,
P, = Pr[l, is ¢&-completg > 1 — (e=-52*7"/Cr x 2226,
Let E be the event that! is {-completeVu = 0..n — 1. Again, using lemma 2:
PrlE] >1—n(l — P,) > 1 — (ne=-5"7"/Cr x 22-28),
Now, for z > (IOCT)%%T « In%=7 n, clearlyne—5%*"/Cr < pe=5ln — —4 hence
PrlE)>1—(n*x2?>%)>1-n"2
sincer?% < n2. O

Theorem 1. For any r such thatl < r < 2, there exists a constarft such that the expected
diameter ofC(r, n) is O(log” n).

Proof. Sincer < 2 we can choose/2 < ¢ < 1. Let ¢(x) be a random variable s.ip(z) =
max 15([;). ¢(x) is determined for each instance of our random grapli lis £-complete for

all u = 0..n — 1 then from corollary 1¢(z) < 2¢(x%) + 1. Thus from lemma 4, for > xo =
1 1
(10C;) %" log?-" n,
Prip(z) < 2¢(zf) +1] 2 1 —n~" (2)
We can use a standard recurrence technlque to upper lgungdbased orqb(gco) andn only.

Define the sequender; }'*;, wherez; 1 = x? with b = 1/¢, 29 = clog2§ »n, and
log( Lngn) og logn
t = [logy(log,, n)| = |~ | = loglan 4 g(1)
Thusz; < n < z441. Now we look closer at this sequenéeé(z;)}i_, and use (2) to upper
bound the last term (which differs frog(n) by a constant multiple), based on the first term and




t. We claim that each of the event§ : “¢(z;) < 2¢(zi—1) + 17,0 = 1,2,...,t and Ey4q :
“p(n) < 2¢(x;) + 17 occurs with probability at least — n~2. The firstt events can be justified
directly from (2), while we can also easily extend our proof of lemma 3 to justify the last event. Let
E be the event thak,, Fs, ..., E;1 all occur. Using lemma 2& occurs with probability at least
I—(t+1)xn2>1-0(n").
It is easy to see that eveRtimplies¢(z;) < 2¢¢(xo) + 2¢ — 1,Vi = 1..t and thus,
¢(n) < 2+ p(ao) + 2771 — 1 < O((logn)'°#r2) x ¢ (o).
Note thatp(xg) < z¢ = (106))25% log%%r n. Thatis,
Pr[0(I,) < clogPn)] >1—-0(n")
where = log; /¢ 2 + 25% andc depends om and¢ only. Thus,Pr[6(1,,) < O(log” n)] tends to
1 whenn goes to infinity, and almost surefy1,,) = O(log’ n). O

Note that our bound ofi grows rapidly ag approaches 2.
3.2 The(C(r,n) setting with 2 < r

Theorem 2. For r > 2, C(r, n) is a ‘large’ world with expected diametér(n%?_"(l)).

Proof. Let Tfll < ~ < 1. For any node, the probability that's random contact is at most a
distancen” fromz<, is
Prii—j:li—j|>n=1-0(X"2 d")=1-0(mn 1)
Using lemma 2, the probability that all random links have length at mbsits
>1-nx0MmI-D)y=1-0(m—0-D),
Sincer%1 < #, this probability tends té@ whenn goes to infinity. Thus the diameter is at least

- — nl=7 with overwhelming probability (tending tbwhenn goes to infinity). So, the expected

nYy

i i =2 —o(1)
diameter i€(nr-1 ) O

3.3 Extended settings

It is easy to extend our results for theéD settings without wraparound . The normalized coefficient
for random links from a nodédepends on the position ofi.e. Pr[i — j] = L(i) x |t — j|7".
Now, Y%, d™" < L71(i) <2 ZZZ d~",i.e.L < L(i) < 2L, so, equation (1), and hence the rest
of our arguments, still apply.

We now consider the generatD setting fork = 1,2,3.... Let H(k,r,n) denote ak-
dimensional hypercubH,, (ann x n x ... x n hypercube) with undirected edges between adjacent
nodes and one random directed link from each node wRefe — v] oc d~"(u,v). The model is
still a small-world when < 2k but a ‘large-world’ when- > 2k.

Theorem 3. For eachk,r with k& < r < 2k, there exists3 > 0 s.t. H(k,r,n) has expected
diameterO(log® n). For eachk,r with 2k < r there existsx > 0 s.t. H(k,r,n) has expected
diameterQ2(log® n).

Proof(sketch).lt is not hard to see that the same approach (and techniques) as before still apply, but
we need to modify some details. We focusior r < 2k (we omit2k < r which is simpler).

To establish a (probabilistic) recurrence relation, we nowkiBehypercubes (in place of seg-
ments in thel-D setting). Consider a hyperculié, of size x (in each dimension). As before,
for some0 < ¢ < 1, we can divideH,, into 2*(1=%) disjoint hypercubes each of sizé (in each
dimension). LetD¢(H;) = {J1,J2,...,Jxa-¢} denote this set of sub-hypercubes. Hf is
&-complete, i.e. there is a crossing edge frapto Jy for any pair (J;, J), then as before, we
haved(H,) < 2maxzd(J) + 1,J € D¢(H;). So, we have the desired recurrence relation and



Figure 2: A path froms to ¢

can go on as before to justify thatH,,) is almost surely upper bounded by a poly-log function.
Therefore, the remaining concern is on faeompleteness of an¥f,. (for x large enough); more
specifically, we need the following fact, a new version of lemma 4: there ekists(0, 1) and

zo = O(log® n) for somes > 0 such that forz > z(, any H, is almost surely-complete forn
large enough. Again, we need to considerJ, — J] for any J,, J, € D¢(H,). Using lemma

1, Pr[J, — Jy] > 1 — e lalllbl wheree = €(J,,J;). Note that|J,| = |J,| = 2*¢ while
€(Ja, Jy) < 0(z7T). SO,Pr[J, — Jy] > 1 — e 0@ )xa™ — 1 _ 0(==**"") Now, by choosing
any¢ € (5, 1), we can go on as before (with lemma 4) to finish proving this fact. O

Note that the case = 2k is open, however initial experiments (for thed setting only) suggest
that the setting has polynomial expected diameter.

4 Constructing O(log n) diameter graphs with non-uniform random links

To analyze the shortest path between a source n@i®l a destination nodg we construct two
subset chains, which can be viewed as two trees rootecaat ¢, and then show they intersect.
Each subset iB’s subset chain contains nodes which can be reached directly from the preceding
subset, and hence, can be reached fsorithe subset chain fromis similar, but contains nodes
with links towardst. To show that the shortest— ¢ path has lengti®)(log n), the main idea is to
show that each subset chain grows exponentially in size before they infesaefigure 2).
Exponential growth will be likely if each time we grow a new subset, with high probability more
than one link from each node leaves the current subset. This was true in Kleinberg’s grid setting [20]
(we called this: “link into or out of a ball” property). We now include this feature to refine our basic
classFRG(H, T, q). Recall that, a family of random grapliSRG (H, 7, q) consists of graphs, each
of which is a base grapH € H plus at least out-going random links generated under distribution

"Alternatively, each subset chain grows exponentially to a threshold, so they intersect with high probability.



7 for each node.

Definition 3. For constantg: > 0 and{ > 0, family 7 = FRG(H, 7, q) meets ‘the£,£) expansion
criterion’, or Fis (u,§)-EX P, ifVH = (V,E) € H, withn = |V|:

VUEKVCCV,|C|<n“:Pr[v&u:v¢C]2§ (3)

For example, from [19], it is easy to verify that Kleinberg’s grid setting with wrap-around dis-
tance is [i,1 — u — o(1))-EX P for any fixed positive constant < 1. This criterion supports
diversity and fairness in the distribution of random linkSor a random link from any node, no
small set of vertices (size n*) can take most of the chance to have this link come into it.

Definition 4 (Type u-FExpansion). For a constantu > 0, type u-FExpansion contains all the
familiesFRG(H, T, q) which meet,£)-E X P for somef > 1/q.

We definey, called an'expansion function’as follows. Given any, € V, this operation will
call operationR, ¢ times. Also, lety(u) denote the set of vertices from thege?, calls. Thus
the random links for graplir are formed by performing operationon each node. For any sét
X(8) = Uyes x(u).

Consider a familyF of type u-Expansion. Let 8 = ¢£ (so3 > 1). For any node: and seC
of size less tham* — ¢, which is determined beforg(u) is known, the expected number of fresh
elements generated ky«) that do not belong t@ is greater tha: E[ | x(u) —C|] > 5 > 1.
Since x(u) ‘contributes’ more than one expected fresh element outside of can be used to
generate a chain of subsets from a small initial subset such that with high probability, the subsets
will quickly grow to size©(n#).

4.1 The out-going subset chain

Let F be au-FExpansion family, andG = (V, E') be an arbitrary graph fronf. Now, from an
arbitrary initial setS, C V, we construct a chain of subs€tS; }, namely theout-going subset
chainwith respect to the initial sef, s.t. Sx+1 = x(Sk) — UfZOSi; k=1,2,3,...Thus,S; is the
nodes at distancefrom Sy using random links. The following results for Expansion families
show the subset chain grows rapidlysif is large enough.

Lemma5.VC,S C Vsit. S CC|C| <a=06(n):if |S| = Q(logn), almost surelyx(S) —
C|/|S| > ~ for a constanty > 1. Also,3y > 1,V > 0,3c > 0:
|S| > clogn = Pr['X(‘SS)‘_Cl >q]=1-0(n""

The above lemma (proof in appendix) provides a probabilistic lower beuad the growth
rate of the subset chain in each early step (by chodSirg ufZOSZ- to apply the lemma in each
step). This growth rate can be maintained as long as the subset sizes are still under a threshold.
For any Sy € V with sizeQ2(log n), the subset chain originating froisi, will almost surely grow
exponentially in size until it reaches size= 6(n*). Also, for anyd > 0, by choosing a sufficiently
large constants.t. |So| > clogn, Pr[|Sk| > o] = 1—0(n~?) for somek = O(log n). Moreover,
this can be true for any giveh> 0 by choosing: large enough.

4.2 The in-coming subset chain

We now construct a subset chain, based on the random links coming to the sets of the chain. We
use an ‘expansion function, which is a counterpart of, so we can reuse the formalism used in

84.1 on the out-going subset chain and obtain similar results. Fungtismot state-less ag was.

For any subset of vertice® and a node: € V we definey(u, D) to return the set of all nodes



v ¢ D s.t.v has a random link ta.. As beforey(T, D) = |, ¥ (u, D) for any subsef’. Now,
from an arbitrary subséfy C V/, we can construct a chain of subséfs, }, namely then-coming
subset chairwith respect to the initial s€fy, s.t. Tx11 = ¥ (T, D) for k = 1,2,3,..., where
D = UF_T}. Similar to definition 3, we have:

Definition 5. For constantsy > 0 and¢ > 0, family 7 meets ‘the £,£) incoming expansion
criterion’, or Fis (1,£)-1 F, if the following is satisfied.

VD: |D|<n*,YueD: Prlivg¢ D: R, (v) =u] >¢ 4)

Similarly as withu- Expansion, for a fixedy > 0, we define type:-IncExzpansion, which in-
cludes all theFRG(H, 7, q) families which meet,&)-1 E where¢ > 1/q. For au-IncExpansion
family, lemma 5 holds if we replace the use of functipby that of functiony and subsef by sub-
setD (8). There is an interesting implication between these two expansion criteria for a large class
of families. We call a family of random graphs, using a distributio-symmetric (or just sym-
metric if § = 1) for some constant > 1, if % < ¢ for all pairs of nodegu, v). Itis easy
to see that Kleinberg's grid settings (using the inverse power distributions) have this property, and
they are symmetric if wrap-around distance is used.

Lemma 6. If family Fis (11,)-EX P, for 0 < u, & < 1, and isj-symmetric for somé > 1 thenF
is (iu,1 — e¢/9)-IE.

Proof. We need to prove (4) holds. Letu,v) = Pr[R;(u) = v] and F' be the event that
Jv ¢ D : R;(v) = u. The lemma is shown as

Pr[F] = H(l —p(v,u)) < H e P — exp{— Zp(v,u)} < exp{—% Zp(u,v)} < e~ %
vé¢D vg¢D vg¢D v¢D

Note that) .p p(u,v) = Pr[dv ¢ D : R;(u) = v] = £ Also, the facte™ > 1 + z implies

e W) > 1 — p(u,v). O

4.3 Abstract classes of small-world graphs

We refine the above families by adding conditions to obtain small-world graphs. If our graph is
from a family of typeu,- Expansion andus-IncExpansion for somed < 1, u2 < 1then, given
any sources and destinatiort, we can use the following strategy to construdb@n-length path
from s to ¢ (see figure 2). First, we want a connected sulSgatontainings and7y containingt of
Q(logn) size in the base grapH. We then construct the out-going subset chain friginand the
in-coming subset chain froffy). Our above results show that, with overwhelming probability, there
exist subsets), with sized(n*1) andT; with sizef(n*2) s.t. any node irb; can be reached from
So by O(log n) links, andT; from T; by O(logn) links. We now consider proper conditions so we
can easily reactt; from Sj.

If ¢ = ¢(7), the minimum value ofPr[R,(u) = v] for all u # v, is large enough, then almost
surely there is an arc froii;, to 7; (or they intersect).

Definition 6 (Expansion Family). AFRG(H, 7, q) is an Expansion family ifitis (u1,§)-EXP
and (u2,£)-IE for some constant§ > 1/q, u1, 2 > 0, ande(r) = Q(n™#3) for a constant
p3 < 1+ pe.

8The constructions of both subset chains share the same formalism



We now show that a graph from d@wpansion family almost always has an arc frofy, to
T; (or they already intersected). We can assume all the nodggsane fresh (we do not know their
random links yet) and hence, using lemma 1,

Pr[Sy — Tj] > 1 — e~ @ITillSkl > 1 — g=Qnf1712788) 5 9 _ O(p~1)
which tends td whenn goes to the infinity.

The graphs from a®zpansion family® are small-worlds, i.e. their expected diameter is
poly-log in n, as long as each node is rich enough in neighbors in the base graph to form large
enough initial subsets (i.&y, Tp). Without this final condition, however, often these graphs are not
connected. If there are no edges in the base grAph ()) then even with the added random edges,
the graphs can be unconnected; an example will be presented in the next subsection.

We now add the notion of neighboring in the base graphs. A madealledk-neighboredor
somek € N if u belongs to a connected component of gizim the base graph. A base graph
H = (V,E) is calledk-neighbored if all the nodes afeneighbored. A connected graphks
neighbored for allk < |V| — 1. For k large enoughk-neighbored graphs allow us to construct
large enough initial subsets. The next theorem now follows fairly dir€ctly

Theorem 4. For any two nodes, ¢ in a graph of anExzpansion family, if s andt are clogn-
neighbored for any constant> 0 then there almost surely exiéX(log n)-length paths between
andt. An Exzpansion family, using(clogn)-neighbored base graphs where> has

expected diamet&p(logn).

6q¢
(g¢—1)2"

Thus, a graph from aivxzpansion family almost always consists of a giant component with
diameterO(log n) and perhaps some small components of 6izivgn). There are perhaps random
(directed) links between the components (but only in one direction between a given pair).

Using super-nodesWe now consider random graphs which lisen-neighbored base graphs.

Theorem 5. Consider a familyFRG(H, 7, q), which is (u;,£)-EX P and (u2,£)-1 E for some con-
stantsg, pu1, uo > 0, wheree(7) = Q(n™#3) for some constants < w1 + us, and all base graphs
in H are log n-neighbored. There almost surely exists a path of leigtlog n) between any two
nodes (fom large enough).

Proof. This theorem is a simple corollary of the previous theoregisfs.t.£ > 1/q. However, for

g < Q = [1/£] the theorem still holds. The main idea is to form super-nodes®@itandom links.

Thelog n-neighbored property assures that we can always partition the graph into super-nodes each
of which is a subgraph of constant diameter and has at {¢aahdom links. The length of a path
constructed here differs by only a constant from before (when wehave)). O

These abstract classes for (almost) small-world graphs are broad enough to accommodate many
different well-known small-world models: Bollobas and Chung’s [6], Watts and Strogatz's [23],
Kleinberg's grid-based [16], tree-based, and group-induced models [15]. Kleinberg describes his
group-induced model with two abstract properties, and it is not hard to see that the second property
implies our (1,£)-1E for some0 < p, & < 1. We show that our results apply to Kleinberg’s tree-
based model in the following section. It is relatively straight-forward to extend this case for similar
results in the group-induced model. Figure 3 shows how the classes relate.

®We omit a conditioning issue: if we construct thesubset chain (s-SSC) first then the growth of tiseibset chain
(t-SSC) is conditioned on the existence of s-SSC and vice versa. Thus, we need o gdd to D (§4.2) orU!_\ T; to
C (4.1). Therefore, ifs1 > p2 then we construct t-SSC first, otherwise s-SSC first.

1ONote that we can construct similar classes by uginfzpansion andd-symmetric property instead.

Hn fact, a full proof of it is very similar to that of theoreint in our previous work [20].
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Figure 3: The hierarchy of classes

4.4 The diameter of a tree-based random graph

We now use our framework to analyze the diameter of Kleinberg's tree-based model [15] and its
variants. Kleinberg shows that decentralized routing can be applied in more settings (not only the
grid-based [16]), but even when no lattice structure appears at all (say, the network of the Web’s
hyper-links). Kleinberg also introduces a group-induced model, a generalization of both grid-based
and tree-based models [15]. He shows that using these models, greedy routing takes expected
time O(logn) if nodes have out-degre&log® n), andO(log* n) if the degrees are bounded by a
constant. Note that for the constant-degree model, there is a fair chance that some nodes have no
in-coming link at all. Thus, the routing protocol is only required to find a path from a scu@e

a small neighborhooof a destinatiort (a “cluster” in [15]), say, a small ‘subtree’ which contains

the leaft.

We now show our results with respect to the diameter of the tree-based model (which can be
extended to the group-induced model for similar results). Basically, we showvkigat the degree
of each node is at leas}, the setting is arEzpansion family, that is by adding sufficient local
links to make each node rich enough in neighbors, the graph will have diaéleg n). Let us
review Kleinberg’s tree-based model. Nodes are the leaves of a complete (for simptaityjree
T, whereb is a constant. Lek(u,v) denote the height of the least common ancestaer afidv in
T. There are no local links in this setting but there are a number of directed random links leaving
each node, under a distributiorr, where a link is ta with probability proportional té—"(%v).

If there are exactly; directed random links leaving each node, the graphs in this tree-based
setting are very likely unconnected (similar to the case of lacking local links in the grid-based setting
[19]), however, the setting can still be &xpansion family by adding proper conditions. From
[15], the normalizing coefficient of this link distribution #&log=! n). So,e(1) = 6(n~"log~! n);



thus, to have axpansion family we need this setting to megiy(£)-EX P and (u2,£)-1E for
some{ > 1/q andu; + pe > 1. Consider the following fact which holds everyif= 1.

Fact 7. For Kleinberg's tree graphs with any > 1, given a positivéd < 1, a nodeu andC C V

with size at most?, the probability that a random link from hits a node outside @f is more than
1 — 6 — o(1) whenn is large enough. Also, the probability that there is a random link: twom

outside o is more thanl — e?t°(U~1 (i.e. almostl — e?~—!) whenn is large enough.

See [20] for a proof of a similar fact. It is easy to see that the setting meets(1),1 — z)-
EXPand g — o(1),1 — e 1)-TE for any0 < x,y < 1. Therefore, givery, we need to find:, y
s.t.

r+y>1;qg1—2)>1; g1 —ev 1) >1
Solving this system of equations, we fiad> 3.

Theorem 6. For ¢ > 3, Kleinberg’s tree-based setting is #wpansion family .

We can add in local links to make the base graph connected or make the base Igrgjph
neighbored: ring all the nodes in the base gréplor alternately, ring all the subtrees of height
at mostlog;(clogn). With ¢ determined as in theorem 4, this setting will have expected diameter
O(logn).

5 Random graphs induced by semi-metric or metric functions

We have abstracted away topological features of Kleinberg’s grid setting with our expansion criteria
to create classes where the strongesthdsg n) expected diameter. We now generalize the use of
a distance measure in the distribution of random links, and this makes greedy-like routing (defined
later) work. We design classes of random graphs using distributions based on semi-metric functions:
we define a semi-metric functiaf{u, v) and generate random links between any two nedasd
v with probabilityoc d=" (u, v).

Consider a pai(G, d): a graphG = (V, E) and a functiond = dg : V2 — R* associated
with G. We defined to be a semi-metric function if for any,v € V, d(u,v) = 0 < u = v; and
d(u,v) = d(v,u). We defineNy(u) = {v € Vl]d(u,v) < k}, the nodes within ‘distancé of .
Forci, co > 0, graphG is called(cy, c2) linear-expandedvith respect tal if Vu € V ik =1,2...:
c < W < ¢ if Np_1(u) # V, i.e. |Ny(u)| grows nearly-proportionally té& before Ny (u)
becomed’.

Definition 7 (ZnvDist family). AnZnvDist(r)is aFRG(H, T, q) family where each base graph
H € H has an associated metric-functidrand there exists constants, c; > 0 s.t. H is (c1, ¢2)
linear-expandedv.r.t d, and wheré?: Pr[R.(u) = v] oc d~"(u,v).

All Kleinberg’s small-world models (grid-based, tree-based and group-induced) fallintDist(1)
for an appropriatel. For example, for Kleinberg'8-D grid model [16], we define(u,v) as the
square of the lattice distance betweeandv; for Kleinberg’s group-induced model [15], we define
d(u,v) as the size of the minimum set containing batandv *3,

Theorem 7.Vr: 0 <r < 1,d > 0,c0 > ¢; > 0, dg > 1 s.t. anys-symmetricZnvDist(r) family
specified by, c» andq (as in definition 7) is atExpansion family 4.

2Note that any family satisfying all these criteria except having< 'N,’ZM < ¢z instead (for some given constant
£ > 0) can be normalized by using functieh(u,v) = d°(u,v) instead, and hence becomesZamDist(r') family
wherer’ = r /3.

Bt is not hard to see that the second property (of the two abstract properties Kleinberg uses to describe his group-
induced model) implies thatVy (u)| grows nearly-proportionally té.

Note that if we only use undirected random links then the conditiochgyfmmetry is not necessary.



As a result, for any graph from &symmetricZnuDist(r) family usinglog n-neighbored base
graphs, there almost surely exists @flog n) length path between any two nodes.

Proof. Here we prove the theorem fer = 1. It is not hard to extend our proof for othels
(0 < r < 1), which is actually easier. Consider anvDist(1) family and a graph from it. We show
that we can choosgbig enough such that this family is an expansion family, i.e., it meats(j-
FE and {2, £)-SE for some > 1/qg and g, pa > 0, andﬁ = o(n*1TH2) (wheree(T) is the
minimum probability given to a random link by). In order to justify the first expansion property,
we need to estimate this type of probabilifyr|v B uia <d(u,v) <blforl <a<b< K,
whereK,, = min{k| Ni(u) = V'}, the maximum distance of any other node framNote that,
this probability is related té(a,b) = Z?:a 1/i ~ In(b/a) as will be shown later. Also, from
c < |N’“| < ¢g, Clearly,K,, = 6(n).

LetA(a,b) = zk:a(|Nk( )| — [Ng—1(u)]) x + where|Ny(u)| — [ Nj—1(u)] is the number of
nodes at distance from u. Thus,1/A(1, K,) is the normalized coefficierd’, (of the distribution
of the random links at). S0, Pr[v &2 u : a < d(u,v) < b] = A(a, b)/A(1, K,,). Now, we have

b b—1
B 1 _ 1 1 |Nb‘ ’Na,1|
A = SN0 = s % = SN0 G = g+~ 0
b—1 |Ng(u Ny Ng_
Zk’ a |k‘ ;::—(1—1) + | ‘ | -

b a—1 °
| c1 b—1 |Ng(u ca
e ) ErD) = <D k—a k(k:-H <Y &+1) SO

ch(a+1,b)4+c1 —c2 < A(a,b) < coh(a+1,b) +c2—cl OR Aa,b) =6(In(b/a)) (5)

Now note that; < [N

Now we justify the fist expansion property. For ahy V' with sizeO(n*) and0 < u < 1, we
considerPr[R-(u) ¢ C]. Definek € N such thaiN;_;(u)| < |C| = O(n*) < |Ng(u)|. Thus,
|Nk(u)| = O(n*) andk = O(n*). Again, using the observation that a ball is the best shapé for
to minimize the probability’r[R(u) ¢ C], itis easy to see that

Pr[R;(u) ¢ C] > Pr(R-(u) ¢ Np(uw)] = Prlv & w: k+1 < d(u,v) < K] = A(k+1, K,)/A(L, K,).
From (5),

Ak+1,K,) > cih(k+2,K,) + c1 —ca > ¢1 In(

O(T:z“)) +0(1)=c1(1 —p)lnn+ O(1).

Also, A(1, Ky) < colnn+0O(1). Thus,Pr[R.(u) ¢ C] > cl(i;“), i.e. the family meetsy(, &)-FE

forany0 < u < 1l and§; = %2“) Using 6-symmetry, the family meetsu(&2)-SE where

& =1—e$/9 > 0. Thus we need to chooge> &.
Now we onIy need to assure tha(h = o(n1tr2), je. i) = o(n?*). Note thate(r) =

e(r
1/K,
A({,Ku) = O(

). Thus we only need to chooge> 0.5 then this condition is met. O

nlnn

Note that, from (5), the normalized coefficient wvDist(1) is C,, = 1/A(1, K,,) = 6(log™ ! n),
the fact we will use in the next section.



5.1 Greedy-like routing.

This section constructs a new class of graphs where most pairs of nodes have shortest paths of
lengthO(log n) andgreedy-like pathgdefined below) with expected lengf(log? n). Inspired by
Kleinberg's idea of greedy routing using only local information [16], we assume that eachunode
knows the random links which leave nodes in a smalbhborhoodhearw (e.g. thelogn nodes

closest tau in the base graphfsreedy-like pathare paths found by greedy-like algorithnwhich

is defined as follows: if the current nodeis choose the random linkw, v) wherew is in u's
neighborhood and is the closest such node to the destination. Route tessing local links and

then take link(w, v). Updatev to be the current node. We now present new definitions and then our
theorems for this routing strategy.

We restrictd(u, v) to be a'light’ metric by adding the condition tha{u, v) < a(d(u,w) +
d(w,v)) for any nodes:, v, w and for a constant (so less strict than the triangle inequality). We
define class\VIET R (r) as classZnvDist(r) but each functiorl is a light metric function instead
All Kleinberg’'s small-world models (grid-based, tree-based and group-induced\V&& R (1)
families with the functiond(u, v) derived naturally from each model’s context. Except for tHe
and the tree-based setting, this function is not a metric. For the tree-based settifig, 4¢tbe the
number of leaves in the smallest subtree containirggnd v (this satisfies the triangle inequality).
For the group-induced model, we létu, v) be the size of the smallest group containing nodes
andv. This generally doesn't satisfy the triangle inequality, but satisfies ours for a proper

We now add neighboring conditions so our greedy-like routing strategy can be used. An undi-
rected base grapH (V, E) is calledk-strongly neighboredw.r.t. the functiond(u, v)) if for each
u € V, the sub-graph induced by the set of nodesich that!(u,v) < k is connected.

Theorem 8. For any graph from aVIE7 R (1) family usinglog n-strongly neighbored base graphs,
a greedy-like algorithm will find paths of expected len@ttiog® ) between any two nodes.

Proof (Sketch).Let! = logn and assume = 1 (worst case). Consider this greedy-like algorithm:
each step of routing from the current noddinds a nodev € N;(u) with a random contact =
R, (w) closest tat. Thus we route ta (throughw) and update it as the current ndeleWe now
just apply Kleinberg’s idea of using phases (each phase roughly halves the remaining distance) to
analyze this routing algorithm.
Supposel(u, t) = 2k for the current node. Assume2k > [ (otherwiset € N;(u) and we can
use local links to go directly t¢). ConsiderPr|[R,(w) € Ni(t)] wherew € N;(u). For any node
v € Ni(t), note that (see figure 4)

d(w,v) < ald(w,u) + d(u,v)) < ad + a*(d(u,t) + d(t,v)) < 2ka + 3ka® = k(2a + 3a?)

Thus, Pr(R,(u) € Ni(t)] > Cuppnsihs = 0(log ' n) sinceC,, = 6(log ' n) ande; <
|Nk(t)|/k < cp. Since the number of such nodec Nj(u) iS | Niggn(u)| = 6(logn), the prob-

ability that the next node (set after each step of routing) is in the inner §ll(¢), can be lower
bounded by a positive constant. Therefore, the expected number of routing steps to complete a phase
(of halving the remaining distance) is upper bounded by a constant and thus, just like Kleinberg’s
proof of hisO(log? n) upper bound in [16], we can argue that each phase takes expe(ted)

links and then the obtained greedy-like path has expected l€gth?® n) (afterlog n phases). [

Combining theorems 7 and 8, we have:

SHere we assume knowing the local topology of the base graph and thus, we can use ‘local links’ (of the base graph)
to traverseV; (u). We can certainly route from to w by the shortest path withifv; (u).



Figure 4: A greedy-like routing step may halve the remaining distance to the destination

Theorem 9. For any graph from aVIE7 R (1) 6-symmetric family usintpg n-strongly neighbored
base graphs, there almost surely exists a path of leagthg n) and a greedy-like path of expected
O(log? n) between any two nodes.

This theorem easily applies to Kleinberg's grid, tree-based and group-induced models with
proper local links (to make the base graphsn-strongly neighbored).

5.2 Diameter of METR(r) for 1 <r < 2.

We now present a natural generalization of our resul8itWe consider the diameter 8iE7 R (r),
wherel < r < 2.

Theorem 10. For 1 < r < 2, for a METR(r) family, there exists a constaats.t. if the base

graphs arexq-strongly neighbored, where, = élog% n (n: number of vertices), then almost
surely the expected diameter of this family is upper bounded by a poly-log function.

Proof(sketch).We extend our approach B (using probabilistic recurrence relations) to upper
bound the diameter of the graphs in this abstract class. Defing= ma‘g:é(B};), whered(BY)
ue

is the diameter of the subgra@t’ (induced in our graph, withiV,.(«)), which iscc if the graph

is not strongly connecteds(z) (andd(BY)) is determined for each graph (after random links are
chosen). The key idea is to establish a probabilistic recurrence relation, where: 2¢(z¢) + 1

with probability > 1 — n=2, for some chosefl < ¢ < 1 and for allz greater than some chosen
constantzy > 0. Then, we can just repeat theorem 1’s work to upper bound the expected diameter
of METR(r).

For simplicity, we assume using metric functioms£ 1). Letr/2 < ¢ < 1,z > 0; u,v are
two arbitrary nodes witli(u, v) = z. ConsiderPr[B,, — B,], the probability of having a random
link from B, = B,¢(u) to B, = B,¢(v). Using lemma 1Pr[B, — B,] > 1 — e~ <lBullBol >
1— ™" wheree = ¢(By, B,) = Cy(x 4 225)~" = 6(z~") and both B, | and|B, | aref(z%).
Note that, forl < r, the normalized coefficiert,, is constant-bounded.

Now for any nodex € V, a ball B,(u) will have its diameter upper bounded By (z¢) + 1
if the eventsB, — B,, occur for any two distinct nodes w € B,(u) andB, N B,, = (. The
number of such events is n?, so using lemma 2Pr[§(BY) < 2¢(28) + 1] > 1 — n? x ™",
Combining the same event for alle V, Pr[¢(z) < 2¢(2€) + 1] > 1 — n3 x e~ ",



Now we choose:y = (5/6)25% « In% n and hence, for: > xq, Pr[p(z) < 26(xf) + 1] >
1 — n~2. Now simply choos& = .5 + .25r (S0, < 26 = (2 +r)/2 < 2) and continue as in
Theorem 1's proof. O

For example, we can modify Kleinberg'’s tree-based setting to become a small-world graph with
poly-log expected diameter as follows. We connect all the nodes together (say, order the nodes from
left to right and connect them with undirected edges), and for any two nodedv, we add an arc
from « to v with probability proportional té—""(*?) instead ob—"(**) with 1 < r < 2. Note that,
under the context of this section we defile, v) as the number of leaves in the smallest subtfee
which contains both andv: b(%v),

6 Concluding remarks

We consider a general construction of random graphs: a base graph plus random links added to
each node. By gradually adding properties to the base graphs and/or the distribution of random
links, we build a hierarchy of classes of random graphs with the finest ones featuring small-world
properties (small diameter and greedy-like routing using local information only). Thus, we propose
a framework for analyzing and characterizing small-world graphs.

There are still some open guestions in our study of ‘adding links with probatilttye inverse
distance’. As noted before, the case= 2k in the k-D grid setting is still open. We also expect
to extend our results i5 for base graphs with restricted growth fdtea general class of graphs
which can be used to model many real networks [12]. Thus our work can be useful for a practical
design problem, where we want to add in “long links” to a given network to shrink its diameter.
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Appendix

Proof of Lemma 5.Before proving this lemma, we need to introduce some new notionsZ (zetC) denote the indicator
random variable, which indicates if the result= R (u) is outside ofC or not. For a fixed:, E[Z(u,C)] is a function
of ¢ on domair2". Consider all subseté with |C| = n* and corresponding valuds|Z (u, C)]. LetC,, denote the one
that hasE[Z (u, C)] being the minimum. LeZ,, denoteZ(u,C,) and note that[Z,] = min{E[Z(u,C)],|C| < n*}.
Also note that theZ,,s for all u are independent (though not always identical) Bernoulli random variables and from the
definition of clasg:- Expansion each of them has expectation at legst
Lemma 5 can be proved by using Chernoff’s inequality. Bet {u1,us,...,w} wherel = |S| = Q(logn),
andT denotey(.S) — C. If we produce an ordered sequencelbfesultsy (u1), x2(u1), - - ., Xq(u1), x1(u2), x2(u2),

..y Xq(w) thenx(S) is the union of thesed! items. Therefore] can be seen as the result of accumulating only the
fresh ones from thesdl items if they come one-by-one in order. A valye(ux) is seen fresh if it is neither i@ nor
already in the current accumulated get
g, Fori= leg k= 1.1, let XF denote a random variable that takes valuié x;(uz) is fresh, i.e. it is outside of

?;11 x(u;) U ’7;11 x; (ur) U C (which clearly has size less thép+ 1)|C| < n* for large enough). Otherwise X
takes valu®. Let X denote the sum of thesk random variables. Note that ea&H can be lower bounded b9, ; thus
X can be lower bounded by the sumddfindependent Bernoulli random variables, each of which has expectation at least
¢ = j3/q. Therefore, by applying Chernoff’s inequality we hake[X < (31)(1 — §)] < e~9°(B0/2 where E[X] >
(1d)(B/q) = Bland0 < § < 1. Sincel = Q(logn) thene 2" BD/2 = O(n ") for somet = t(5) > 0. This is due to a
simple fact that®'°8™ = n° for anya. Thus,Pr[X < (81)(1 —8)] = O(n~%) or Pr[X > 18(1 —=6)] =1—-O(n™").

This assures that when n is large enou§hand thugT'|, is almost surely greater thdf(1 — §). Sety = 5(1 — 9).
When we have obtained this fixéd given anyd > 0 we can choose s.t. whenl > clogn we havePr[X >
18(1 = 8)] = 1 — O(n™"). This can be done by choosiag.t. e ~0°(3<106m)/2 — O(n~) or §28c/2 > O or c > 2¢

323"
Put another way, we can start choosing ang.t. 1 < v < g (thus we have the intermediaie= 1 — ~v/3) and then
choose any s.t. ¢ > 228 O

(B—7)2



