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Abstract

We study variants of Kleinberg’s small-world model where we start with ak-dimensional
grid and add a random directed edge from each node. The probabilityu′s random edge is to
v is proportional tod(u, v)−r whered(u, v) is the lattice distance andr is a parameter of the
model.

For ak-dimensional grid, we show that these graphs have poly-log expected diameter when
k < r < 2k, but have polynomial expected diameter whenr > 2k. This shows an interesting
phase-transition between small-world and “large-world” graphs.

We also present a general framework to construct classes of small-world graphs withΘ(log n)
expected diameter, which includes several existing settings such as Kleinberg’s grid-based and
tree-based settings [15].

We also generalize the idea of ‘adding links with probability∝ the inverse distance’ to
design small-world graphs. We use semi-metric and metric functions to abstract distance to
create a class of random graphs where almost all pairs of nodes are connected by a path of
lengthO(log n), and using only local information we can find paths of poly-log length.

1 Introduction

Small-world networks are being used and studied in many disciplines, including the social and nat-
ural sciences. These networks possess a striking property, the so called small-world phenomenon,
also often spoken of as “six degrees of separation” (between any two people in the United States)1.
Since many real networks exhibit small-world properties, a number of network models have been
proposed as a framework to study this phenomenon. Watts and S. Strogatz [23] introduced a ran-
dom graph setting to model certain small-world graphs. This model features two main properties,
low average path length and significant clustering. We usesmall-world graphsto mean graphs with
poly-log (expected) diameters, to focus on this property of small separation between nodes.

Recently, Kleinberg [16] proposed a family of small-world networks to study another com-
pelling aspect of Milgram’s findings: a greedy algorithm using only local information can construct
short paths. Kleinberg adds directed long-range random links to an undirectedn × n lattice net-
work. The long-range links have a non-uniform distribution which favors arcs to close nodes over
more distant ones. These graph models have generated considerable interest and recent work. Ap-
plications have been found using Kleinberg’s or related small-world models to decentralized search
protocols in peer-to-peer systems [21, 24], and gossip protocols for a communication network [14].

Kleinberg’s model starts with a simplebasegraph and randomly adds new arcs. The base graph
models local “contacts”. The additional random links model long-range contacts which can connect

∗This work was supported by NSF grant CCR-85961. A preliminary version is to appear in ACM-Siam Proc. of
Symposium on Discrete Algorithms, 2005.

1Milgram discovered this in his pioneering work in the 1960’s [22], and recent work by Dodds et al. suggests its still
true [9].
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distant components. This greatly shrinks the diameter of the graph. Thus we see a promising
formula: a simple base graph plus some random links can add nice properties (such as Kleinberg’s
setting with expected small diameter and short greedy paths for alls−t pairs). Kleinberg’s setting is
a very specific one, so we ask: what are the essential features, underlying the distribution of random
links and the grid structure which produce these nice properties? We address this question in two
ways. First, we mostly complete the picture of the diameter problem in Kleinberg’s grid-based
setting by identifying the critical point where the graph changes from expected poly-log to expected
polynomial diameter, depending on how much we favor links to close nodes. Then we construct
a framework, which starts with an arbitrary base graph and some general rules for adding random
arcs. We then refine our model to identify properties which lead to small expected diameter. Further
refinement allows us to find short paths using local information only.

Some of our graphs have small expected diameter, yet need not use a distance measure to de-
scribe the random link distribution2. Kleinberg’s models (grid-based setting [16], tree-based and
group-induced settings [15]) and several other well-known small-world graphs fit our abstract mod-
els and thus can be analyzed using our general results on diameter and routing. Moreover, we
introduce or generalize several techniques used for bounding a graph’s diameter.

We briefly review Kleinberg’s setting then summarize our results in the next subsection. Klein-
berg’s basic model uses a two-dimensional grid as a base with long-range random links added be-
tween any two nodesu andv with a probability proportional tod−2(u, v), the inverse square of the
lattice distance betweenu andv. In the basic model, each node has an undirectedlocal link to each
of its four grid neighbors and one directedlong-rangerandom link. A straightforward extension of
this basic model is to have multiple random links from each node and use ak-dimensional grid for
any k = 1, 2, 3 . . .; also use an inverserth power distribution (of the random links), for any real
constantr, instead ofr = 2.

In [20], we proved a tightΘ(log n) bound for the expected diameter of Kleinberg’s extended
model: for ak-dimensional grid and an inverserth power distribution when0 ≤ r ≤ k, i.e. for
0 ≤ r ≤ 2 in the 2-D case. However, the diameter problem forr > k was open before this
paper. Note that the complexity of greedy routing in Kleinberg’s grid-based setting has already
been analyzed. Forr = k it takesΘ(log2 n) expected steps while forr 6= k, greedy routing takes
expected polynomial time[16, 2, 20, 11].

1.1 Our results

First, we mostly complete the analysis of the diameter of Kleinberg’s grid-based setting. For ak-
D grid, we show that the model still has poly-log expected diameter whenk < r < 2k, but has
polynomial expected diameter whenr > 2k. However, interestingly enough, the caser = 2k is
still open, though our initial experiments suggest that the model is a large-world. In particular, for
Kleinberg’s1-D model, for anyr < 2 the expected diameter is upper-bounded by poly-log functions
(O(log n) for r ≤ 1), however, forr > 2, the expected diameter can be lower bounded by a (low-
degree) polynomial function. This shows a phase-transition between small-world and “large-world”
graphs.

We also present a framework to construct several classes of small-world graphs withΘ(log n)
expected diameter. These include several existing settings such as Kleinberg’s grid-based and tree-
based settings [15]. Our framework starts with a very abstract class of random graphs, then we
gradually add in conditions to achieve more refined classes, which are more likely small-world
candidates.

We also design graphs with poly-log greedy-like paths. Again, we start with a general class,

2Thus, links no longer favor close nodes over distant nodes.
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based on an abstract semi-metric function (abstracted from the use of distance), and then add in
refining criteria to construct a hierarchy of classes with interesting properties. As a result, we obtain
an abstract class of random graphs such that under some easy conditions, almost all pairs of nodes
are connected by a path of lengthO(log n), and using only local information we can find paths of
expected poly-log length.

1.2 Related work

There has been considerable work on the small-world phenomenon. See [17] for early surveys and
[16] for a more recent account on modeling small-world networks. Before Kleinberg’s model, Watts
and Strogatz [23] proposed randomly rewiring the edges of a ring lattice each with a probability
parameterp. Watts and Strogatz observed that for smallp the model reflects many practical small-
world networks with small typical path length and a non-negligible clustering coefficient. Kleinberg
has generalized his basic model in several ways in [15] including a generalization that encompasses
both lattice-based and tree-based (“taxonomic” or “hierarchical”) small-world networks.

The diameter of random graphs is a classic problem [5, 6, 7, 10] but most results use uniformly
distributed arcs. Bollobas and Chung [6], study a graph model very similar to Watts and Strogatz in
[23] with the nodes of a cycle (or a “ring”) randomly matched to form additional long-range links.
The closest diameter work with non-uniform arc probabilities is on long-range percolation graphs
(LRPGs) which have been used to study physical properties. As in Kleinberg’s model, a grid with
(undirected) local links is augmented by long-range random links whose probability is inversely
related to their distance. Note that in contrast to Kleinberg’s model, the added links are undirected,
and the degree of a node is not fixed. Thus the analysis techniques for LRPGs are somewhat different
than those to analyze Kleinberg’s and related models. Benjamini and Berger study the diameter of
1-D LRPGs [3] and Coppersmith et al. extend this tok-D grids [8]. Both papers prove diameter
results which show how the expected diameter changes as the arc probability parameters change.
Biskup improves these results by proving tighter bounds [4]. These papers show there are critical
points where the expected diameter changes from constant, to poly-log and then to polynomial as
the probability parameter changes. We show some similar transitions occur in Kleinberg’s setting.

There have also been several recent papers which analyze greedy routing in other small-world
like networks [1, 2, 15, 18, 20, 11]. Though our focus is on diameter results, we show how to in-
corporate greedy-like routing (to find short paths) into an abstract class which already has expected
O(log n) diameter.

The structure of the paper. We present new diameter results for Kleinberg’s grid settings, which
complement previous diameter results. In§3 we start with the most basic setting, i.e. the (one-
dimensional) cycle augmented by random links.

We then generalize our approach in§4 (for analyzing Kleinberg’s grid model) and introduce
several abstract families of random graphs which can be constructors for small-worlds. From these
abstract families, by adding some proper additional conditions, we obtain different classes of small-
world graphs with poly-log expected diameter. In§5 we create classes with short paths which can
be found by decentralized algorithms (using local information only), and present a generalization
of §3’s results.

2 Preliminaries

To generalize Kleinberg’s small-world models, we develop an abstract class of random graphs,
which includes Kleinberg’s small-world settings (in [16, 15]). We then use this abstract class as a
platform to create a general framework to analyze the diameter (and other related issues) in a variety
of settings.
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Consider the following random assignment (or matching) operation: for a given nodeu in a
graphG, make a random trial under a specific distribution ruleτ to select another nodev. We write

this asv
Rτ← u or v = Rτ (u). For example, in Kleinberg’s basic grid setting,τ is defined as having

v
Rτ← u with probability proportional to the inverse square of the lattice distance betweenu andv,

i.e. Pr[v Rτ← u] ∝ d−2(u, v). We can think of a random graph constructor using this operation
which forms a family of random graphs. We use a given base graphH and a compatible graph

constructor, where each additional(u, v) link (with v
Rτ← u) is called a random link. Random links

are generated for a node, not for pairs of nodes as in traditional random graphs3. This operation is
implicitly used in Kleinberg’s small-world models [16, 15].

We restrict the distribution rules (τ ) we use to ones which have the following property: each
Rτ call performs an independent trial. MultipleRτ calls on the same input node (u), also are inde-
pendent trials. We now define an abstract class of random graphs, which includes all of Kleinberg’s
small-world settings.

Definition 1. Given a set of undirected base graphsH, a distributionτ and a constant integer
q ≥ 1, a Family of Random GraphsFRG(H, τ, q) consists of graphs, each of which is a base
graphH ∈ H plusq out-going random links4 generated under distributionτ for each node.

All the families of random graphs we consider in this paper areFRG families. For example,
Kleinberg’s basic grid model ([16]) is aFRG(H, τ, q) family, whereH consists of alln × n grids
(n = 1, 2, 3 . . .), q = 1, andτ is the inverse square distribution. Note that there is no restriction on
the set of fixed edgesE in the base graphs. For example, the fixed edges can be the local links in
Kleinberg’s grid model, a complete graph, or nothing at all as in Kleinberg’s tree-based model.

We now consider some useful basic lemmas. Consider a familyF = FRG(H, τ, q) and a graph
G ∈ F , which has base graphH = (V, E).

Lemma 1. For any graphG from a familyFRG(H, τ, q), any two disjoint subset of verticesS and
T chosen without any knowledge of the random links fromS, the probability of having a random
link from some node inS to at least one node inT , is Pr[S → T ] ≥ 1 − e−qε|T ||S| (where
ε = ε(S, T ) denotes the minimum value ofPr[Rτ (u) = v] for all u ∈ S andv ∈ T ).

Proof. Given an arbitrary nodeu ∈ S, let p denotePr[u ‘misses’T ], i.e. none of theq random
links fromu goes to any node inT , and similarly, letP = Pr[S ‘misses’T ]. A given random link
from u goes toT with probability at leastε|T |, therefore it is easy to see that,p ≤ (1−ε|T |)q. Using
the basic calculus fact1 + x ≤ ex, we havep ≤ e−qε|T |. Now combining all the eventsu ‘misses’
T for eachu ∈ S, we haveP ≤ e−qε|T ||S|. Therefore,Pr[S → T ] = 1− P ≥ 1− e−qε|T ||S|

We use lemma 1 where usually the sizes ofS andT are large enough so thatε|T ||S| = Ω(log n)
and thus, for someθ > 0, Pr[S → T ] ≥ 1−O(n−θ), which tends to1 whenn goes to the infinity.
So, almost surely,T is apart fromS by just one random link.

Lemma 2. If each ofn events{Bi}n
i=1 occurs with probability at least1− p, wherep < 1/n, then

the combining event∩n
i=1Bi occurs with probability at least1− np

Proof. Using the Union Bound law, we havePr[∪n
i=1B̄i] ≤ ∪n

i=1Pr[B̄i] ≤ np, hencePr[∩n
i=1Bi] =

1− Pr[∪n
i=1B̄i] ≥ 1− np.

Note that lemma 2 applies even if theBi are not independent.
3Even when we use undirected random links, we can consider that: each nodeu generates and, so, “owns” certain

random links, while some other random links also incident tou are not owned byu but by some other nodes (which
generated these links)

4They are directed by our default assumption.
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Figure 1: Iu
x is ξ-complete with directed random edges crossing between any two subsegments of lengthxξ

3 Diameter transitions in Kleinberg’s model

For simplicity, we first look at the1-D setting and then extend our results to more general settings.
Define C(r, n) as the setting where nodes are labeled0, 1, 2, . . . , n − 1 and each nodei has2
undirectedlocal links: to (i − 1) mod n and(i + 1) mod n for 0 ≤ i ≤ n − 1. Each nodei
also has one directed random link to some nodej 6= i. The probability its random link is toj, is
proportional to|i− j|r, wherer ≥ 0 is a parameter to be specified. For0 ≤ r ≤ 1 this cycle setting
is known to have expectedθ(log n) diameter [20]. We now consider the diameter ofC(r, n) when
r > 1.

3.1 The C(r, n) setting with 1 < r < 2.

We present our notation and basic definitions, then a sketch of our basic approach, and finally our
theorems and proofs in detail.

For r > 1, the normalized coefficientL = 1/(2
∑n/2

d=1 d−r) = θ(1); in fact, 1
2Cr

< L < 1
Cr

for n large enough, whereCr =
∑∞

i=1 i−r is a constant depending onr only. So,Pr[i → j] =
L|i − j|−r = θ(|i − j|−r). Let Il(u) or Iu

l denote a ‘segment’ of lengthl, starting at nodeu, i.e.
Iu
l = {u, (u + 1) mod n, . . . , (u + l − 1) mod n}.

Consider segmentIu
x of lengthx for some arbitrary nodeu. Let0 < ξ < 1. Divide Iu

x into x1−ξ

(disjoint) subsegments of lengthxξ. LetDξ(Iu
x ) = {J1, J2, . . . , Jx1−ξ} be this set of subsegments,

i.e. Jk = Ixξ(u + (k − 1)xξ) for 1 ≤ k ≤ xξ. For simplicity, we assumexξ, x1−ξ and the like are
integers.

Definition 2. For each nodeu, Iu
x is ξ-complete if for any ordered pair of segments (Ji, Jk) from

Dξ(Iu
x ), there is an edge fromJi to Jk

5(see figure 1).

Let δ(Iu
x ) be the diameter of the subgraph induced by nodes in the segmentIu

x . Here,δ(Iu
x ) is

a random variable with a value for each instance of our random graph (once the random links are
set).E[δ(Iu

x )] is independent of positionu, so we letδx = E[δ(Iu
x )].

The main idea. In order to upper bound the diameter of our random graph in this1-D setting,
we use a probabilistic recurrence approach6. We establish a (probabilistic) relation between the
diameter of a segment and that of a smaller one. In particular, we relateδ(Ix) (the diameter of a
segment of lengthx) to δ(Iy), wherey = xξ for someξ ∈ (0, 1). Intuitively, with high probability,
δ(Ix) is bounded by a constant multiple ofδ(Iy). Thus, we use standard recurrence techniques to

5If we think of a super-graph with theJi’s as it’s nodes then these crossing links make it a complete graph
6Although our approach is similar to Karp’s [13], his theorems necessity conditions are not met here.
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boundδn (the graph’s expected diameter) based onδx0 for a small initial lengthx0 (soδx0 is upper
bounded by a poly-log function ofn).

We use this crucial observation:Ix is almost surelyξ-complete forx andξ < 1 large enough.
So,δ(Ix) is almost surely not larger than twice the maximum diameter of any subsegment inDξ(Ix).
We formalize the above ideas in the following lemmas and then prove our main theorem. The next
two results follow directly.

Lemma 3. If a segmentIu
x is ξ-complete thenδ(Iu

x ) ≤ 2 max
J∈Dξ(Ix)

δ(J) + 1.

Corollary 1. If Iu
x is ξ-complete for eachu = 0..n-1 then max

u=0..n−1
δ(Iu

x ) ≤ 2 max
u=0..n−1

δ(Iu
xξ) + 1.

Note that for0 < ξ < .5, Iu
x is notξ-complete for anyu. Sincexξ, the number of random links

from nodes in a subsegmentJi ∈ Dξ(Ix), is smaller thanx1−ξ−1, the number of other subsegments
Jk ∈ Dξ(Ix).

Lemma 4. For r/2 < ξ < 1 (1 < r < 2),
Pr[Iu

x is ξ-complete,∀u = 0..n− 1] ≥ 1− n−2

for x ≥ ĉ ln
1

2ξ−r n, whereĉ = (10Cr)
1

2ξ−r .

Proof. We need to lower bound the probability of the event that there exists an edge connecting
Ja andJb for all possible pairs(Ja, Jb). Using lemma 1,Pr[Ja → Jb] ≥ 1− e−qε|Ja||Jb|, where
ε = ε(Ja, Jb). Note,|Ja| = |Jb| = xξ, ε(Ja, Jb) ≥ Lx−r > .5Lx−r/Cr andq = 1, so

Pr[Ja → Jb] ≥ 1− e−Lx−r×x2ξ ≥ 1− e−.5x2ξ−r/Cr (1)

Ix is ξ-complete if there exists an arc betweenJa andJb for all possible pairs(Ja, Jb). The number
of such pairs is< x2(1−ξ), hence using lemma 2,

Px = Pr[Ix is ξ-complete] ≥ 1− (e−.5x2ξ−r/Cr × x2−2ξ).
Let E be the event thatIu

x is ξ-complete,∀u = 0..n− 1. Again, using lemma 2:
Pr[E] ≥ 1− n(1− Px) ≥ 1− (ne−.5x2ξ−r/Cr × x2−2ξ).

Now, for x ≥ (10Cr)
1

2ξ−r × ln
1

2ξ−r n, clearlyne−.5x2ξ−r/Cr ≤ ne−5 ln n = n−4, hence
Pr[E] ≥ 1− (n−4 × x2−2ξ) ≥ 1− n−2

sincex2−2ξ < n2.

Theorem 1. For any r such that1 < r < 2, there exists a constantβ such that the expected
diameter ofC(r, n) is O(logβ n).

Proof. Sincer < 2 we can chooser/2 < ξ < 1. Let φ(x) be a random variable s.t.φ(x) =
max

u=0..n−1
δ(Iu

x ). φ(x) is determined for each instance of our random graph. IfIu
x is ξ-complete for

all u = 0..n − 1 then from corollary 1,φ(x) ≤ 2φ(xξ) + 1. Thus from lemma 4, forx ≥ x0 =
(10Cr)

1
2ξ−r log

1
2ξ−r n,

Pr[φ(x) ≤ 2φ(xξ) + 1] ≥ 1− n−2 (2)

We can use a standard recurrence technique to upper boundφ(n), based onφ(x0) andn only.

Define the sequence{xi}t+1
i=0, wherexi+1 = xb

i with b = 1/ξ, x0 = c log
1

2ξ−r n, and

t = blogb(logx0
n)c = b log( log n

log x0
)

log b c = log log n
log b + 0(1)

Thusxt ≤ n < xt+1. Now we look closer at this sequence{φ(xi)}t
i=0 and use (2) to upper

bound the last term (which differs fromφ(n) by a constant multiple), based on the first term and
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t. We claim that each of the eventsEi : “φ(xi) ≤ 2φ(xi−1) + 1”, i = 1, 2, . . . , t andEt+1 :
“φ(n) ≤ 2φ(xt) + 1” occurs with probability at least1 − n−2. The firstt events can be justified
directly from (2), while we can also easily extend our proof of lemma 3 to justify the last event. Let
E be the event thatE1, E2, . . . , Et+1 all occur. Using lemma 2,E occurs with probability at least
1− (t + 1)× n−2 ≥ 1−O(n−1).

It is easy to see that eventE impliesφ(xi) ≤ 2iφ(x0) + 2i − 1,∀i = 1..t and thus,
φ(n) ≤ 2t+1φ(x0) + 2t+1 − 1 ≤ O((log n)logb 2)× φ(x0).

Note thatφ(x0) ≤ x0 = (10Cr)
1

2ξ−r log
1

2ξ−r n. That is,
Pr[δ(In) ≤ c logβ n)] ≥ 1−O(n−1)

whereβ = log1/ξ 2 + 1
2ξ−r andc depends onr andξ only. Thus,Pr[δ(In) ≤ O(logβ n)] tends to

1 whenn goes to infinity, and almost surelyδ(In) = O(logβ n).

Note that our bound onβ grows rapidly asr approaches 2.

3.2 The C(r, n) setting with 2 < r

Theorem 2. For r > 2, C(r, n) is a ‘large’ world with expected diameterΩ(n
r−2
r−1

−o(1)).

Proof. Let 1
r−1 < γ < 1. For any nodei, the probability thati’s random contact is at most a

distancenγ from i, is
Pr[i → j : |i− j| ≥ nγ ] = 1−O(

∑n/2
d=nγ d−r) = 1−O(n−γ(r−1)) .

Using lemma 2, the probability that all random links have length at mostnγ , is
≥ 1− n×O(n−γ(r−1)) = 1−O(n1−γ(r−1)).

Since 1
r−1 < γ, this probability tends to1 whenn goes to infinity. Thus the diameter is at least

n
nγ = n1−γ with overwhelming probability (tending to1 whenn goes to infinity). So, the expected

diameter isΩ(n
r−2
r−1

−o(1))

3.3 Extended settings

It is easy to extend our results for the1-D settings without wraparound . The normalized coefficient
for random links from a nodei depends on the position ofi, i.e. Pr[i → j] = L(i) × |i − j|−r.

Now,
∑n

d=1 d−r ≤ L−1(i) ≤ 2
∑n/2

d=1 d−r, i.e. L ≤ L(i) ≤ 2L, so, equation (1), and hence the rest
of our arguments, still apply.

We now consider the generalk-D setting fork = 1, 2, 3 . . .. Let H(k, r, n) denote ak-
dimensional hypercubeHn (ann×n× . . .×n hypercube) with undirected edges between adjacent
nodes and one random directed link from each node wherePr[u → v] ∝ d−r(u, v). The model is
still a small-world whenr < 2k but a ‘large-world’ whenr > 2k.

Theorem 3. For eachk, r with k < r < 2k, there existsβ > 0 s.t. H(k, r, n) has expected
diameterO(logβ n). For eachk, r with 2k < r there existsα > 0 s.t. H(k, r, n) has expected
diameterΩ(logα n).

Proof(sketch).It is not hard to see that the same approach (and techniques) as before still apply, but
we need to modify some details. We focus onk < r < 2k (we omit2k < r which is simpler).

To establish a (probabilistic) recurrence relation, we now usek-D hypercubes (in place of seg-
ments in the1-D setting). Consider a hypercubeHx of sizex (in each dimension). As before,
for some0 < ξ < 1, we can divideHx into xk(1−ξ) disjoint hypercubes each of sizexξ (in each
dimension). LetDξ(Hx) = {J1, J2, . . . , Jxk(1−ξ)} denote this set of sub-hypercubes. IfHx is
ξ-complete, i.e. there is a crossing edge fromJi to Jk for any pair (Ji, Jk), then as before, we
haveδ(Hx) ≤ 2maxδ(J) + 1, J ∈ Dξ(Hx). So, we have the desired recurrence relation and
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Figure 2: A path froms to t

can go on as before to justify thatδ(Hn) is almost surely upper bounded by a poly-log function.
Therefore, the remaining concern is on theξ-completeness of anyHx (for x large enough); more
specifically, we need the following fact, a new version of lemma 4: there existsξ ∈ (0, 1) and
x0 = O(logβ n) for someβ > 0 such that forx > x0, anyHx is almost surelyξ-complete forn
large enough. Again, we need to considerPr[Ja → Jb] for anyJa, Jb ∈ Dξ(Hx). Using lemma
1, Pr[Ja → Jb] ≥ 1 − e−ε|Ja||Jb|, whereε = ε(Ja, Jb). Note that|Ja| = |Jb| = xkξ while
ε(Ja, Jb) ≤ θ(x−r). So,Pr[Ja → Jb] ≥ 1 − e−θ(x−r)×x2kξ

= 1 − eθ(−x2kξ−r). Now, by choosing
anyξ ∈ ( r

2k , 1), we can go on as before (with lemma 4) to finish proving this fact.

Note that the caser = 2k is open, however initial experiments (for the1-D setting only) suggest
that the setting has polynomial expected diameter.

4 Constructing O(log n) diameter graphs with non-uniform random links

To analyze the shortest path between a source nodes and a destination nodet, we construct two
subset chains, which can be viewed as two trees rooted ats and t, and then show they intersect.
Each subset ins’s subset chain contains nodes which can be reached directly from the preceding
subset, and hence, can be reached froms. The subset chain fromt is similar, but contains nodes
with links towardst. To show that the shortests − t path has lengthO(log n), the main idea is to
show that each subset chain grows exponentially in size before they intersect7 (see figure 2).

Exponential growth will be likely if each time we grow a new subset, with high probability more
than one link from each node leaves the current subset. This was true in Kleinberg’s grid setting [20]
(we called this: “link into or out of a ball” property). We now include this feature to refine our basic
classFRG(H, τ, q). Recall that, a family of random graphsFRG(H, τ, q) consists of graphs, each
of which is a base graphH ∈ H plus at leastq out-going random links generated under distribution

7Alternatively, each subset chain grows exponentially to a threshold, so they intersect with high probability.
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τ for each node.

Definition 3. For constantsµ > 0 andξ > 0, familyF = FRG(H, τ, q) meets ‘the (µ,ξ) expansion
criterion’, or F is (µ,ξ)-EXP , if ∀H = (V, E) ∈ H, with n = |V |:

∀u ∈ V,∀C ⊂ V, |C| < nµ : Pr[v Rτ← u : v /∈ C] ≥ ξ (3)

For example, from [19], it is easy to verify that Kleinberg’s grid setting with wrap-around dis-
tance is (µ,1 − µ − o(1))-EXP for any fixed positive constantµ < 1. This criterion supports
diversity and fairness in the distribution of random links:For a random link from any node, no
small set of vertices (size≤ nµ) can take most of the chance to have this link come into it.

Definition 4 (Type µ-Expansion). For a constantµ > 0, typeµ-Expansion contains all the
familiesFRG(H, τ, q) which meet (µ,ξ)-EXP for someξ > 1/q.

We defineχ, called an‘expansion function’, as follows. Given anyu ∈ V , this operation will
call operationRτ q times. Also, letχ(u) denote the set of vertices from theseq Rτ calls. Thus
the random links for graphG are formed by performing operationχ on each node. For any setS:
χ(S) =

⋃
u∈S χ(u).

Consider a familyF of typeµ-Expansion. Let β = qξ (soβ > 1). For any nodeu and setC
of size less thannµ − q, which is determined beforeχ(u) is known, the expected number of fresh
elements generated byχ(u) that do not belong toC is greater thanβ: E[ | χ(u)− C | ] > β > 1.
Sinceχ(u) ‘contributes’ more than one expected fresh element outside ofC, χ can be used to
generate a chain of subsets from a small initial subset such that with high probability, the subsets
will quickly grow to sizeΘ(nµ).

4.1 The out-going subset chain

Let F be aµ-Expansion family, andG = (V, E) be an arbitrary graph fromF . Now, from an
arbitrary initial setS0 ⊂ V , we construct a chain of subsets{Sk}, namely theout-going subset
chainwith respect to the initial setS0, s.t. Sk+1 = χ(Sk)−∪k

i=0Si; k = 1, 2, 3, . . . Thus,Si is the
nodes at distancei from S0 using random links. The following results forµ-Expansion families
show the subset chain grows rapidly ifS0 is large enough.

Lemma 5. ∀C, S ⊂ V s.t. S ⊂ C, |C| ≤ α = θ(nµ): if |S| = Ω(log n), almost surely|χ(S) −
C|/|S| > γ for a constantγ > 1. Also,∃γ > 1,∀ θ > 0,∃c > 0:

|S| > c log n ⇒ Pr[ |χ(S)−C|
|S| > γ] = 1−O(n−θ)

The above lemma (proof in appendix) provides a probabilistic lower boundγ on the growth
rate of the subset chain in each early step (by choosingC = ∪k

i=0Si to apply the lemma in each
step). This growth rate can be maintained as long as the subset sizes are still under a threshold.
For anyS0 ∈ V with sizeΩ(log n), the subset chain originating fromS0 will almost surely grow
exponentially in size until it reaches sizeα = θ(nµ). Also, for anyθ > 0, by choosing a sufficiently
large constantc s.t. |S0| > c log n, Pr[|Sk| ≥ α] = 1−O(n−θ) for somek = O(log n). Moreover,
this can be true for any givenθ > 0 by choosingc large enough.

4.2 The in-coming subset chain

We now construct a subset chain, based on the random links coming to the sets of the chain. We
use an ‘expansion function’ψ, which is a counterpart ofχ, so we can reuse the formalism used in
§4.1 on the out-going subset chain and obtain similar results. Functionψ is not state-less asχ was.
For any subset of verticesD and a nodeu ∈ V we defineψ(u,D) to return the set of all nodes
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v /∈ D s.t. v has a random link tou. As before,ψ(T,D) =
⋃

u∈T ψ(u,D) for any subsetT . Now,
from an arbitrary subsetT0 ⊂ V , we can construct a chain of subsets{Tk}, namely thein-coming
subset chainwith respect to the initial setT0, s.t. Tk+1 = ψ(Tk,D) for k = 1, 2, 3, . . ., where
D = ∪k

i=0Tk. Similar to definition 3, we have:

Definition 5. For constantsµ > 0 and ξ > 0, family F meets ‘the (µ,ξ) incoming expansion
criterion’, or F is (µ,ξ)-IE, if the following is satisfied.

∀D : |D| < nµ, ∀u ∈ D : Pr[∃v /∈ D : Rτ (v) = u] > ξ (4)

Similarly as withµ-Expansion, for a fixedµ > 0, we define typeµ-IncExpansion, which in-
cludes all theFRG(H, τ, q) families which meet (µ,ξ)-IE whereξ > 1/q. For aµ-IncExpansion
family, lemma 5 holds if we replace the use of functionχ by that of functionψ and subsetC by sub-
setD (8). There is an interesting implication between these two expansion criteria for a large class
of families. We call a family of random graphs, using a distributionτ , δ-symmetric (or just sym-
metric if δ = 1) for some constantδ ≥ 1, if Pr[Rτ (v)=u]

Pr[Rτ (u)=v] ≤ δ for all pairs of nodes(u, v). It is easy
to see that Kleinberg’s grid settings (using the inverse power distributions) have this property, and
they are symmetric if wrap-around distance is used.

Lemma 6. If familyF is (µ,ξ)-EXP , for 0 < µ, ξ < 1, and isδ-symmetric for someδ ≥ 1 thenF
is (µ,1− e−ξ/δ)-IE.

Proof. We need to prove (4) holds. Letp(u, v) = Pr[Rτ (u) = v] and F be the event that
∃v /∈ D : Rτ (v) = u. The lemma is shown as

Pr[F ] =
∏

v/∈D
(1− p(v, u)) ≤

∏

v/∈D
e−p(v,u) = exp{−

∑

v/∈D
p(v, u)} ≤ exp{−1

δ

∑

v/∈D
p(u, v)} ≤ e−

ξ
δ

Note that
∑

v/∈D p(u, v) = Pr[∃v /∈ D : Rτ (u) = v] ≥ ξ. Also, the factex ≥ 1 + x implies
e−p(u,v) ≥ 1− p(u, v).

4.3 Abstract classes of small-world graphs

We refine the above families by adding conditions to obtain small-world graphs. If our graph is
from a family of typeµ1-Expansion andµ2-IncExpansion for some0 < µ1, µ2 < 1 then, given
any sources and destinationt, we can use the following strategy to construct alog n-length path
from s to t (see figure 2). First, we want a connected subsetS0 containings andT0 containingt of
Ω(log n) size in the base graphH. We then construct the out-going subset chain fromS0 and the
in-coming subset chain fromT0. Our above results show that, with overwhelming probability, there
exist subsetsSk with sizeθ(nµ1) andTl with sizeθ(nµ2) s.t. any node inSk can be reached from
S0 by O(log n) links, andT0 from Tl by O(log n) links. We now consider proper conditions so we
can easily reachTl from Sk.

If ε = ε(τ), the minimum value ofPr[Rτ (u) = v] for all u 6= v, is large enough, then almost
surely there is an arc fromSk to Tl (or they intersect).

Definition 6 (Expansion Family). AFRG(H, τ, q) is anExpansion family if it is (µ1,ξ)-EXP
and (µ2,ξ)-IE for some constantsξ > 1/q, µ1, µ2 > 0, and ε(τ) = Ω(n−µ3) for a constant
µ3 < µ1 + µ2.

8The constructions of both subset chains share the same formalism
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We now show that a graph from anExpansion family almost always has an arc fromSk to
Tl (or they already intersected). We can assume all the nodes inSk are fresh (we do not know their
random links yet9) and hence, using lemma 1,

Pr[Sk → Tl] ≥ 1− e−qε|Tl||Sk| ≥ 1− e−Ω(nµ1+µ2−µ3) ≥ 1−O(n−1)
which tends to1 whenn goes to the infinity.

The graphs from anExpansion family 10 are small-worlds, i.e. their expected diameter is
poly-log in n, as long as each node is rich enough in neighbors in the base graph to form large
enough initial subsets (i.e.S0, T0). Without this final condition, however, often these graphs are not
connected. If there are no edges in the base graph (E = ∅) then even with the added random edges,
the graphs can be unconnected; an example will be presented in the next subsection.

We now add the notion of neighboring in the base graphs. A nodeu is calledk-neighboredfor
somek ∈ N if u belongs to a connected component of sizek in the base graph. A base graph
H = (V, E) is calledk-neighbored if all the nodes arek-neighbored. A connected graph isk-
neighbored for allk ≤ |V | − 1. For k large enough,k-neighbored graphs allow us to construct
large enough initial subsets. The next theorem now follows fairly directly11.

Theorem 4. For any two nodess, t in a graph of anExpansion family , if s and t are c log n-
neighbored for any constantc > 0 then there almost surely existO(log n)-length paths betweens
and t. An Expansion family , using(c log n)-neighbored base graphs wherec > 6qξ

(qξ−1)2
, has

expected diameterO(log n).

Thus, a graph from anExpansion family almost always consists of a giant component with
diameterO(log n) and perhaps some small components of sizeO(logn). There are perhaps random
(directed) links between the components (but only in one direction between a given pair).

Using super-nodes.We now consider random graphs which uselog n-neighbored base graphs.

Theorem 5. Consider a familyFRG(H, τ, q), which is (µ1,ξ)-EXP and (µ2,ξ)-IE for some con-
stantsξ, µ1, µ2 > 0, whereε(τ) = Ω(n−µ3) for some constantµ3 < µ1 + µ2, and all base graphs
in H are log n-neighbored. There almost surely exists a path of lengthO(log n) between any two
nodes (forn large enough).

Proof. This theorem is a simple corollary of the previous theorem ifq is s.t.ξ > 1/q. However, for
q < Q = d1/ξe the theorem still holds. The main idea is to form super-nodes withQ random links.
Thelog n-neighbored property assures that we can always partition the graph into super-nodes each
of which is a subgraph of constant diameter and has at leastQ random links. The length of a path
constructed here differs by only a constant from before (when we haveq ≥ Q).

These abstract classes for (almost) small-world graphs are broad enough to accommodate many
different well-known small-world models: Bollobas and Chung’s [6], Watts and Strogatz’s [23],
Kleinberg’s grid-based [16], tree-based, and group-induced models [15]. Kleinberg describes his
group-induced model with two abstract properties, and it is not hard to see that the second property
implies our (µ,ξ)-IE for some0 < µ, ξ < 1. We show that our results apply to Kleinberg’s tree-
based model in the following section. It is relatively straight-forward to extend this case for similar
results in the group-induced model. Figure 3 shows how the classes relate.

9We omit a conditioning issue: if we construct thes subset chain (s-SSC) first then the growth of thet subset chain
(t-SSC) is conditioned on the existence of s-SSC and vice versa. Thus, we need to add∪k−1

i=0 Si toD (§4.2) or∪l−1
i=0Ti to

C (4.1). Therefore, ifµ1 > µ2 then we construct t-SSC first, otherwise s-SSC first.
10Note that we can construct similar classes by usingµ-Expansion andδ-symmetric property instead.
11In fact, a full proof of it is very similar to that of theorem14 in our previous work [20].
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Figure 3: The hierarchy of classes

4.4 The diameter of a tree-based random graph

We now use our framework to analyze the diameter of Kleinberg’s tree-based model [15] and its
variants. Kleinberg shows that decentralized routing can be applied in more settings (not only the
grid-based [16]), but even when no lattice structure appears at all (say, the network of the Web’s
hyper-links). Kleinberg also introduces a group-induced model, a generalization of both grid-based
and tree-based models [15]. He shows that using these models, greedy routing takes expected
time O(log n) if nodes have out-degreeθ(log2 n), andO(log4 n) if the degrees are bounded by a
constant. Note that for the constant-degree model, there is a fair chance that some nodes have no
in-coming link at all. Thus, the routing protocol is only required to find a path from a sources to
a small neighborhoodof a destinationt (a “cluster” in [15]), say, a small ‘subtree’ which contains
the leaft.

We now show our results with respect to the diameter of the tree-based model (which can be
extended to the group-induced model for similar results). Basically, we show thatwhen the degree
of each node is at least3, the setting is anExpansion family , that is by adding sufficient local
links to make each node rich enough in neighbors, the graph will have diameterO(log n). Let us
review Kleinberg’s tree-based model. Nodes are the leaves of a complete (for simplicity)b-ary tree
T , whereb is a constant. Leth(u, v) denote the height of the least common ancestor ofu andv in
T . There are no local links in this setting but there are a number of directed random links leaving
each nodeu, under a distributionτ , where a link is tov with probability proportional tob−h(u,v).

If there are exactlyq directed random links leaving each node, the graphs in this tree-based
setting are very likely unconnected (similar to the case of lacking local links in the grid-based setting
[19]), however, the setting can still be anExpansion family by adding proper conditions. From
[15], the normalizing coefficient of this link distribution isθ(log−1 n). So,ε(τ) = θ(n−1 log−1 n);
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thus, to have anExpansion family we need this setting to meet (µ1,ξ)-EXP and (µ2,ξ)-IE for
someξ > 1/q andµ1 + µ2 > 1. Consider the following fact which holds even ifq = 1.

Fact 7. For Kleinberg’s tree graphs with anyq ≥ 1, given a positiveθ < 1, a nodeu andC ⊂ V
with size at mostnθ, the probability that a random link fromu hits a node outside ofC is more than
1 − θ − o(1) whenn is large enough. Also, the probability that there is a random link tou from
outside ofC is more than1− eθ+o(1)−1 (i.e. almost1− eθ−1) whenn is large enough.

See [20] for a proof of a similar fact. It is easy to see that the setting meets (x − o(1),1 − x)-
EXP and (y − o(1),1 − ey−1)-IE for any0 < x, y < 1. Therefore, givenq, we need to findx, y
s.t.

x + y > 1; q(1− x) > 1; q(1− ey−1) > 1
Solving this system of equations, we findq ≥ 3.

Theorem 6. For q ≥ 3, Kleinberg’s tree-based setting is anExpansion family .

We can add in local links to make the base graph connected or make the base graphc log n-
neighbored: ring all the nodes in the base graphH or alternately, ring all the subtrees of height
at mostlogb(c log n). With c determined as in theorem 4, this setting will have expected diameter
O(log n).

5 Random graphs induced by semi-metric or metric functions

We have abstracted away topological features of Kleinberg’s grid setting with our expansion criteria
to create classes where the strongest hasO(log n) expected diameter. We now generalize the use of
a distance measure in the distribution of random links, and this makes greedy-like routing (defined
later) work. We design classes of random graphs using distributions based on semi-metric functions:
we define a semi-metric functiond(u, v) and generate random links between any two nodesu and
v with probability∝ d−r(u, v).

Consider a pair(G, d): a graphG = (V, E) and a functiond = dG : V 2 → R+ associated
with G. We defined to be a semi-metric function if for anyu, v ∈ V , d(u, v) = 0 ⇔ u = v; and
d(u, v) = d(v, u). We defineNk(u) = {v ∈ V |d(u, v) ≤ k}, the nodes within ‘distance’k of u.
For c1, c2 > 0, graphG is called(c1, c2) linear-expandedwith respect tod if ∀u ∈ V, k = 1, 2 . . . :
c1 ≤ |Nk(u)|

k ≤ c2 if Nk−1(u) 6= V , i.e. |Nk(u)| grows nearly-proportionally tok beforeNk(u)
becomesV .

Definition 7 (InvDist family). AnInvDist(r) is aFRG(H, τ, q) family where each base graph
H ∈ H has an associated metric-functiond and there exists constantsc1, c2 > 0 s.t. H is (c1, c2)
linear-expandedw.r.t d, and where12: Pr[Rτ (u) = v] ∝ d−r(u, v).

All Kleinberg’s small-world models (grid-based, tree-based and group-induced) fall intoInvDist(1)
for an appropriated. For example, for Kleinberg’s2-D grid model [16], we defined(u, v) as the
square of the lattice distance betweenu andv; for Kleinberg’s group-induced model [15], we define
d(u, v) as the size of the minimum set containing bothu andv 13.

Theorem 7. ∀r : 0 < r < 1, δ > 0, c2 > c1 > 0, ∃q ≥ 1 s.t. anyδ-symmetricInvDist(r) family
specified byc1, c2 andq (as in definition 7) is anExpansion family 14.

12Note that any family satisfying all these criteria except havingc1 ≤ |Nk(u)|
kβ ≤ c2 instead (for some given constant

β > 0) can be normalized by using functiond′(u, v) = dβ(u, v) instead, and hence becomes anInvDist(r′) family
wherer′ = r/β.

13It is not hard to see that the second property (of the two abstract properties Kleinberg uses to describe his group-
induced model) implies that|Nk(u)| grows nearly-proportionally tok.

14Note that if we only use undirected random links then the condition ofδ-symmetry is not necessary.
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As a result, for any graph from aδ-symmetricInvDist(r) family usinglog n-neighbored base
graphs, there almost surely exists anO(log n) length path between any two nodes.

Proof. Here we prove the theorem forr = 1. It is not hard to extend our proof for otherr’s
(0 < r < 1), which is actually easier. Consider anInvDist(1) family and a graph from it. We show
that we can chooseq big enough such that this family is an expansion family, i.e., it meets (µ1, ξ)-
FE and (µ2, ξ)-SE for someξ > 1/q andµ1, µ2 > 0, and 1

ε(τ) = o(nµ1+µ2) (whereε(τ) is the
minimum probability given to a random link byτ ). In order to justify the first expansion property,

we need to estimate this type of probability:Pr[v Rτ← u : a ≤ d(u, v) ≤ b] for 1 ≤ a < b ≤ Ku,
whereKu = min{k | Nk(u) = V }, the maximum distance of any other node fromu. Note that,
this probability is related toh(a, b) =

∑b
i=a 1/i ≈ ln(b/a) as will be shown later. Also, from

c1 < |Nk|
k < c2, clearly,Ku = θ(n).

Let A(a, b) =
∑b

k=a(|Nk(u)| − |Nk−1(u)|)× 1
k where|Nk(u)| − |Nk−1(u)| is the number of

nodes at distancek from u. Thus,1/A(1,Ku) is the normalized coefficientCu (of the distribution

of the random links atu). So,Pr[v Rτ← u : a ≤ d(u, v) ≤ b] = A(a, b)/A(1,Ku). Now, we have

A(a, b) =
b∑

k=a

(|Nk(u)| − |Nk−1(u)|)× 1
k

=
b−1∑

k=a

|Nk(u)| × (
1
k
− 1

k + 1
) +

|Nb|
b

− |Na−1|
a− 1

=
∑b−1

k=a
|Nk(u)|
k(k+1) + |Nb|

b − |Na−1|
a−1 .

Now note thatc1 < |Nk|
k < c2, i.e.

∑b−1
k=a

c1
(k+1) ≤

∑b−1
k=a

|Nk(u)|
k(k+1) ≤

∑b−1
k=a

c2
(k+1) , so

c1h(a + 1, b) + c1 − c2 ≤ A(a, b) ≤ c2h(a + 1, b) + c2 − c1 OR A(a, b) = θ(ln(b/a)) (5)

Now we justify the fist expansion property. For anyC ∈ V with sizeO(nµ) and0 < µ < 1, we
considerPr[Rτ (u) /∈ C]. Definek ∈ N such that|Nk−1(u)| ≤ |C| = O(nµ) < |Nk(u)|. Thus,
|Nk(u)| = O(nµ) andk = O(nµ). Again, using the observation that a ball is the best shape forC
to minimize the probabilityPr[Rτ (u) /∈ C], it is easy to see that

Pr[Rτ (u) /∈ C] ≥ Pr[Rτ (u) /∈ Nk(u)] = Pr[v Rτ← u : k+1 ≤ d(u, v) ≤ Ku] = A(k+1,Ku)/A(1, Ku).

From (5),

A(k + 1,Ku) ≥ c1h(k + 2,Ku) + c1 − c2 ≥ c1 ln(
n

O(nµ)
) + O(1) = c1(1− µ) lnn + O(1).

Also,A(1,Ku) ≤ c2 ln n+O(1). Thus,Pr[Rτ (u) /∈ C] ≥ c1(1−µ)
c2

, i.e. the family meets (µ, ξ1)-FE

for any 0 < µ < 1 and ξ1 = c1(1−µ)
c2

. Using δ-symmetry, the family meets (µ, ξ2)-SE where

ξ2 = 1− e−ξ1/δ > 0. Thus we need to chooseq > ξ2.
Now we only need to assure that1ε(τ) = o(nµ1+µ2), i.e. 1

ε(τ) = o(n2µ). Note thatε(τ) =
1/Ku

A(1,Ku) = O( 1
n ln n). Thus we only need to chooseµ > 0.5 then this condition is met.

Note that, from (5), the normalized coefficient forInvDist(1) isCu = 1/A(1,Ku) = θ(log−1 n),
the fact we will use in the next section.
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5.1 Greedy-like routing.

This section constructs a new class of graphs where most pairs of nodes have shortest paths of
lengthO(log n) andgreedy-like paths(defined below) with expected lengthO(log2 n). Inspired by
Kleinberg’s idea of greedy routing using only local information [16], we assume that each nodeu
knows the random links which leave nodes in a smallneighborhoodnearu (e.g. thelog n nodes
closest tou in the base graph).Greedy-like pathsare paths found by agreedy-like algorithmwhich
is defined as follows: if the current node isu, choose the random link(w, v) wherew is in u′s
neighborhood andv is the closest such node to the destination. Route tow using local links and
then take link(w, v). Updatev to be the current node. We now present new definitions and then our
theorems for this routing strategy.

We restrictd(u, v) to be a‘light’ metric by adding the condition thatd(u, v) ≤ α(d(u,w) +
d(w, v)) for any nodesu, v, w and for a constantα (so less strict than the triangle inequality). We
define classMET R(r) as classInvDist(r) but each functiond is a light metric function instead.
All Kleinberg’s small-world models (grid-based, tree-based and group-induced) areMET R(1)
families with the functiond(u, v) derived naturally from each model’s context. Except for the1-D
and the tree-based setting, this function is not a metric. For the tree-based setting, letd(u, v) be the
number of leaves in the smallest subtree containingu andv (this satisfies the triangle inequality).
For the group-induced model, we letd(u, v) be the size of the smallest group containing nodesu
andv. This generally doesn’t satisfy the triangle inequality, but satisfies ours for a properα.

We now add neighboring conditions so our greedy-like routing strategy can be used. An undi-
rected base graphH(V,E) is calledk-strongly neighbored(w.r.t. the functiond(u, v)) if for each
u ∈ V , the sub-graph induced by the set of nodesv such thatd(u, v) ≤ k is connected.

Theorem 8. For any graph from aMET R(1) family usinglog n-strongly neighbored base graphs,
a greedy-like algorithm will find paths of expected lengthO(log2 n) between any two nodes.

Proof (Sketch).Let l = log n and assumeq = 1 (worst case). Consider this greedy-like algorithm:
each step of routing from the current nodeu finds a nodew ∈ Nl(u) with a random contactv =
Rτ (w) closest tot. Thus we route tov (throughw) and update it as the current node15. We now
just apply Kleinberg’s idea of using phases (each phase roughly halves the remaining distance) to
analyze this routing algorithm.

Supposed(u, t) = 2k for the current nodeu. Assume2k > l (otherwiset ∈ Nl(u) and we can
use local links to go directly tot). ConsiderPr[Rτ (w) ∈ Nk(t)] wherew ∈ Nl(u). For any node
v ∈ Nk(t), note that (see figure 4)

d(w, v) ≤ α(d(w, u) + d(u, v)) ≤ αl + α2(d(u, t) + d(t, v)) ≤ 2kα + 3kα2 = k(2α + 3α2)

Thus,Pr[Rτ (u) ∈ Nk(t)] ≥ Cu
|Nk(t)|

k(2α+3α2)
= θ(log−1 n) sinceCu = θ(log−1 n) andc1 ≤

|Nk(t)|/k ≤ c2. Since the number of such nodew ∈ Nl(u) is |Nlog n(u)| = θ(log n), the prob-
ability that the next nodev (set after each step of routing) is in the inner ballNk(t), can be lower
bounded by a positive constant. Therefore, the expected number of routing steps to complete a phase
(of halving the remaining distance) is upper bounded by a constant and thus, just like Kleinberg’s
proof of hisO(log2 n) upper bound in [16], we can argue that each phase takes expectedO(log n)
links and then the obtained greedy-like path has expected lengthO(log2 n) (afterlog n phases).

Combining theorems 7 and 8, we have:

15Here we assume knowing the local topology of the base graph and thus, we can use ‘local links’ (of the base graph)
to traverseNl(u). We can certainly route fromu to w by the shortest path withinNl(u).
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Figure 4: A greedy-like routing step may halve the remaining distance to the destination

Theorem 9. For any graph from aMET R(1) δ-symmetric family usinglog n-strongly neighbored
base graphs, there almost surely exists a path of lengthO(log n) and a greedy-like path of expected
O(log2 n) between any two nodes.

This theorem easily applies to Kleinberg’s grid, tree-based and group-induced models with
proper local links (to make the base graphslog n-strongly neighbored).

5.2 Diameter ofMET R(r) for 1 < r < 2.

We now present a natural generalization of our results in§3. We consider the diameter ofMET R(r),
where1 < r < 2.

Theorem 10. For 1 < r < 2, for aMET R(r) family, there exists a constantĉ s.t. if the base

graphs arex0-strongly neighbored, wherex0 = ĉ log
2

2−r n (n: number of vertices), then almost
surely the expected diameter of this family is upper bounded by a poly-log function.

Proof(sketch).We extend our approach in§3 (using probabilistic recurrence relations) to upper
bound the diameter of the graphs in this abstract class. Defineφ(x) = max

u∈V
δ(Bu

x), whereδ(Bu
x)

is the diameter of the subgraphBu
x (induced in our graph, withinNx(u)), which is∞ if the graph

is not strongly connected.φ(x) (andδ(Bu
x)) is determined for each graph (after random links are

chosen). The key idea is to establish a probabilistic recurrence relation, whereφ(x) ≤ 2φ(xξ) + 1
with probability≥ 1 − n−2, for some chosen0 < ξ < 1 and for allx greater than some chosen
constantx0 > 0. Then, we can just repeat theorem 1’s work to upper bound the expected diameter
of MET R(r).

For simplicity, we assume using metric functions (α = 1). Let r/2 < ξ < 1, x > 0; u, v are
two arbitrary nodes withd(u, v) = x. ConsiderPr[Bu → Bv], the probability of having a random
link from Bu = Bxξ(u) to Bv = Bxξ(v). Using lemma 1,Pr[Bu → Bv] ≥ 1 − e−ε|Bu||Bv | ≥
1− e−ĉx2ξ−r

, whereε = ε(Bu, Bv) = Cu(x + 2xξ)−r = θ(x−r) and both|Bu| and|Bv| areθ(xξ).
Note that, for1 < r, the normalized coefficientCu is constant-bounded.

Now for any nodeu ∈ V , a ballBx(u) will have its diameter upper bounded by2φ(xξ) + 1
if the eventsBv → Bw occur for any two distinct nodesv, w ∈ Bx(u) andBv ∩ Bw = ∅. The
number of such events is≤ n2, so using lemma 2,Pr[δ(Bu

x) ≤ 2φ(xξ) + 1] ≥ 1− n2 × e−ĉx2ξ−r
.

Combining the same event for allu ∈ V , Pr[φ(x) ≤ 2φ(xξ) + 1] ≥ 1− n3 × e−ĉx2ξ−r
.
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Now we choosex0 = (5/ĉ)
1

2ξ−r × ln
1

2ξ−r n and hence, forx ≥ x0, Pr[φ(x) ≤ 2φ(xξ) + 1] ≥
1 − n−2. Now simply chooseξ = .5 + .25r (so, r < 2ξ = (2 + r)/2 < 2) and continue as in
Theorem 1’s proof.

For example, we can modify Kleinberg’s tree-based setting to become a small-world graph with
poly-log expected diameter as follows. We connect all the nodes together (say, order the nodes from
left to right and connect them with undirected edges), and for any two nodesu andv, we add an arc
from u to v with probability proportional tob−rh(u,v) instead ofb−h(u,v) with 1 < r < 2. Note that,
under the context of this section we defined(u, v) as the number of leaves in the smallest subtree16

which contains bothu andv: bh(u,v).

6 Concluding remarks

We consider a general construction of random graphs: a base graph plus random links added to
each node. By gradually adding properties to the base graphs and/or the distribution of random
links, we build a hierarchy of classes of random graphs with the finest ones featuring small-world
properties (small diameter and greedy-like routing using local information only). Thus, we propose
a framework for analyzing and characterizing small-world graphs.

There are still some open questions in our study of ‘adding links with probability∝ the inverse
distance’. As noted before, the caser = 2k in thek-D grid setting is still open. We also expect
to extend our results in§5 for base graphs with restricted growth rate17, a general class of graphs
which can be used to model many real networks [12]. Thus our work can be useful for a practical
design problem, where we want to add in “long links” to a given network to shrink its diameter.
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Appendix

Proof of Lemma 5.Before proving this lemma, we need to introduce some new notions. LetZ(u, C) denote the indicator
random variable, which indicates if the resultv = Rτ (u) is outside ofC or not. For a fixedu, E[Z(u, C)] is a function
of C on domain2V . Consider all subsetsC with |C| = nµ and corresponding valuesE[Z(u, C)]. Let Cu denote the one
that hasE[Z(u, C)] being the minimum. LetZu denoteZ(u, Cu) and note thatE[Zu] = min{E[Z(u, C)], |C| ≤ nµ}.
Also note that theZus for all u are independent (though not always identical) Bernoulli random variables and from the
definition of classµ-Expansion each of them has expectation at leastξ.

Lemma 5 can be proved by using Chernoff’s inequality. LetS = {u1, u2, . . . , ul} wherel = |S| = Ω(log n),
andT denoteχ(S)− C. If we produce an ordered sequence ofdl resultsχ1(u1), χ2(u1), . . . , χq(u1), χ1(u2), χ2(u2),
. . . , χq(ul) thenχ(S) is the union of thesedl items. Therefore,T can be seen as the result of accumulating only the
fresh ones from thesedl items if they come one-by-one in order. A valueχi(uk) is seen fresh if it is neither inC nor
already in the current accumulated setT .

For i = 1..q, k = 1..l, let Xk
i denote a random variable that takes value1 if χi(uk) is fresh, i.e. it is outside ofSk−1

j=1 χ(uj) ∪
Si−1

j=1 χj(uk) ∪ C (which clearly has size less than(q + 1)|C| < nµ for large enoughn). Otherwise,Xk
i

takes value0. LetX denote the sum of thesedl random variables. Note that eachXk
i can be lower bounded byZuk ; thus

X can be lower bounded by the sum ofdl independent Bernoulli random variables, each of which has expectation at least
ξ = β/q. Therefore, by applying Chernoff’s inequality we havePr[X ≤ (βl)(1 − δ)] ≤ e−δ2(βl)/2 whereE[X] ≥
(ld)(β/q) = βl and0 < δ < 1. Sincel = Ω(log n) thene−δ2(βl)/2 = O(n−t) for somet = t(δ) > 0. This is due to a
simple fact thatea log n = na for anya. Thus,Pr[X ≤ (βl)(1− δ)] = O(n−t) or Pr[X > lβ(1− δ)] = 1−O(n−t).
This assures that when n is large enough,X, and thus|T |, is almost surely greater thanlβ(1− δ). Setγ = β(1− δ).

When we have obtained this fixedδ, given anyθ > 0 we can choosec s.t. whenl > c log n we havePr[X >

lβ(1− δ)] = 1− O(n−θ). This can be done by choosingc s.t. e−δ2(βc log n)/2 = O(n−θ) or δ2βc/2 > θ or c > 2θ
δ2β

.
Put another way, we can start choosing anyγ s.t. 1 < γ < β (thus we have the intermediateδ = 1 − γ/β) and then
choose anyc s.t. c > 2θβ

(β−γ)2
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