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Abstract

We prove additional results about Kleinberg’s Small-World (KSW) model and its
extensions. Kleinberg adds a number of directed long-range random links to an n × n
lattice network (vertices as nodes of a grid, undirected edges between any two adjacent
nodes) under a specific non-uniform distribution. He shows that the following phe-
nomenon occurs: between almost any two nodes there exits a short path with length at
most O(log2n) which can be found using a simple greedy algorithm which has no global
knowledge of long-range links. Kleinberg proves that the expected delivery time using
his algorithm is O(log2n).

We show that indeed Kleinberg’s algorithm achieves θ(log2n) delivery time. More-
over, we show that the expected diameter of the graph is θ(logn), so a logn factor
smaller. These results are proved for the general k-dimensional model and our diameter
result extends traditional work on the diameter of random graphs which largely focuses
on uniformly distributed arcs. Using little additional knowledge of the graph, we show
that we can find paths with expected length O(log3/2n) in the basic 2-dimensional
model and O(log1+1/kn) in the general k-dimensional model (for k ≥ 1). Finally, we
suggest open problems and initiate the study of further generalized models where grid-
related factors (e.g. the use of lattice distance) get weaker roles or are dismissed, and
constraints (such as the uniformness of degree distribution) are relaxed.

1 Introduction

Small-world networks (SWN) have been an active and common topic in various disciplines,
including both the social and natural sciences. These networks possess a striking property,
the so called small-world phenomenon, also often spoken of as ”six degrees of separation”
(between any two people in the United States), which was discovered by S. Milgram in his
pioneering work in the 1960’s [14]. A number of network models have been proposed as a
framework to study this phenomenon. Recently, J. Kleinberg (1999) has proposed a family
of SWNs to study another compelling aspect of Milgram’s original findings: a decentralized
algorithm operating only on local information can construct short paths.

As Kleinberg has commented, it is striking (yet little studied) that the short paths
not only exist but can be found without requiring prior knowledge of the global network.
Algorithmic results in this area not only improve our understanding of many practical
network structures but also bring in potential applications related to routing problems in
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the Internet. Thus, modelling this feature of SWNs with emphasis on algorithmic aspects
is well motivated. Kleinberg’s model is the first to demonstrate this idea.

Kleinberg’s basic model is a structure with a two-dimensional grid as a base and long-
range random links added between any two nodes u and v with a probability proportional
to d−2(u, v), the inverse square of the lattice distance between u and v (Kleinberg called
this the inverse second-power distribution). In the basic model, from each node, there is a
local link to each of its four grid neighbors and one long-range random link. In this setting
Kleinberg shows that a simple greedy algorithm using only local information finds routes
between any source and destination using only O(log2n) expected links [12].

There are two major reasons that Kleinberg’s model is notable. First, it provides “latent
structural cues”, what Kleinberg called, which can be used by a routing agent to advance
quickly towards the target. Kleinberg’s model is unique in its family, and the only one
known so far, featuring this capability. If the long-range link instead use the inverse rth-
power distribution where r 6= 2, it is hard to find short paths even though they still exist.
For instance, if we change Kleinberg’s model so the long-range links are distributed uni-
formly (r = 0), then the model has diameter O(logn) [4], however there is no decentralized
algorithm to find paths with length o(n2/3) [12]). Thus, the distribution of long-range ran-
dom links must correlate with the geometry of the lattice in a precise way to make this
special capability emerge.

Second, the lattice is a fundamental network structure, often used in modelling, but
its coupling with the addition of random links whose distribution depends on the lattice
distance, is new. The main body of random graph theory uses a uniform distribution.

Kleinberg leaves two important issues open in the analysis of routing in his model and
we complete this analysis in this paper. First we show that the O(log2n) expected time
analysis is tight (thus except for pairs which are quite close, Kleinberg’s algorithm uses
expected Θ(log2n) links).

Our second main result shows that the expected diameter of this graph is Θ(log n).
This extends traditional work on the diameter of random graphs which largely focuses on
uniformly distributed arcs [5]. This diameter result shows that an algorithm with global
knowledge of the random links can improve on Kleinberg’s decentralized algorithm by a log
factor.

We now give further details on these results.
Decentralized routing. First, we review the model introduced by Kleinberg [12].

Kleinberg’s graph is based on an n×n two-dimensional grid. The vertices are nodes on the
grid, which can be identified as lattices points (i, j) with i, j ∈ {0, 1, . . . , n− 1}. The lattice
distance between two nodes u(i, j) and v(k, l) is defined as d(u, v) = |k − i|+ |l − j|. Each
node u has local links to all its neighbors within lattice distance p ≥ 1 and q ≥ 1 long-range
random links with endpoints generated by independent random trials. For any i ≤ q, the
ith directed long-range link from a node u has endpoint v with probability proportional to
d(u, v)−2 (inverse second power distribution).

We study a routing problem in this grid setting that is, for any two nodes s, t with
known lattice coordinates to find a reasonably short path from s to t. As mentioned before,
we do not know the global topology of the network and at any step a routing algorithm can
only use local information, which includes the random long-range links from the current
node and perhaps from other nodes in a small neighborhood. Algorithms which operate on
this restricted condition are called decentralized algorithms. We call such a neighborhood
around a node u (when becomes the current node) the view at u.

Kleinberg studied the situation that the view at any node contains only this node and
suggested a simple greedy algorithm which achieves ‘delivery time’ O(log2n) in the basic
setting (when p = 1 and q = 1). That is the resulting s − t paths have O(log2n) expected
length [12]. The basic idea is, when standing at a node u (i.e. the part from s to u has
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been drawn up), the algorithm chooses the next node to be the closest to t (with respect
to lattice distance) amongst u’s local/long-range contacts. This simple rule is iteratively
applied until t is reached and no ‘backtracking’ is used.

We show that O(log2n) is indeed a tight bound in Kleinberg’s algorithm. In order to do
that we look carefully at the correlation between the geometry of the lattice and the inverse
second power distribution of the random links; the main result is to show that each step will
reduce the remaining distance to the destination by an expected factor of c/logn where c is
a constant. We also introduce a new decentralized algorithm. Our algorithm will result in
significantly shorter expected s− t paths but uses ‘more resources’: the view at each node
is larger. Moreover, we extend our results so that they apply to the general k-dimensional
model.

Bounding the expected diameter. The main part of our work is here. We first
show that the expected diameter of one of the ‘easiest’ models, where p = 1 and q = 4,
is O(logn) then extend our result to more general classes of graphs, especially ones with
higher dimensions. We now briefly discuss our main idea.

At a first glance, O(logn) seems a natural bound. Suppose we start at a node s and
want to form paths to go to all the other nodes. Applying a ’tree’ view, we may name the
four long-range contacts of s as s’s children. Now, let us define a function χ which takes
a node as input and outputs its child nodes. Thus, we can build a tree of s’s descendants
generated by several steps of applying χ on the nodes of the preceding level (the first level
contains s only). Thus, if we (probably falsely) assume the set of children of two separate
nodes are almost disjoint, the ’tree’ will grow exponentially and very quickly fill up the
whole grid in about log4n

2 χ-steps. Note that the exponential growth does occur if the
long-range random contacts are uniformly distributed (see [4]).

However in our setting, the random links generated by this inverse second power distri-
bution tend to jump to nodes not too far from the source nodes; many ’random’ descendant
nodes can coincide. This possibility may lead to some portion of ’the ground’ is very crowded
while some other parts, possibly large, are unoccupied. Thus, we must justify thinking of a
tree-like, exponentially growing process.

Our basic idea to prove the bound of O(logn) is to look at the early stage of the devel-
opment of this graph. In this early stage, the tree still has a modest size, and coincidence
of descendant nodes is not too common (say, the probability of this is less than a half);
thus our tree still grows rapidly. Indeed, at each step of growing this ‘tree’, we can trim off
some portion of it to make it remain a true tree. We show that the growth rate per each
χ-step is at least a constant γ > 1 with overwhelming probability. Later, after the tree size
exceeds a critical threshold, the late descendants start to coincide often, and the growing
rate starts to drop quickly. Thus it will not be useful to look further in this direction and
we stop growing our tree after this turning point.

We now continue by adapting a relatively well-know technique. We also consider another
similar tree which roots at t, an arbitrary node different than s. The only difference here is
that χ will be replaced by a function, outputting the nodes from which there is a random
link to the input node. If both trees are large enough (say, Ω(nlogn) for an n×n grid) then
we can comfortably prove that the two trees will connect with overwhelming probability.
Therefore, the key point lies in how to give an O(logn) bound on the heights of the two
trees of size Ω(nlogn).

We also generalize our approach so that we can solve diameter problems in many addi-
tional classes of graphs.

The continuum. Kleinberg’s delivery time seems to be an important parameter, com-
parable to the diameter, in a network structure. The two parameters present our knowledge
of a network structure in terms of transmission rate and capability of routing algorithms,
since they let us know the expected time of delivering a message in two extreme scenarios:

3



when we know the full network topology and when we know only the links from the cur-
rent node. The two parameters present a continuum on the delivery time: between them
many different rates are possible when our knowledge of the network graph and resources
availability varies. Thus, we face a trade-off between time and resources.

Kleinberg’s model has a log factor continuum while the uniform model with r = 0 has
a polynomial one. It would be worth thinking of potential scenarios (such as routing in
peer-to-peer networks) knowledge about this measure in practical network systems can be
of significant benefit.

Related work. There has been considerable work on the small-world phenomenon. See
[13] for early surveys and [12] for a more recent account on modelling small-world networks.
Before Kleinberg’s model, Watts and Strogatz [15] have proposed one of the most refined
models, constructed by randomly rewiring the edges of a ring lattice each with a probability
parameter p. With p varying, the model’s structural properties can be considered through
the two key characteristics: path length L(p), measuring “the typical separation between
two vertices in the graph”, and clustering coefficient C(p), measuring “the cliquishness of
a typical neighborhood”. Watts and Strogatz observed that for small p the model reflects
many practical small-world networks with small typical path length L(p) and non-negligible
clustering coefficient C(p).

Applications have been found using Kleinberg’s small-world model or the ideas behind
it, such as decentralized search protocols in peer-to-peer systems [16], gossip protocols for
spreading information in a communication network [9], and secure distributed protocols
in cryptographic scenarios [8]. See also [10] for a generalization that encompasses both
lattice-based and tree-based (“taxonomic” or “hierarchical”) small-world networks.

The diameter of random graphs has been an important issue in random graph theory for
quite a while [2, 3, 4, 5, 6] but there has also been a tradition of using uniformly distributed
arcs. The work which is closest to our diameter result is Bollobas and Chung’s [4], where
the graph model is very similar to that in [15] with the nodes of a cycle (or a “ring”)
randomly matched to form additional long-range links. See also [1] for a practical approach
to measure the diameter of the World Wide Web using a simulation model based on the
power law distribution [7].

The structure of this paper. Section 2 presents our definitions and supporting facts
on Kleinberg’s grid setting (we call it Kleinberg’s Small-world (KSW ) setting sometimes).
Section 3 discusses our bound on Kleinberg’s delivery time and introduces our alternative
algorithm. Sections 4 and 5 study the diameter of graphs based on Kleinberg’s models and
possible extensions. We finish with our conclusions and future work in the final section.

2 Basic facts on Kleinberg’s grid setting

We now present our notation and basic facts on the KSW setting. Let V denote the set
of all nodes, the size of which is n2. We use K(n, p, q) to refer to the class of all random
graphs based on Kleinberg’s model (using an n × n grid, local links to all nodes within
distance p, and q long range links/node). We also use K∗(n, p, q) for a similar class, defined
with respect to the lattice distance with wraparound: d(u, v) = min{|k − i|, n− |k − i|}+
min{|l−j|, n−|l−j|}. For simplicity we sometimes start with K∗(n, p, q) to show our main
results and then adapt our solution to K(n, p, q).

Let Bl(u) denote a ‘ball’ of radius l and center u (actually shaped as a diamond in a two
dimensional grid), the set of all the nodes within lattice distance l from u. Define bl(u) as
the number of nodes on the ‘surface’ of that ball Bl(u), or the number of nodes of distance
l from u. Also call a set S a like-a-ball with center u if Bl(u) ⊆ S ⊆ Bl+1(u) for some node
u and integer l.
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We define χ(u) with u ∈ V as the set of nodes which can be reached from u by a
random link. Also let χi(u), for i = 1, 2, . . . , q, be the node incident to each of the q
random links from u. Note that these χi(u) may coincide, so |χ(u)| ≤ q. We also define
χ(S) =

⋃
u∈S χ(u), for any S ⊂ V . For any two nodes u and v, if χi(u) = v for some i = 1..q

then, we say, the random link (u, v) has label i.
We now consider some basic facts in the special setting where q = 1 which can be easily

extended to ones with arbitrary q ≥ 1. For simplicity, let us refer to the two classes above
with q = 1 as K∗ and K.

For any two nodes u and v, let p(u, v) denote the probability that there is a random link
from u to v. Since p(u, v) is proportional to d−2(u, v) we have p(u, v) = Cud−2(u, v), where
Cu is the normalized coefficient, a constant only depending on the position of u. Meanwhile,
define the inverse normalized coefficient cu = C−1

u , then clearly, cu =
∑
∀v 6=u

d−2(u, v) =∑2n−2
j=1 bj(u)j−2. Note that we always have p(u, v) = p(v, u) if the graph is from K∗, and so

cu is the same for all u; call this value by c∗ and its inverse by C∗.
In a graph from K(n, p, q), note that the nodes at lattice distance j from u actually form

a diamond (see figure 1, part a) or a part of a diamond (since some part may lie outside of
the grid). If this diamond is totally inside then obviously, bj(u) = 4j. If it is totally outside
then bj(u) = 0. Otherwise, as often, a part of this diamond is inside and the remainder
outside, and when a complete edge is inside then obviously, bj(u) ≥ j. It is easy to observe
that in a graph from K(n, p, q),

∀j ≥ 1 : bj(u) ≤ 4j (1)
∀j = 1..dn/2e − 1 : bj(u) ≥ j

Equivalently, in a graph from K∗(n, p, q),

∀j ≥ 1 : bj(u) ≤ 4j (2)
∀j ≤ dn/2e : bj(u) = 4j

as a result we have

c∗ =
dn/2e∑
j=1

(4j)(j−2) = 4
dn/2e∑
j=1

j−1 (3)

Therefore, 4ln(n/2) < c∗ < 4ln(3n/2), so c∗ = 4lnn+O(1). Meanwhile, if the graph is from
K then from (1), lnn ≤ cu ≤ 4ln(6n). Thus for all u, cu (or c∗ for graphs in K∗) is θ(logn).
For any two nodes u and v, obviously d(u, v) ≤ 2n therefore p(u, v) = Cud−2(u, v) =
Ω((n2logn)−1). We summarizes these by the following fact.

Fact 1. For graphs from K∗ or K, the inverse normalized coefficient cu = θ(logn) and for
any two distinct nodes u and v, p(u, v) = Ω((n2logn)−1).

2.1 Links into or out of a ball

Our analysis on the expected diameter (section 4) will be based on this pair of elementary
experiments: to see if a random link from the center of a ball is to a node outside the ball
and to see if there is a random link from outside the ball to its center.

Fact 2. On a graph from K∗, given any positive θ < 1, any integer 1 ≤ l ≤ nθ, for n large
enough: i) the probability that a random link from a given node u goes to a node outside of
Bl(u) is greater than 1− θ − o(1); ii) the probability that there is a random link to u from
a node outside of Bl(u) is greater than 1− eθ+o(1)−1 (i.e. almost 1− eθ−1).
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Figure 1: a) a ‘ball’ is a full diamond (ABCD) while the other is not (KEFGH); b) diamond
ABCD, determined by |x − 6| + |y − 3| = 5, can be decomposed into AB(x − y = −2),
BC(x+y = 14), CD(x−y = 8) and DA(x+y = 4). Note that DA has x ∈ [1, 6], y ∈ [−2, 3],
and thus it will be split into AM(x ∈ [1, 4], y ∈ [0, 3]) and MD(x ∈ [4, 6], y ∈ [−2, 0]).

Note that when θ is about 0.5 (the values we will be mostly interested in), these two
events may happen with probabilities about 0.5 (1− θ) or more and about 0.39 (1− eθ−1)
or more, respectively.

Proof. For i) let E be the event that u has a random link going to a node v /∈ Bl(u). We
have Pr[E] = C∗ ∑

v∈Bl(u) d−2(u, v) ≤
∑l

j=1 bj(u)(j−2)/c∗

From (2) we have bj(u) ≤ 4j, then
∑l

j=1 bj(u)(j−2) ≤ 4
∑l

j=1 j−1 ≤ 4ln(3l) ≤ 4ln(3nθ).

From the proof of fact 1 above note that c∗ > 4ln(n/2) so, Pr[E] ≤ 4ln(3nθ)
4ln(n/2) ≤

θlnn+ln3
lnn+ln(1/2) =

θ + o(1). Thus Pr[E] ≥ 1− θ − o(1).
For ii) let F be the event that there is a random link coming to u from a node v outside

Bl(u); we have

Pr[F ] = 1− Pr[F ] = 1−
∏

v/∈Bl(u)

(1− p(v, u)) ≥ 1−
∏

v/∈Bl(u)

e−p(v,u) = 1− e
−

∑
p(v,u)

v /∈Bl(u) (4)

Note that here we have used the well known fact ex ≥ 1+x to obtain e−p(u,v) ≥ 1−p(u, v).

Since p(u, v) = p(v, u) = d−2(u, v)/c∗, then Pr[F ] ≥ 1 − e
−

∑
p(u,v)

v /∈Bl(u) = 1 − e−Pr[E] ≥
1− eθ+o(1)−1.

Fact 3. On a graph from K, given any positive θ < 1 and integer 1 ≤ l ≤ nθ, for n large
enough: i) the probability that a random link from a given node u goes to a node outside of
Bl(u) is greater than 1−θ

1+3θ + o(1); ii) the probability that there is a random link to u from a
node outside of Bl(u) is greater than 1− e−(1−θ)/4+o(1).

The proof of this fact is in the appendix.

2.2 Extended models

The above definitions and facts can be easily extended to the more general K∗(n, p, q) and
K(n, p, q), where q ≥ 1. The only difference is that, if before we were concerned with the
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existence of a random link from a node u to a node v then now we are instead concerned
with the existence of a random link with label i (for any fixed given i = 1..q) from u to v.

Moreover, as a natural generalization, we can extend all these concepts and basic facts
above to the classes of graphs based on a k-dimensional grid for k ≥ 1. We redefine
the distribution rule of the random links: p(u, v) is now proportional to d−k(u, v). Now
K∗(k, n, p, q) and K(k, n, p, q) are used to refer to such classes of graphs based on this k-
dimensional grid (with size n in each dimension) with respect to the lattice distance and
with or without wraparound, respectively.

In K(k, n, p, q), for a node u close to the edge of the grid, a ball centered at u may not
be a ‘full’ ball but it is easy to extend all our results with balls to cover such a case; thus for
simplicity we still use term ‘ball’ in general. We essentially only need to use the following
fact to upgrade the facts 1− 3 and their proofs.

Fact 4. For each k ≥ 1 there exist positive constants c1 and c2 such that for a k-dimensional
grid of size n, c1 ≤ bj(u)/jk−1 ≤ c2,∀u ∈ V,∀j = 1..n.

Proof. Without loss of generality, we assume that u is the origin of this k-dimensional
space. Note that bj(u) is at most 2kT where T is the number of nodes with non-negative
coordinates and at distance j from u. We upper bound T using the following well-known
result from elementary combinatorics: the number of ordered sequences of k non-negative
integers with their sum equal given positive j is

(
j+k−1
k−1

)
. Note that each positive node on

the surface of Bj(u) correspond to such a distinct ordered sequence. Therefore bj(u) ≤
2k

(
j+k−1
k−1

)
= 2k

(k−1)!

∏k−1
i=1 (j + i), which clearly is θ(jk−1).

From this fact, bj(u)j−k = θ(j−1), which means that the sums of this bj(u)j−k for some
certain range of j can still be bounded by some log-expressions, which essentially keeps
all our arguments almost as simple as before. For example, similarly as (3), we still have
c∗ = θ(logn). Thus it is easy to generalize fact 1 as follows.

Fact 5. For graphs from K∗(k, n, p, q) or K(k, n, p, q), the inverse normalized coefficient
cu = θ(logn) and for any two distinct nodes u and v, p(u, v) = Ω((nklogn)−1).

Similarly, we can generalize both facts 2 − 3. Note that for simplicity we do not look
for exact bounds but just the existence of them, so knowing bj(u)j−k = θ(j−1) is enough.

Fact 6. On a graph from K∗(k,n,p,q) or K(k,n,p,q), for any given positive θ < 0.6, there
exist positive constants ξ1 and ξ2 such that for n large enough: i) the probability that there
is a random link (with a given label) from a node u to a node outside of Bl(u), where l ≤ nθ,
is greater than ξ1; ii) the probability that there is a random link (with a given label) to u
from a node outside of Bl(u) is greater than ξ2.

Note that for any given θ < 1 we can find ξ1, ξ2 > 0 dependent on θ to have this fact
satisfied, however we only need θ about 0.5 in our later analysis. Most of the above results
are for supporting our work in sections 4 and 5.

2.3 Links to a spherical surface

We now study another probabilistic experiment, namely, if a random link from a given node
u goes onto the surface of a given ball B; we only consider the case where u is outside of
B. Our work in section 3 will be based on this experiment. Here we use the general models
K(k, n, p, q) and K∗(k, n, p, q).

Define distance d(u,B) between node u and ball B as the minimum lattice distance
between u and the nodes on B’s surface. Also call SB the set of nodes ‘on the surface’ of
ball B. Let P (u,O) denote the probability that the random link from u goes to a node in
a set of points (an object) O.
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Fact 7. For any k ≥ 1 there exists a constant ĉ such that P (u, SB) ≤ ĉl
m2logn

, where
B = Bl(v) is a ball with center v and radius l on a graph from K(k, n, p, q) or K∗(k, n, p, q),
u is a node outside of B, d = d(u, v), m = d(u, B) and d ≥ 2l.

Proof. From fact 4, there exists constant c such that |SB| = bl(v) ≤ clk−1. The distance
from u to any node in B is at least m. Therefore combining with fact 5, P (u, SB) is at
most clk−1 × c1

mklogn
≤ ĉlk−1

mklogn
for some constants c1 and ĉ = cc1. For k > 1 and d ≥ 2l,

lk−2 ≤ mk−2 (note that m = d− l > l), so P (u, SB) ≤ ĉl
m2logn

. Meanwhile the case of k = 1
is trivial.

Fact 8. For any k ≥ 1 there exists a constant ĉ > 0 such that P (u, SB) ≤ ĉ
mlogn where B is

a ball on a graph from K(k, n, p, q) or K∗(k, n, p, q), node u is outside B and m = d(u, B).

We prove the fact for K(k, n, p, q) but it is easy to extend our proof for K∗(k, n, p, q).
Our proof is based on claims and 9 and 10 below. Once these claims are verified, fact 8
immediately follows. We need a few comments before showing the claims.

The bound we give on P (u, SB) depends on the distance from u to the ball only, and
thus, is independent of the size of the ball. If we think of this probability as a measure
of ‘attractive force’ (to u), the force generated by SB is not stronger than the joint force
generated by m nodes at about distance m from u. Thus a small fraction of nodes in SB,
which are at the ‘pole’ closest to u, generates a dominant term for P (u, SB).

Let node v and integer l > 0 be the center and radius of ball B. Let m = d(u, B) and
d = d(u, v); clearly d = m + l. Let Z+ = {i ∈ Z : i ≥ 0}. Assume that the nodes on the
grid are the integer points (‘wrapped’ by a hypercube with size n) in the space Rk. For
simplicity, we also assume the origin of Rk is at u (i.e. u has all coordinates zero) and
v(d1, d2, . . . , dk) is in the ‘positive angle’ relative to u, i.e. v ∈ Z+k. Also call N(L) the
number of integer nodes within an object L.

Claim 9. Consider a linear hyper-multilateral (LHM) object L which is defined by a linear
system of the following form

s1x1 + s2x2 + . . . + skxk = a (5)
si ∈ {−1, 1}, xi ∈ [ai, bi], i = 1..k

a > 0, ai × bi ≥ 0

where a, ai, bi, si are constant integers. For u = (0, 0, . . . , 0), if |x1|+ |x2|+ . . . + |xk| ≥ m
then P (u,L) ≤ c

mlogn for some constant c depending on k only.

Claim 10. SB can be decomposed into at most C LHM objects (determined by an instance
of (5) above), where C is a constant dependent on k only.

For k = 1, a ball is an interval, so a LHM is simply an endpoint of an interval. Similarly,
a LHM is an edge of a diamond when k = 2, a face of a cube when k = 3, and so on. With
claims 9 and 10, fact 8 follows immediately; thus we are just left to show them.

Proof of claim 9. From equation (5), we have either 0 ≤ ai < bi or 0 ≥ ai > bi. We now
assume 0 ≤ ai < bi for the rest of the proof; it is easy to extend our proof for the other
case. By a proper permutation of indexes we can make the characteristic equation become
x1 + . . . + xj − xj+1 − . . . − xk = a for some integer j in 1..k. Obviously this preserves
P (u,L). Also note that x1 + x2 + · · ·+ xk ≥ m since xi ≥ ai ≥ 0,∀i.

We now consider the special case of j = k, i.e. x1 + . . . + xk = a. Thus, all points
in L are at distance a from u. From fact 4, N(L) ≤ ba(u) ≤ c1a

k−1 for some constant
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c1. Therefore, from fact 5, P (u,L) ≤ c1a
k−1 × c2

aklogn
≤ c

mlogn for some constants c2 and
c = c1c2 (note that a > m).

Now consider the case of j < k. Set x = x1+. . .+xj and y = xj+1+. . .+xk we then have
x−y = a. Clearly, for each value ξ = x+y, there is an unique pair of x, y. Let Lξ = L∩Bξ(u),
i.e. the subset of nodes in L with x+y = ξ. Let Z1 be the Zj space of x1, . . . , xj and Z2 be
the Zk−j space of xj+1, . . . , xk. We now project Lξ onto Z1 to obtain an image I1, which
has characteristic equation x1 + . . . xj = x, and onto Z2 to obtain an image I2, which has
characteristic equation xj+1 + . . . xk = y. Again by fact 4, we have N(I1) = O(xj−1) and
N(I2) = O(yk−j−1). Thus, clearly N(Lξ) = N(I1) × N(I2) ≤ c3x

j−1yk−j−1 ≤ c3ξ
k−2 for

some constant c3.
Therefore, from fact 5, P (u,Lξ) ≤ c3ξ

k−2 × c4
ξklogn

≤ c3c4
ξ2logn

for some constant c4. Now,
summing P(u,Lξ) over all possible values of ξ ≥ m, we have P (u,L) <

∑∞
ξ=m

c3c4
ξ2logn

. Note
that

∑∞
i=m 1/m2 ≤ 1/m2 +

∑∞
i=m

1
i(i+1) ≤ 1/m2 +

∑∞
i=m(1

i −
1

i+1) ≤ 1/m2 + 1/m; thus
P (u,L) ≤ c

mlogn for c = 2c3c4.

Proof of claim 10. We need to show that SB can be decomposed into at most C LHM
objects (determined by an instance of (5) above), where C is a constant dependent on k
only. Clearly, a node W (x1, x2, . . . , xk) ∈ Zk belongs to SB, the surface of Bl(u), if and
only if |x1 − d1| + |x2 − d2| + . . . + |xk − dk| = l. Note that |x1| + . . . + |xk| is at least
m = d(u, B).

Thus, SB is composed of 2k faces, each of which is on a hyper-plane determined by an
equation of the form ±x1±x2± . . .±xk = a, where integer constant a may vary for different
hyperplanes. (There are 2k combinations of these +/− so we have 2k such hyperplanes.)
More specifically, such a face can be determined by a linear system similar to (5) but without
aibi ≥ 0, where a, ai, bi are integer constants completely determined by d1, . . . , dk, n and l
(for instance is it not hard to see that a = l + s1d1 + s2d2 + . . . + skdk). See figure 1 (part
b) for an illustration. Call such a linear system a LES.

We can think of SB as being decomposed into ‘pieces’. Let us further decompose this
as follows. For each axis-hyperplane xi = 0, we divide the pieces, being ‘cut through’ by
this hyperplane, each into two ‘smaller pieces’: one ‘above’ and one ‘below’ this hyperplane.
For example, if a piece has LES with ai < 0 < bi for some i = 1..k, we then split this
object into two, each of which is described by the same LES with additional xi ∈ [0, bi] for
the ‘the above’ and xi ∈ [ai, 0] for the ‘the below’. We repeat this process until all pieces
are inside a ‘right angle’: none of them are ’cut through’ by any axis-hyperplane. Now
each obtained object is described by an instance of (5) and the number of them is less than
2k × 2k = 22k.

3 Decentralized routing

Kleinberg’s algorithm uses a simple greedy strategy. Given a source s and a destination t,
the algorithm always chooses the next message holder to be the node which is the endpoint
of a link (local or long-range random) from the current holder and which is closest to t.
Kleinberg proved that the expected number of links used (Kleinberg’s delivery time) by the
algorithm is O(log2n) for the two-dimensional case [12], adding that it was straightforward
to generalize his proof for the general k-dimensional one. His proof left open the question of
whether this expectation is also Ω(log2n). We will prove that indeed Kleinberg’s algorithm
takes Ω(log2n) and introduce other algorithms with better delivery time.
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3.1 Kleinberg’s bound is tight

Theorem 11. For any constant c1 > 0, there exists a constant c2 > 0 such that, for any
two nodes s and t on a graph from K∗(k,n,1,1) or K(k,n,1,1) with d(s, t) > c1n, Kleinberg’s
delivery time with respect to endpoints s and t is greater than c2log

2n with probability at
least 0.5, when n is large enough.

This theorem shows that for the majority of s − t pairs, Kleinberg’s delivery time can
not be o(log2n), therefore O(log2n) is indeed a tight bound. Note that we can actually
make the probability above arbitrarily high, but we prove 0.5 for simplicity.

Let A denote Kleinberg’s algorithm. For a node v we call κt(v) the next node found
by A when we are at v (initially, v = s) and seeking a path to the destination node t. Let
δt(v) = d(v, t)−d(κt(v), t). We use κ(v) and δ(v) when the destination t can be determined
unambiguously; also let dv denote d(v, t). The ratio δ(v)/dv characterizes the speed that A
converges to t. The following lemma, which follows directly from facts 7 and 8, will help to
estimate this speed.

Lemma 12. For each k ≥ 1 (the number of dimensions), there exists a constant ĉ such
that, for any two distinct nodes v and t, for any integer 1 < m < dv, Pr[δ(v) = m] ≤

ĉ
mlogn ×min{1, (dv −m)/m}.

As seen in [12], when we arrive at a new node v, we have never known about its random
link before, hence we may assume that this random link is generated at this moment. Thus
we can think of κ(v) as an experiment in that we generate v’s random link to w and set
κ(v) = w only if dw ≤ dv − 2, i.e. w is closer to t than u by at least 2, otherwise we choose
κ(v) as v’s grid neighbor closest to t. This is why the above lemma does not apply for
m = 1. The following lemma is crucial to prove theorem 11.

Lemma 13. For each k ≥ 1, there exists a constant c such that E[Zv] ≤ c/lnn, where v
and t are two distinct nodes at least distance lnn far apart and Zv = ln( dv

d(κt(v), t)).

Proof. Let d = dv. Note that Zv = ln( d
d−δ(v)). We define the function f(i) = ln( d

d−i).

We need to show that
∑d

i=1 f(i)Pr[δ(v) = i] ≤ c/lnn for some constant c. For simplicity,
assume that d is an even integer. First, using the common fact that ln(1+x) < x,∀x > −1,
we have

d/2∑
i=1

f(i)Pr[δ(v) = i] ≤
d/2∑
i=2

ln(1 +
i

d− i
)Pr[δ(v) = i]

≤ 1
d− 1

+
d/2∑
i=2

i

(d− i)
c′

ilnn
=

1
d− 1

+
c′

lnn

d−1∑
i=d/2

1/i ≤ c′ + 1
lnn

for some constant c′. Note that Pr[δ(v) = i] ≤ c′

ilnn is due to lemma 12. Second, using
another simple fact that lnx/x < 1,∀x > 1 (using x = d/(d− i)),

d∑
i=d/2

f(i)Pr[δ(v) = i] ≤
d∑

i=d/2

ln(
d

d− i
)
d− i

d

c′′

ilnn
≤ c′′

lnn

d∑
i=d/2

1/i ≤ c′′

lnn

for some constant c′′. Note that Pr[δ(v) = i] ≤ d−i
d

c′′

ilnn is from lemma 12 and d/2 ≤ i.
Choose c = c′ + c′′ + 1 then the lemma is shown.

Proof of theorem 11. We first present our main idea to prove this theorem. We think of
doing a series of random trials, in each of them, given a node v, we do an experiment to
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find κ(v) (to be assigned to v for the next trial) and measure Xv = dv
d(κt(v), t) , which reflects

the ratio between the distance to t before and after this trial. Let {v1 = s, v2, . . . , vk} be a
chain of ‘stations’ made by a run of A after k such steps (thus vi+1 = κ(vi)).

∏k−1
i=1 Xvi will

reflect the ratio between the distance at the initial and at the current state.
However, in order to make this ratio always meaningful we need to consider a few

exceptions. In the case κ(v) = t we define Xv = dv and if v itself happens to be just t
before the trial then we define Xv = 1. The ratio is, therefore, always well defined and it is
at most equal to the initial distance ds = d(s, t).

It is clear that the product
∏

Xvi is always between 1 and ds. Observe also that∏
Xvi = ds if and only if vk is t or one of its adjacent neighbors. Then we are about to

reach t when
∏

Xvi = ds, or
∑

Zvi = ln(ds) since Zv = lnXv. Thus, the main idea is
to work on bounding the sum

∑
Zvi under some desired circumstance, where lemma 13 is

clearly useful.
Consider Zk = Zv1 + Zv2 + . . . + Zvk

. If we reach t with less than k steps, or say,
vj = t for some j < k, then as mentioned before, we have Zvj = Zvj+1 = . . . = Zvk−1

= 0.
Basically, we need to prove that there exists a constant c2 such that for k = c2log

2n,
Pr[Zk < ln(ds)] ≥ 0.5.

From lemma 13, there exists a constant c such that E[Zvi ] < c/lnn if dvi > lnn. To get
rid of this condition, dvi > lnn, let modify A a bit, that is whenever we reach to within a
distance lnn from t (i.e. dv ≤ lnn), set κ(v) = v and Zv = 0 (this will not weaken our proof
since when we get there we can simply ‘walk’ to t by at most dlnne local links). Thus we
always have E[Zvi ] ≤ c/lnn,∀i = 1..k. We now show that

Pr[Zvk
< M ] ≥ 0.5 (6)

where k = b ln2n
4c c and M = ln( ds

lnn) ≥ lnn + lnc1 − ln(lnn).
However, from E[Zvi ] < c/lnn, we have E[Zk] ≤ kc/lnn ≤ lnn/4 < M/2 for n large

enough. Thus, Pr[Zk ≥ M ] < 0.5 since otherwise E[Zk] ≥ 0.5M = M/2. Hence, Pr[Zk <
M ] ≥ 0.5. From (6), choose c2 = b 1

4cc then by at least half of the time, A can not finish
with less than c2log

2n steps; the theorem follows.

3.2 Algorithms for improved delivery time

We now consider variants of Kleinberg’s greedy algorithm which use additional knowledge
of the graph to improve expected path length. Our basic algorithm operates on graphs
from class K∗(n, 1, 1) but it can be easily extended to more general classes. So, for a node u
define χ(u) = v if the only long-range random link from u goes to v. We assume that each
node u knows the long range links of the dlogne neighbor nodes closest to u in the grid. Call
Wu, the set of these neighbors and their long range contacts, the view at u. During a basic
step of routing, if u is the current message router, just as in Kleinberg’s greedy algorithm,
we go next to v, the node in Wu closest to t (we may need to follow several local links and,
possibly one final random link to v and will start with v for the next step).

Note that in Kleinberg’s algorithm Wu includes only the nodes incident to links from
u (at most 5 in a two-dimensional grid) and a routing decision is made each node on the
path. In our algorithm, once we make a decision for a step (at each current message router)
we just follow the sub-path to the next router node. When we are at an intermediate node
(e.g. a neighbor of a router node) we follow local links (up, down, left or right) except for
the final link which may be a random long-range link). We can describe this sub-path using
only O(loglogn) extra bits to specify the last node on the sub-path reached by local links
only. Alternately, we can use 2log1/2n bits to describe the sequence of local moves (two bits
per local move).
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We now claim that the expected number of links used in this algorithm is O(log3/2n).
We show this using the phases introduced by Kleinberg in [12]. Suppose that we need to
find a path from s to t 6= s. Let Bi denote the ball B2i(t). Our algorithm, called A, contains
several phases. Similarly as in [12], we say A is in phase i if the current node u is in Bi+1

but u /∈ Bi. If k is a number such that s ∈ Bk+1 but s /∈ Bk then A will start in phase k
and end up in phase 0.

Kleinberg has shown that [12] random variable X, the number of nodes whose random
links are explored during a phase in his algorithm (approximate the number of links used in
a phase), has expectation in O(logn). The intuition for that is to think of an comparative
experiment, where given two arbitrary distinct nodes u and v, generate a fresh random link
from u and check if it goes to within halfway from v. It is not hard to see that the expected
number of times of repeating this experiment until having a success (compare it with X)
is θ(logn) (partly similar to work in section 2). Using a similar approach, we can easily see
that in our algorithm A, X is also O(logn), although here X must be a multiple of dlogne.

On other hand, it is not hard to see that Y , the number of links used during a phase
in A, is upper bounded by cX/

√
logn (X of the same phase) for some constant c. Note

that during a basic step of routing (find v for u), the (fresh) nodes with their random links
explored occupy at least a constant fraction of a ball centered at u with radius ≈

√
logn;

call the number of these nodes by x. Meanwhile the number y of links we follow from u to
v is at most this radius plus 1; thus, the ratio x/y is at least ĉ

√
logn for some constant ĉ.

Therefore, E[Y ] = O(
√

logn), and so, with the number of phases is at most logn, our
claim is justified.

Note that, the expected number of links used in A is probably improved a bit (but still
asymptotically the same) if we look for v such that its predecessor (just before it in the
path from u) is closest to u yet v is in the next inner ball (if some v ∈ Wu is in the next
inner ball).

More careful work (using tail inequalities) gives us a slightly stronger result: the longest
path found by A (over all possible s − t) has length in O(log3/2n) with overwhelming
probability. The underlying intuition is to think of doing a chain of such experiments
mentioned above until we have about logn successes.

As mentioned earlier, our algorithm can be easily extended to the classes K∗/K(n, p, q)
where p, q ≥ 1. Moreover, it is relatively easy to show a slightly improved bound O( log3/2n

p
√

q ).

So, the bound is just O(logn) if for instance, p = Ω(log1/2n) and q is a constant, or p is a
constant and q = Ω(logn). It is also easy to extend our algorithm to K∗/K(k, n, p, q). For
p = 1, q = 1, we obtain the upper bound O(log1+1/kn), which is close to the ideal O(logn)
when k is large.

4 Tight bound for the diameter of K∗(n, 1, 4)

In this section we will show that the expected diameter of a graph from K∗(n, 1, 4) is O(logn)
and we will deal with more general classes of graphs in the next section. We now consider
a source s and a destination t 6= s, both chosen arbitrarily from V , and want to show that
with high probability there is an O(logn) length path from s to t. As mentioned in the
introduction section, our basic idea is to ‘grow two trees’ with roots from s and t, and
try to show that they will intersect with overwhelming probability after O(logn) χ-steps of
growing.

Now, to simulate an s−tree with a height µ, we construct a chain of disjoint subsets
{Sk}µ

k=0 with S0 = Br(s) where r = r0
√

logn for some constant r0. Let Ck =
⋃k

i=0 Si and
define Sk+1 = χ(Sk)− Ck. Thus, Sk+1 is built by iteratively applying χ on elements of Sk

and taking only ‘fresh’ nodes, which have not been in any preceding subsets. The subset
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chain has the following properties:

1. By definition, all the nodes in S0 can be reached from s by O(logn) local links.

2. We show that for a given constant α, there exists µ such that µ is in O(logn) yet
|Sµ| ≥= αnlogn with overwhelming probability.

Later we will also construct the similar subset chain {Tk}ν
k=0 to simulate t−tree as well.

The rest of this section will focus on proving the second property. The second property will
help us to later establish that the last subsets (or last levels), Sµ and the counterpart Tν ,
very likely intersect or will intersect if the s−tree is extended further by one level. Here,
‘almost surely’ or ‘very likely’ will be refined later and can be made as high as needed by
choosing the constant r0 sufficiently large. All these will allow us to show the O(logn)
bound on the expected diameter of a graph in K∗(n, 1, 4).

In order to obtain property 2, we will show that the subset chain will almost surely grow
exponentially in cardinality, i.e. there is some constant γ > 1 such that Pr[|Sk+1|/|Sk| > γ]
is almost one for all k ≤ µ. We make the matter easier by the following crucial observation.
The main concern is on how many fresh nodes we get from χ(Sk) to include in Sk+1. In
fact, we can take any order in scanning the elements of Sk and for each u ∈ Sk, consider
a node v ∈ χ(u) fresh if it has not been included in a subset G, which keeps track of the
union of the current Sk+1 and all the preceding (already complete) subsets Si, i ≤ k.

To analyze this we consider an experiment where we make a trial under the inverse
second power distribution and get a node v matched with u and consider if v has not been
included in G; let X(u, G) denote the indicator random variable of this happening and
E(u, G) denote this experiment. We do this experiment 4 times for each u ∈ Sk and |Sk+1|
will be the sum of these 4|Sk| random variables X(u, G); note that these variables are not
identical since G keeps growing larger. Let Gk denote the whole process. If we could move
the elements in G around, how would we minimize Pr[X(u, G) = 1]? The nature of the
inverse second power distribution makes it clear: this can be done by moving elements of
G closer to u; in fact, Pr[X(u, G) = 1] is minimized (for a fixed size for G) when G is a
like-a-ball with u as its center.

This observation leads to a way to lower bound |Sk+1|/|Sk| by using a worse scenario
which is easier to analyze. Let H be a ball with center s and define the random variable
f(m,H) as the number of times we get X(s,H) = 1 when doing the E(s,H) experiment
4m times independently. Call this experiment F(m, H). The above observation shows that
if H is chosen such that |H| ≥ |Ck+1| (i.e. always ≥ |G|) then F(|Sk|,H) will generally
under-perform Gk in term of output quantity (more precisely, for any a > 0, Pr[f(|Sk|,H) ≥
a] ≤ Pr[|Sk+1| ≥ a]). Thus, any probabilistic lower bound on f(|Sk|,H)/|Sk| can also hold
on |Sk+1|/|Sk|.

We show a lower bound with the ball experiment in the following fact and then as a
result of this, we establish a growth rate, which is greater than one, in each step of growing
Sk+1 from Sk. Then by applying this result iteratively, we can show that the subset chain
grows exponentially in size before bypassing the threshold αnlogn.

Fact 14. Let H be a ball with |H| = O(nlogn). If m < |H| and m = Ω(logn) then there
exists a constant γ > 1 such that for n large enough almost surely f(m, H)/m > γ; more
precisely:

∃γ > 1,∃ η > 0 : Pr[f(m,H)/m > γ] = 1−O(n−η) (7)

Proof. Since |H| = O(nlogn) then H’s radius is smaller than n0.5+ξ for any constant ξ > 0,
when n is large enough. Thus, by fact 2, E[X(s,H)] > β for any fixed β < 0.5 when
n large enough. Thus f(m,H) is the sum of 4m independent Bernoulli random variables
each with expectation greater than β. Thus we have E[f(m,H)] ≥ 4mβ and applying
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Chernoff’s inequality, we have Pr[f(m, H) ≤ (4mβ)(1 − δ)] ≤ e−2mβδ2
where 0 < δ < 1.

Since m = Ω(logn) then e−2mβδ2
= O(n−η) for some η = η(δ) > 0. This is due to a

simple fact that exlogn = nx for any x. Thus, Pr[f(m,H) ≤ 4β(1 − δ)m] = O(n−η) or
Pr[f(m,H)/m > 4β(1 − δ)] = 1 − O(n−η). This assures that when n is large enough,
f(m,H)/m is almost surely greater than γ = 4β(1− δ).

Indeed we can always choose δ > 0 small enough so that γ = 4β(1−δ) can be arbitrarily
close to 4β, and therefore, arbitrarily close to 2 (since β = 0.5−o(1)). When we have chosen
δ, given any η > 0, we can choose ĉ such that when m ≥ ĉlogn we have Pr[f(m,H)/m >
γ] = 1 − O(n−η). The following fact will show how we can find such ĉ when given an
arbitrary η. See the appendix for its proof.

Fact 15. Define function τ(β, η, γ) = 8ηβ/(4β− γ)2 and let βs = 0.5. Let η > 0, γ ∈ (1, 2)
and ĉ > 0 be constants. Let H be a ball with |H| = O(nlogn) and m be an integer such
that ĉlogn ≤ m < |H|. If ĉ > τ(βs, η, γ) then Pr[f(m,H)/m > γ] = 1−O(n−η) for n large
enough.

As noted earlier, a similar result can be obtained with |Sk+1|/|Sk|. Intuitively, for any
value of γ ∈ (1, 2), we know what size for Sk is big enough in order to make the probability
of |Sk+1|/|Sk| > γ arbitrarily close to one.

Lemma 16. Let η > 0, γ ∈ (1, 2), ĉ > τ(βs, η, γ) be constants and integer k ≥ 0. Suppose
that |Sk| ≥ ĉlogn and |Ck+1| = O(nlogn) then Pr[|Sk+1|/|Sk| > γ] = 1−O(n−η) for n large
enough.

Given fixed constants η, γ and ĉ as above, and given |S0| ≥ ĉlogn, we can expect the
cardinality series {|Si|} to grow exponentially before reaching or exceeding the threshold
αnlogn during the first k + 1 terms, where k = dlogγ(αn/ĉ)e, which is Ω(logn). For
simplicity, we define Si+1 = Si when |Si| ≥ αnlogn, then the next lemma claims that
almost surely |Sk| ≥ αnlogn. To show this lemma, the main idea is to iterate lemma 16 for
each step of growing Si+1 from Si (when |Si| < αnlogn). Thus the major task is to assure
that we have the necessary condition to use it in each step.

Lemma 17. Let θ > 0, γ ∈ (1, 2), ĉ > τ(βs, θ, γ) be constants. Let k = dlogγ(αn/ĉ)e. If
|S0| ≥ ĉlogn then |Sk| > αnlogn with probability 1−O(n−θ).

Proof. First, note that |Sk| > αnlogn if |Sk|/|S0| > γk, which is true if we have |Si+1|/|Si| >
γ for all i = 0..k − 1. Define event Ai as “|Si+1|/|Si| > γ or |Si| ≥ αnlogn” for integer
i ≥ 0, and define Bj = A0 and A1 and . . . and Aj for integer j ≥ 0. Clearly, |Sk| > αnlogn
if Bk−1 occurs, the probability of which equals Pr[A0] × Pr[A1|B0] × Pr[A2|B1] × . . . ×
Pr[Ak−1|Bk−2].

We now consider Aj |Bj−1, i.e. the event Aj when Bj−1 occurs. Note that if |Sj−1| ≥
αnlogn then immediately |Sj | = |Sj−1| ≥ αnlogn, so Aj occurs. Otherwise, Bj−1 and |Sj−1| <
αnlogn means {|S0|, |S1| . . . , |Sj |} growing exponentially and clearly, |Sj | ≥ |S0| ≥ ĉlogn
and Cj+1 = O(nlogn). For the later, note that when a series is growing exponentially,
the current sum value will always be within a constant multiplier of the last term. Hence,
from lemma 16, Pr[Aj |Bj−1] ≥ Pr[Aj |Bj−1 and |Sj−1| < αnlogn] = 1 − O(n−η), where η
is chosen slightly greater than θ so that ĉ > τ(βs, η, γ). This can be made because of τ ’s
continuity.

Combining the probabilities of all these events Aj |Bj−1, we then have Pr[|Sk| ≥ αnlogn] ≥(
1−c1n

−η
)k ≥ 1−kc1n

−η for some constant c1 > 0. Note that we have used a basic calculus
fact that (1+x)n ≥ 1+nx for any x > −1 and n ≥ 1. Since θ < η and clearly, k = O(logn),
it is easy to see that kc1n

−η = O(n−θ) and hence, Pr[|Sk|/|S0| > γk] ≥ 1−O(n−θ).
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Therefore, if we choose µ ≤ k = Ω(logn) such that Sµ is the first term to exceed αnlogn,
we then have property 2 satisfied. This can be summed up in the following fact.

Fact 18. For any given node s ∈ V , any θ > 0 and any α > 0, by constructing s’s subset
chain as above, we will obtain subset Sµ where any node in Sµ can be reached from s by an
O(logn) path and Pr[|Sµ| ≥ αnlogn] = 1−O(n−θ).

Note that Sµ contains only ’fresh’ nodes such that we have not yet considered their
random long-range contacts.

We now discuss a similar result with respect to a subset of nodes with O(logn) length
paths to a given destination t. Consider a tree of nodes with paths to t. Instead of χ we
now use a function χ̂ which, given an input node u, outputs the nodes with a random link
to u. Similarly as before, we construct a subset chain {Tk}ν

0 by having Tk+1 = χ̂(Tk)− Ĉk

where Ĉk =
⋃k

i=0 Ti. Thus, we include into Tk+1 all the ‘fresh’ nodes which have a random
link to any node in Tk. We wish to show properties similar to the two above with s’s subset
chain.

It turns out that we can use much the same approach as before with some modifications
and additional details. We still use a state-variable G to denote the set of all nodes in the
tree we have reached so far. Note that we have G = Ĉk if we have just finished the first k
subsets, otherwise G is the sum of Ĉk and the developing Tk+1. Let G = V −G, the set of
nodes not in the tree yet.

We now look closer at process Ĝk, the growing step of Tk+1 from Tk, which is more
complicated than the counterpart in s’s subset chain. A long-range random link from a
node u to a node v is considered having label i if χi(u) = v. Let Ê(u, i, G) denote an
experiment which has each node w ∈ G look at its random link labelled i, and if this link
hits u we add w to G (for simplicity we may also use Êu instead). Process Ĝk simply repeats
the Ê(u, i, G) experiment for each node u ∈ Tk and for i = 1, 2, 3, 4. Note that, G is changing
as we discover new fresh nodes. Also the order we scan Tk is not important and we can
initially fix a unique order.

As with the case of the s−tree, we now consider an artificial experiment which should
be ‘outperformed’ by the real Ĝk but is easier to analyze. Let H be a ball centered at t
with size at least |Ĉk+1|. The basic operation is to have all nodes not in H each generate
a random link (under the inverse square power distribution) and consider if t is hit. Let
f̂(m,H) be a random variable recording the number of times that t is hit when we repeat
the above operation for 4m times.

We now compare the real and artificial processes above. Looking closely at each real
experiment Êu, observe that it is slightly preconditioned by the results of the previous ones.
A random link from a node w ∈ G must not go to a node in Ĉk, because if w ‘hits’ a node
v ∈ Ĉk, then w must have been included in G earlier during Êv. With Ĉk ⊂ G, in fact, this
precondition makes this random link more likely to hit u. Thus in the artificial process,
each link is less likely to hit a target than in the real process, noting also that, as before, a
ball is the worst shape for G, and we start with |H| at least the maximum size for G. Thus,
any probabilistic lower bound on f̂(|Tk|,H)/|Tk| can also hold for |Tk+1|/|Tk|.

It is easy to see that f̂(m,H) is lower bounded by the sum of 4m independent Bernoulli
random variables, and the expectation of each can be lower bounded by a constant β > 0,
using the second proposition of fact 2. Thus as in fact 2, using Chernoff’s inequality, we
have the following lemma for the new ball experiment.

Fact 19. Let H be a ball with |H| = O(nlogn). If m < |H| and m = Ω(logn) then there
exists a constant γ̂ > 1 such that for n large enough, almost surely f̂(m,H)/m > γ̂:

∃γ̂ > 1,∃ η > 0 : Pr[f̂(m,H)/m > γ̂] = 1−O(n−η) (8)
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Hence, we can obtain analogues of the fact 15 and lemma 16 for t’s subset chain. There
are a few differences. Since we use the second proposition in fact 2 instead, the range of β
is now (0, βt), where βt = 1−e−0.5 ' 0.39; then, the range of growing character γ̂ is (1, 4βt)
instead. Thus, we need ĉ > τ(γ̂, βt, η) in the new versions of results 15 and 16 instead.

Finally, we can obtain an analogue of lemma 17 for t’s subset chain but we need to
condition that ĉ > τ(γ̂, βt, θ) instead. We can prove this result the same way as in the
proof of lemma 17 by iteratively applying the new version of fact 14 to claim a growth rate
at least a constant γ̂ > 1 in each step of growing Tk+1 from Tk, then combining all these
growing steps. Note that this combination does not require the independence between these
steps. Thus, similarly as before we have the following fact.

Fact 20. For any node t ∈ V , any θ > 0 and any α > 0, by constructing {Ti}ν
i=0, we

will obtain a subset Tν such that t can be reached from each node in Tν by a path of length
O(logn) and Pr[|Tν | > αnlogn] = 1−O(n−θ).

Now we are going to show that for any two distinct nodes s and t, there is a path of
length O(logn) from s to t with overwhelming probability. Using facts 18 and 20, we will
show that there exists with overwhelming probability two such subsets Sµ and Tν with
mentioned properties and either they intersect or Sµ is one-link separate from Tν , i.e. there
exists u ∈ Sµ such that χ(u) ∩ Tν 6= ∅. This means, with overwhelming probability there
exists an O(logn) path from s to t. Moreover, by choosing appropriate constants θ, γ and
α, we can make this probability arbitrarily close to one and as a result of that, we show
that the expected diameter is Ω(logn).

Choose θ = 6 in fact 18 then, given any constant α > 0, we can find a subset Sµ with
at least αnlogn nodes, all of which can be reached from s by a path of length O(logn),
with probability 1 − O(n−6). Also, using fact 20, we can find a subset Tν with at least
αnlogn nodes, all of which can reach to t by a path of length O(logn), with probability
1−O(n−6) again. Let E1 denote the event of having both such subsets Sµ and Tν . We can
think of constructing subset Sµ first and then Tν . Note that it is not straightforward to
say that the Pr[E1] = (1 − O(n−6))2, since when we are constructing Tν , we have already
been conditioned by the existence of s’s subset chain. In fact, the state-variable subset
G, which includes all the ‘non-fresh’ nodes, will now be larger, containing all the nodes in
the completed s−tree and the developing t−tree. However, since the number of nodes in
s−tree |Cµ| = O(nlogn), we still have G = O(nlogn), which means all the results for t’s
subset chain still apply. Thus Pr[E1] = (1−O(n−6))2, which is also 1−O(n−6) due to the
common fact that (1 + x)a ≥ 1 + ax when x > −1, a ≥ 1.

Assuming the occurrence of E1, consider the event E2 that either Sµ and Tν intersect,
called event E2a, or Sµ is one-link separate from Tν , called event E2b. Note that for Sµ we
have not yet looked at its out-going random links and for Tν we have not yet considered its
incoming arcs. Observe that the probability of event E2, the sum of E2a and E2b, is at least
the probability of event E2b given E2a does not occur; so, we lower bound the probability
of E2 given E1 using the probability of E2b given E1 and not E2a. Given an arbitrary node
u ∈ Sµ, let ξ denote the probability that u ‘misses’ Tν , i.e. none of the 4 random links from
u goes to any node in Tν . From fact 1, the probability of a random link from u to any other
node is at least ε = Cu(2n)−2 = Ω(n−2log−1n), therefore ξ ≤ (1−ε|Tν |)4, but |Tν | ≥ αnlogn,
so there exists a constant c1 such that ξ ≤ (1−αc1n

−1)4 ≤ e−4αc1n−1
. Now the probability

that all the nodes in Sµ ‘miss’ Tν is at most (e−4αc1n−1
)αnlogn ≤ e−4α2c1logn = n−4α2c where

c = c1loge. Thus, Pr[E2|E1] ≥ 1− n−4α2c and when we choose α large enough:

Pr[E2|E1] ≥ 1−O(n−6) (9)

Thus (by choosing α large enough), the probability of having the shortest path from s to
t with length O(logn) is at least Pr[E2|E1]Pr[E1] ≥ (1−O(n−6))2 = 1−O(n−6). In other
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words, there exist constants c and ĉ such that for any two nodes s and t the probability, that
the shortest path from s to t is greater than ĉlogn, is at most cn−6 when n is large enough.
Note that from the way we have formed the subset chains and hence, a short path from
s to t, it is easy to see that with overwhelming probability this path has length at most
φ(n) = dlogγ(αn/c1)e + d

√
c1logn/2 + 1e + dlogγ̂(αn/c2)e + d

√
c2logn/2 + 1e + 1, where

γ = 2 − o(1),γ̂ = 4βt − o(1),c1 = τ(γ, βs, 6) and c2 = τ(γ̂, βt, 6). When n is large enough,
clearly φ(n) = logγn+ logγ̂n+ o(1)logn. We can choose γ arbitrarily close to 2 (= 4βs) and
γ̂ arbitrarily close to 4βt then φ(n)/logn = logγ2 + logγ̂2 + o(1). This means we can choose
ĉ > 1+logλ2 but arbitrarily close to 1+logλ2 (/ 2.53), where λ = 4βt = 4(1−e−0.5) ≈ 1.574.
Thus we can choose ĉ = 3.

The diameter is greater than ĉlogn if there is any pair (s, t) such that the s− t shortest
path is greater than ĉlogn. The number of different pairs (s, t) on the KSM grid is less than
(n2)2 = n4, therefore Pr[diameter ≥ ĉlogn] is at most n4 × (cn−6) = cn−2. That is almost
all graphs in K∗(n, 1, 4) have diameter less than ĉlogn. Since the diameter of a graph in
K∗(n, 1, 4) can not exceed 2n, its expectation is at most ĉlogn× (1− cn−2)+2n× (cn−2) =
ĉlogn − ĉc logn

n2 + 2c
n = O(logn). Thus, the expected diameter of the graphs in K∗(n, 1, 4) is

θ(logn). (As mentioned earlier, the bound Ω(logn) is obvious)
Because of computation simplicity, we have chosen to start with this class with q = 4,

however, it is easy to see that the same result still holds when q takes any value not smaller
than 3. When we grow Sk+1 from Sk, the probability that a certain random link from a
given node u ∈ Sk contributes a new ‘fresh’ node is at least βs−o(1) (arbitrarily close to βs

when n is large enough); therefore the q random links from u contribute expected at least
qβs − o(1) fresh nodes. Clearly, qβs > 1 is the sufficient condition to have s’s subset chain
to grow exponentially in size (before passing the turning threshold). Similarly, qβt > 1 is
sufficient to have t’s subset chain to grow exponentially in size, and both of these happen if
q > min{1/βs, 1/βt}, or q ≥ 3. Thus, q ≥ 3 is enough to claim that the expected diameter
of graphs in K∗(n, 1, q) is θ(logn). However, as we will show in the next session, the same
result still holds for any q ≥ 1 indeed.

5 Further extension

Based on the approach we have used above to analyze the expected diameter of graphs in
K∗(n, 1, 4), we now study other and more general classes which also have expected diameter
θ(logn). We focus only on the main ideas and often skip unimportant details.

The diameter of K∗(n, 1, 1). We now show that indeed we just need each node to have
at least one out-going random link, i.e. we show that the diameter of graphs in K∗(n, 1, 1)
is also O(logn). It seems that we can transform this problem to K∗(n, 1, 4) above by using
a simple trick. That is to ‘shrink’ the n × n grid by a factor of two in each dimension in
such a way that groups of four adjacent nodes, vertices of a 2× 2 square cell, collapse into
single ‘big nodes’. It is easy to see that we can obtain a new graph (based on a grid with
size roughly n/2 in each dimension) with each node having four out-going random links.
However, it is easy to see that the distribution of the random links after this transformation
is not exactly the inverse second power distribution, but only an approximation. Thus, this
idea is a simple way to see that the diameter of K∗(n, 1, 1) is also O(logn), yet not make a
complete proof.

The key idea of doing that is to modify the subset chain construction so that χ(u) still
has multiple outputs (at least 3 as shown above), despite the fact that there is only one
random link going out from each node.

We now redefine function χ such that it still has four outputs, that is for each u ∈ V ,
χ(u) consists of nodes which can be reached from a neighbor of u by a random link. We also
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define χi(u), for i = 1, 2, 3 or 4, as the node that the random link of the left, right, above
or below neighbor of u goes to, accordingly. Thus χ(u) still has the potential to contribute
more than one expected fresh node during a χ-step. As can be seen easily, we ‘trim off’ a
lot of s’s ‘descendants’ to give the s−tree a shape which is easier to estimate. In a sense,
one level in this new tree is formed by merging and trimming two consecutive levels in the
version with full descendants.

However, this redefinition also requires a bit of extra care for us. That is, when any
two nodes u and v are at distance 2 apart, they have direct neighbors in common and
hence, χ(u) and χ(v) are not independent. However, it is easy to see that χ(u) and χ(v) are
independent (the formation of one does absolutely not affect that of the other) if d(u, v) ≥ 3.
Thus we define a node w = χi(u) as a fresh node if and only if w is at least distance 3 from
any node in G (which keeps track of all nodes already in the tree). Thus, in order to see if
v can be added to the tree, we need to check if v ∈ B2(G), where B2(S) = ∪u∈SB2(u) for
any subset S. It is obvious to note that G now consists of nodes which are at least distance
3 from each other.

Note that we now have more than one way to grow Sk+1 from Sk, since we can scan
the nodes in Sk in different orders, which will affect the list of fresh nodes obtained. But
we can initially sequence all the nodes in V (say, by using their coordinates) to shape the
growing process uniquely.

However, this modification of s’s subset chain construction will not affect the fact that
when the subset chain has not grown beyond the size θ(nlogn), the subset B2(G) (which
a node ‘needs to avoid to hit’ to be seen fresh) still has size O(nlogn). It is clear because
|B2(G)| and |G| are not different by more than a constant factor. Therefore, results 14-17
still apply here.

We can also argue similarly with t’s subset chain (with χ̂(u) is defined as the nodes
having a random link to one of u’s four direct neighbors); thus, we can continue to analyze
similarly as in section 4 to show that the expected diameter of graphs in K∗(n, 1, 1) is also
θ(logn).

Grouping adjacent nodes to form ‘super nodes’ (with enough out-going random links)
is the common idea in both the ‘shrinking approach’ before and this approach but is de-
ployed more dynamically, hence more successfully, in the latter. More importantly, we can
generalize this idea to find more general classes, even wider than K∗/K(n, p, q), which also
have expected diameter θ(logn). For constructing the subset chains, when we need to make
a node u a super node, we can ‘collect’ the random links of many of u’s neighbors (the
number of which must be lower bounded by a constant C which we choose arbitrarily), and
make a virtual re-assignment of these links to u, i.e. χ(u) contains the nodes incident to
these links. For instance with K∗(n, 1, 1), as suggested at the end of section 4, we need to
collect at least 3 such random links to form a super node, so that it allows the subset chains
to grow exponentially in size.

On a general approach. As suggested above, the work presented in section 4 can be
used as a framework to approach the diameter problem on many other similar lattice-based
settings. We only need to maintain the principle of always having enough out-going random
links from any small neighborhood with a determined size (but arbitrarily chosen) in order
to form a super node. Thus, in fact, we can relax many conditions in Kleinberg’s original
model yet we can still analyze the new graphs using our approach. Thus, we can include
more practical graphs: distribution of links are less uniform, some nodes may have many
long-range contacts some may have none, and local links may be ‘broken’ or missing.

In such a new setting, the above principle of forming super nodes will help to create the
s− and t− trees with exponential growth before their intersecting, which results in θ(logn)
length paths from s to t. Note that fact 1 (clearly, a direct result of using the inverse second
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power distribution) will again result in equation (9), i.e. the two trees will almost surely
intersect.

The issue of missing local links may affect the view of the graph as a grid with added
random links and then affect the definition of distance d(u, v). However we still assume
that the locations of all the vertices form a geographic grid though each vertex may or may
not have local links to its neighbors; thus we still be able to use lattice distance. Wider
generalizations are possible but are not discussed here.

We leave a thorough study of a more general approach to our future work but we suggest
here important conditions of a lattice-based setting, wherein our current approach could
be applicable. To adapt this approach to such a new setting, our main idea is to suitably
formulate underlying properties, analogues of facts 2 and others, with respect to the new
scenario. Thus we will be able to simulate the work in section 4 in this new scenario.

1. The setting is rich enough in local links so that it is easy to construct the starting
subset S0 (with size Ω(logn)) using short paths. An alternative is the graph’s being
strongly connected (for any two distinct nodes u and v there is a path from u to v
and vice versa).

2. There exists a mechanism of producing super nodes (wherever we need) so that we
can get enough long-range random links per super node. We suggest the following
proposition but other similar ones can be used instead:

Sufficiency of random links everywhere: for any constant C > 1, there exists a con-
stant L such that, for n large enough, for any node u, there exist, with overwhelming
probability, a set of nodes with at least C out-going random links and reachable from
u by no more than L local links.

In fact we just look at nodes in ball BL(u) to collect that many random links. Let
NL(u) denote the number of random links going out from nodes of ball BL(u); basi-
cally, for a given C > 1, we need to find L such that we almost always have NL(u) ≥ C
for any node u. Alternately, we have NL(u) ≥ C almost everywhere; thus we call this
“sufficiency of random links everywhere”.

The proposition above is only for constructing the tree from the source node; a similar
condition is also needed with respect to the destination node, and for simplicity,
constants C and L can be chosen to be the same in both cases. These conditions also
reflect a sufficient ratio of random links per node.

3. An analogue to fact 2: there exist positive constants ξ1 and ξ2 such that for any
positive θ < 0.6, for n large enough, for any node u with an out-going random link (if
more then pick one arbitrarily), the probability that this random link goes to a node
outside of Bl(u), where l = nθ, is greater than ξ1. Also, the probability that there is
a random link to u from a node outside of Bl(u) is greater than ξ2.

These conditions can be stated either as facts to be proved in a new setting or as as-
sumptions. In order to have the two trees grow exponentially before they connect (after
O(logn) steps of growing), we need to find proper C (and hence, L) such that Cξ1 > 1 and
Cξ2 > 1 when θ > 0.5. We will illustrate these with some notable classes of graphs below.

The diameter of K(n, p, q) where p, q ≥ 1. It is easy to see that condition 1 and 2 are
automatically met since the local links are ‘full’ and condition 3 is met because of fact 3.
Similarly as in section 4 we use fact 3 with θ = 0.5 + o(1) and hence obtain ξ1 = 0.2 + o(1)
and ξ2 = 1− e0.125+0(1) (roughly, 0.117 + o(1)). Thus, we need to specify constant C (as in
the above proposition) so that Cξ1 > 1 and Cξ2 > 1, which help to establish the exponential
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growth of the two trees. Therefore any C ≥ 9 will work and if we choose L = 2 we can take
C = 9..13 (since |B2(.)| = 1 + 4 + 8 = 13). Thus, when we want to make a node u a super
node we need to ‘collect’ the random long-range contacts of u’s neighbors within distance
2 and assign them to χ(u) (similarly for χ̂(u)). If u is too close to the edges of the grid, we
can simply drop it as the fraction of such u is negligible (note that we do not need to care
about this case with u = s or t, since this is only relevant to that we need a big enough
initial S0 or T0, which is always trivial in this setting). Then we can continue similarly as
before to show that the diameter of K(n, p, q), for p, q ≥ 1, is θ(logn).

Higher dimensions: the diameter of K(k, n, p, q) where k, p, q ≥ 1. All these above
results leave us with a simple task. It is again clear that conditions 1 and 2 are met. Fact 6
meets condition 3, albeit we can not give exact values for the constant parameters as above.
The model’s connectedness and sufficiency of random links (everywhere) makes it as easy
as above to find C and L such that Cξ1 > 1 and Cξ2 > 1 for any given positive constants ξ1

and ξ2. Our approach is then applicable as before which results in the following theorem,
solving the general diameter problem in Kleinberg’s model.

Theorem 21. For any k, p, q ≥ 1, the expected diameter of the graphs from K(k, n, p, q) is
θ(logn).

The case of lacking local links. We now study the classes K(n, 0, q) and K∗(n, 0, q)
with q > 0, a special case when we do not assume the existence of local links. Note that this
does not rule out the possibility of two adjacent nodes being connected by a random link.
We now show that, if q is a constant then no matter how large q is, a graph in K∗(n, 0, q)
is not strongly connected with probability tending to one when n goes to infinity.

Let l be a constant integer such that l2 > q+1. Consider a group of l2 nodes forming an
l× l square in the grid. We show that the probability that the group forms a ‘semi-island’,
i.e. there is no link from any element to the rest of V , is Ω(log−ql2n). Clearly, in this case
the graph is not connected. First, the probability that a particular random link from a
group member u goes to another group member v is 1

cud2(u,v)
≥ 1

cu(2l)2
, which is θ(log−1n)

since cu = θ(logn) from fact 1. Therefore the probability that the q random links of u
go to q specified nodes in the group is p1 ≥ ( 1

4cul2
)q, which is obviously Ω(log−qn). Thus,

the probability that this group of l2 nodes is a ‘semi-island’ is at least p2 = pl2
1 , which is

Ω(log−ql2n), and not a ‘semi-island’ is at most 1− p2 = 1− Ω(log−ql2n).
If we divide the n × n grid into separate such groups we then have at least a = bn/lc2

groups. Also, the events that each such group is a ‘semi-island’ are independent, therefore
the probability that there exists at least one such ’semi-island’ is at least 1 − (1 − p2)a ≥
1 − e−ap2 , which tends to 1 when n goes to infinity since clearly ap2 ≥ c1n2

log−ql2n
for some

constant c1 > 0, which tends to infinity when n goes to infinity (note that l is a constant).
Thus the graph tends to be not connected when n goes to infinity. Note that it is easy to
extend the above argument to show the same fact but assuming that the q random links
from a node are chosen randomly but without replacement (i.e. no two links to the same
node).

Moreover, we can extend the above argument to show the existence of an ‘island’, i.e. no
link in any direction between this group of nodes and the outside, with probability tending
to 1 when n goes to infinity. Thus the graph is even not semi-connected if we consider
all the directed links as indirect links. We now discuss this briefly. We observe that for a
group of l2 nodes mentioned above, the probability that the group has no in-coming link
(from a node outside) is lower bounded by a constant greater than 0. We omit the proof
of this fact but comment that the idea underlying is similar to that in the proof of the
second proposition in fact 2 but we use the common fact 1− x ≥ e−2x (where 0 < x < 0.5)
instead of 1 − x < e−x (to give a lower bound instead of an upper bound). Therefore, the
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probability that the group is an ‘island’ is at least c2p2 (for some constant c2 > 0) which
is still Ω(log−ql2n). We then continue the same way as before to show that there exists an
island with probability tending to 1 when n goes to infinity.

Similarly, the same results can be obtained with the classes K(k, n, 0, q) and K∗(k, n, 0, q)
where k, q ≥ 1.

6 Open problems

There are other possibilities to extend our diameter result. Condition sufficiency of random
links everywhere requires us to have NL(u) ≥ C almost everywhere. However it is also
sensible to consider settings where a non-negligible fraction of nodes have low NL (< C),
yet we also have a significant volume of nodes with expected NL high enough to compensate
for this. Thus, we again suggest to further reduce the uniformness of our existing models,
such that both ‘rural places’ and ‘crowded cites’ can exist at the same time as in practice.

So far the model is still heavily based on a grid structure while in practice (for example,
over the Internet) nodes would never locate in such an ideal way (but often with unequal
distances between neighbors and different number of neighbors per node). This and the
issue of ‘missing local links’ make it hard to keep using the concept of lattice distance. This
suggests considering other kinds of distance measures (but still be in accordance with the
distribution rule for random links). It would be interesting to try group-induced models
like the ones in [10]. Note that with such a new model not based on a grid structure (and
possibly based on a different kind of distance measure), we also need a successful conversion
of condition 3 above as well.

Such further generalizations may also need to cope with the issue of ‘lacking local links’
(in order to construct a sufficiently large initial subset S0). Kleinberg’s hierarchy models [10]
do not have local links, but only random links. To compensate for no local links, it would
be worth considering models with another kind of random links, more frequently appearing
but rather ‘short’. For example, we can introduce at least one more out-going link per
node using an r-th inverse power distribution, where r > 2. This would also reflect social
relations: business people may have world-wide, national and regional contacts. It is also
worth noting that we still do not know any good upper bound for the expected diameter
of a customized Kleinberg’s grid model with using an r-th inverse power distribution of
random links where r > 2 (our diameter result is for the case of r = 2 but can be easily
extended for 0 ≤ r ≤ 2 also).

Modelling SWNs with both ‘social’ super nodes (‘crowded towns’) and ‘unsocial’ super
nodes (’rural places’) would also lead to generalizations of Kleinberg’s algorithm for decen-
tralized routing mentioned in section 3. If the current random link leads us to an unsocial
super node we may consider to use backtracking to find another better branch which leads
to a social super node instead. Thus, a routing decision would be a function of two variables:
the distance from the considered node to the destination and the prospect of reaching from
this node’s neighborhood to the world outside.
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A Proof of supporting facts on KSW grid setting

Proof of fact 3. We restate the fact:
On a graph from K, given any positive θ < 1 and integer 1 ≤ l ≤ nθ, for n large enough:

i) the probability that a random link from a given node u goes to a node outside of Bl(u)
is greater than 1−θ

1+3θ + o(1); ii) the probability that there is a random link to u from a node
outside of Bl(u) is greater than 1− e−(1−θ)/4+o(1).

We still keep the denotation of E and F as in fact 2’s proof. Let a =
∑

v/∈Bl(u) d−2(u, v)
and b =

∑
v∈Bl(u) d−2(u, v). Obviously, Pr[E] = a

a+b .
From (1) we have

a =
2n−2∑
j=l+1

bj(u)(j−2) ≥
dn/2e−1∑
j=l+1

j(j−2) ≥
dn/2e−1∑
j=nθ+1

j−1 = (1− θ)lnn + c1

for some c1 = O(1). On the other hand, from (1), b =
∑l

j=1 bj(u)j−2 ≤
∑l

j=1 4j−1 ≤
4θlnn + c2 for some c2 = O(1). Thus Pr[E] = a

a+b ≥
(1−θ)lnn+c1

(1−θ)lnn+c1+4θlnn+c2
, which converses

to 1−θ
1+3θ when n goes to the infinity. So, Pr[E] ≥ 1−θ

1+3θ + o(1).
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On the other hand, from (4) we have Pr[F ] ≥ 1− e
−

∑
v /∈Bl(u) p(v,u); thus

Pr[F ] ≥ 1− e
−

∑
v /∈Bl(u) d−2(u,v)/cu ≥ 1− e−a/(4ln6n) = 1− e−(1−θ)/4+o(1).

Note that cv ≤ 4ln(6n) as from fact 1’s proof. The fact has been shown.

Proof of fact 15. We restate the fact: Define function τ(β, η, γ) = 8ηβ/(4β − γ)2 and let
βs = 0.5. Let η > 0, γ ∈ (1, 2) and ĉ > 0 be constants. Let H be a ball with |H| = O(nlogn)
and m be an integer such that ĉlogn ≤ m < |H|. If ĉ > τ(βs, η, γ) then Pr[f(m,H)/m >
γ] = 1−O(n−η) for n large enough.

From the proof of fact 14, this can be made (Pr[f(m,H)/m > γ] = 1 − O(n−η)) by
choosing ĉ such that e−2ĉlognβδ2

= O(n−η) or 2ĉβδ2 ≥ η or ĉ ≥ η
2δ2β

. From γ = 4β(1 − δ)
we have δ = 1− γ/4β, then we need ĉ ≥ τ(β, η, γ) = 8ηβ/(4β − γ)2.

On the other hand, from any given 1 < γ < 2, we can choose any β (= γ
4(1−δ)) from the

interval (γ/4, βs = 0.5) then choose ĉ > τ(β, η, γ) with η also given.
Moreover, if we choose ĉ > τ(βs, η, γ) = 4η

(2−γ)2
we then can always find β close enough

to βs such that ĉ > τ(βs, η, γ) also holds because of τ ’s continuity. Thus, for given such γ
and η, by choosing ĉ ≥ τ(β, η, γ) we have Pr[f(m,H)/m > γ] = 1−O(n−η).
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