
1

LEC 05

CONCURRENT TCP SERVER
Bui Trong Tung, SoICT, HUST

1

Content

• I/O Models

• Concurrent TCP server: one child per client

• Concurrent TCP server: one thread per client

2

1

2

2

I/O MODELS

3

Review TCP Echo Server
while(1){

//accept request
connfd = accept(listenfd, (sockaddr *) & clientAddr,

&clientAddrLen);
//receive message from client
rcvBytes = recv(connfd, buff, BUFF_SIZE, 0);
if(rcvBytes < 0){

perror("Error :");
}
else{

buff[rcvBytes] = ‘\0’;
printf("Receive from client: %s\n",buff);
//Echo to client
sendBytes = send(connfd, buff, strlen(buff), 0);
if(sendBytes < 0)

perror("Error: ",);
}
closesocket(connfd);

} //end while
4

3

4

3

Blocking I/O Model and TCP server
socket()

bind()

listen()

accept()

socket()

connect()

recv()

close()

TCP client

TCP Server

send()
recv()

send()

close()

data

data

establish

5

Block until
data from
client

Cannot
accept new
connection
until the
current
connection
closes.

I/O Models

• blocking I/O

• nonblocking I/O

• I/O multiplexing (select and poll)

• signal driven I/O (SIGIO)

• asynchronous I/O (the POSIX aio_functions)

6

5

6

4

Blocking I/O Model

• Blocking I/O model: I/O function block process/thread until
returning.

• accept(), connect(), send(), recv(),…

7

Non-blocking I/O Model

• Non-blocking I/O model: I/O function returns immediately

• If there is no data to return, so the kernel immediately
returns an error of EWOULDBLOCK instead

8

7

8

5

I/O Multiplexing Model

• With I/O multiplexing, we call select or poll and block in
one of these two system calls, instead of blocking in the
actual I/O system call

9

Signal-Driven I/O Model

• Use signals, telling the kernel to notify app with the SIGIO
signal when the descriptor is ready

10

9

10

6

Asynchronous I/O Model

11

Asynchronous I/O Model (2)

• App calls aio_read (the POSIX asynchronous I/O
functions begin with aio_)

• Pass the kernel
• the descriptor

• buffer pointer

• buffer size (the same three arguments for read)

• buffer offset (similar to lseek)

• how to notify us when the entire operation is complete

• This system call returns immediately and our process
is not blocked while waiting for the I/O to complete.

12

11

12

7

Comparison of the I/O Models

13

Iterating server

• Simple server

• But when a client request can take longer to service,
we can’t handle other clients

Use a concurrent server

• One child per client: fork() function spawns one
child process to handle each client

• One thread per client: pthread_create() creates
one thread to handle each client

14

13

14

8

MULTI-PROCESS SERVER

15

fork()

• Create a new process by copying itself.

• Returns twice:
• Once in the calling process (called the parent) with a return

value that is the process ID of the newly created process (the
child).

• Once in the child, with a return value of 0

• All descriptors open in the parent before the call
to fork are shared with the child after fork returns

#include <unistd.h>

pid_t fork(void);

16

15

16

9

One child per client

17

One child per client

X

18

17

18

10

Use fork()

pid_t pid;
int listenfd, connfd;
//Step 1: Construct socket
//Step 2: Bind address to socket
//Step 3: Listen request from client

//Step 4: Communicate with client
while (1) {

connfd = accept (listenfd, ...);
if((pid = fork()) == 0) {// process in child

close(listenfd); // child closes listening socket
doit(connfd); // process the request
close(connfd); // done with this client
exit(0); // child terminates

}
close(connfd); // parent closes connected socket

}

19

Handling SIGCHLD Signals

• When a child process ends, it sends the SIGCHLD signal
to the parent
• Information about the child process is still maintained in “process

table” in order to allow its parent to read the child exit status
afterward.

• If we ignore the SIGCHLD, the child process will enter the
zombie state

• We need to wait and handle SIGCHLD signal

20

19

20

11

Signaling

• A signal is a notification to a process that an event
has occurred.

• Signals are sometimes called software interrupts.

• Signals usually occur asynchronously. By this we
mean that a process doesn't know ahead of time
exactly when a signal will occur.

• Signals can be sent
• By one process to another process (or to itself)

• By the kernel to a process

21

Signal (cont.)

• Typing certain key combinations at the controlling terminal
of a running process causes the system to send it certain
signals:
• Ctrl-C sends an INT signal ("interrupt", SIGINT)

• Ctrl-Z sends a TSTP signal ("terminal stop", SIGTSTP)

• Ctrl-\ sends a QUIT signal (SIGQUIT)

• SIGHUP is sent to a process when its controlling terminal
is closed (a hangup)

• SIGTERM is sent to a process to request its termination.
• Unlike the SIGKILL signal, it can be caught and interpreted or

ignored by the process.

22

21

22

12

Handling SIGCHLD Signals

• The purpose of the zombie state is to maintain information
about the child for the parent to fetch at some later time.

• They take up space in the kernel and eventually we can
run out of processes

Whenever we fork children, we must wait for them to
prevent them from becoming zombies establish a
signal handler to catch SIGCHLD, and within the handler,
we call wait

Establish the signal handler by adding the function call :
signal (SIGCHLD, handler);

23

wait() and waitpid()

• Wait for the status change of a process.

• Use to handle the terminated child

• Both return two values:
• The return value of the function:

• the process ID of the terminated child

• 0 or -1 if error

• The termination status of the child (an integer) is
returned through the statloc pointer.

#include <sys/wait.h>

pid_t wait (int *statloc);

pid_t waitpid (pid_t pid, int *statloc, int options);

24

23

24

13

wait()

• Create 5 connections from a client to a forking server
• When the client terminates, all open descriptors are

closed automatically by the kernel five connections
ended simultaneous

25

waitpid()

• Client terminates, closing all five connections, terminating
all five children four children are zombies

• It can happen when many users connect to a server
• we have to use waitpid()

26

25

26

14

waitpid()
pid_t waitpid (pid_t pid, int *statloc, int options);
• pid < 0: wait for any child process whose process group ID is

equal to the absolute value of pid.
• pid = -1: wait for any child process.
• pid = 0: wait for any child process whose process group ID is

equal to that of the calling process
• pid > 0: wait for the child whose process ID is equal to the

value of pid
• Without option WNOHANG, waitpid blocks until the status

change
• With option WNOHANG, waitpid returns immediately
• Return

• Pid of the child whose state has changed
• with option WNOHANG, return 0 if the specified process has not

changed status.

27

void sig_chld(int signo)

void sig_chld(int signo)

{

pid_t pid;

int stat;

pid = waitpid(-1, &stat, WNOHANG);

printf("child %d terminated\", pid);

}

• WNOHANG: waitpid() does not block
• while loop: waitpid() repeatedly until there is no child

process change status, i.e until waitpid returns 0.

28

27

28

15

Forking server

pid_t pid;
int listenfd, connfd;
//Step 1: Construct socket
//Step 2: Bind address to socket
//Step 3: Listen request from client

// wait for a child process to stop
signal(SIGCHLD, sig_chld);
//Step 4: Communicate with client
while (1) {

connfd = accept (listenfd, ...);
if((pid = fork()) == 0) {// process in child

close(listenfd); // child closes listening socket
doit(connfd); // process the request
close(connfd); // done with this client
exit(0); // child terminates

}
close(connfd); // parent closes connected socket

} 29

Handling EINTR Errors

• When a process is blocked in a slow system call and the
process catches a signal and the signal handler returns,
the system call can return an error of EINTR.

• Slow system call: connect, accept, send, recv…

• Not all kernels automatically restart some interrupted
system calls

• We must rewrite function to handle EINTR error

while(1)
if ((connfd = accept (listenfd...) < 0) {

if (errno == EINTR)
continue; /* back to for () */

else
perror ("Error: ");

}
30

29

30

16

Other problems

• Connection abort before accept return

• Termination of server process

• Crashing of sever host

• Crashing and Reboot of server host

31

MULTI-THREAD SERVER

32

31

32

17

pthread_create()

• Create a new thread
• Parameters:

• [OUT] tid:points to ID of the new thread
• [IN] attr : points to structure whose contents are used to determine

attributes for the new thread
• [IN] routine: the new thread starts execution by invoking
routine()

• [IN] arg: points to the argument is passed as the sole argument of
routine()

• Return:
• On success, returns 0
• On error, returns an error number

• Compile and link with -pthread

#include <pthread.h>
int pthread_create(pthread_t *tid, const pthread_attr_t *attr,

void *(*routine) (void *), void *arg);

33

pthread_create()

• By default, the new thread is joinable:
• Not automatically cleaned up by GNU/Linux when it terminates

• the thread’s exit state hangs around in the system until another
thread calls pthread_join() to obtain its return value

• Detached thread is cleaned up automatically when it
terminates
• Another thread may not obtain its return value

• Detach a thread: int pthread_detach(pthread_t tid)

• On success, returns 0

• On error, returns an error number

34

33

34

18

main(){

pthread_create(tid,….);

pthread_join(tid);

return 0;

}

35

Multi-thread TCP Echo Server

pthread_t tid;
int listenfd, *connfd;
//Step 1: Construct socket
//Step 2: Bind address to socket
//Step 3: Listen request from client

//Step 4: Communicate with client
while (1) {

connfd = malloc(sizeof(int));
*connfd = accept (listenfd, ...);
pthread_create(&tid, NULL, &client_handler, connfd);

}

close(listenfd);
return 0;

36

35

36

19

Multi-thread TCP Echo Server(cont.)
void *client_handler(void *arg){

int connfd;
int sendBytes, rcvBytes;
char buff[BUFF_SIZE + 1];

pthread_detach(pthread_self());
connfd = *((int *) arg);
while(1){

rcvBytes = recv(connfd, buff, BUFF_SIZE, 0);
if (rcvBytes <= 0)

break;

sendBytes = send(connfd, buff, rcvBytes,0);
if (sendBytes <= 0)

break;
}
close(connfd);

}

37

Synchronize threads

• Since multiple threads can be running concurrently,
accessing the shared variables:
• The order of the accessing shared memory is unpredictable, so

• The processing flow of the thread may be incontrollable, and/or

• The process crash

• Synchronize threads so that only one thread can access
shared meory:
• Mutex

• Condition variable

• Inter-lock

38

37

38

20

Mutex

• The thread can access the shared variable only when it
hold the mutex

• pthread_mutex_lock(): lock a mutex

• pthread_mutex_unlock(): unlock a mutex

• If the thread try to lock a mutex that is already locked by some other
thread, it is blocked until the mutex is unlocked.

#include <pthread.h>
int pthread_mutex_lock(pthread_mutex_t * mptr);
int pthread_mutex_unlock(pthread_mutex_t * mptr);

void *routine(void *arg){
//...
pthread_mutex_lock(mptr);
// access shared memory
pthread_mutex_unlock(mptr);

//...
} 39

Condition variable

• Mutexes are for locking and cannot be used for waiting

• Condition variable can be used to waiting

• pthread_cond_wait(): wait on a condition

• pthread_cond_signal): signal a condition

40

#include <pthread.h>
int pthread_cond_wait(pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_signal(pthread_cond_t *cond);

39

40

21

Mutex + Condition variables template

41

struct {
 pthread_mutex_t mutex;
 pthread_cond_t cond;
 whatever variables maintain the condition
} var = (PTHREAD_MUTEX_INITIALIZER, PTHREAD_COND_INITIALIZER};

/* on waiting thread */
pthread_mutex_lock(&var.mutex);
while (condition is false)
 pthread_cond_wait(&var.cond, &var.mutex);
modify condition
pthread_mutex_unlock(&var.mutex)

/* on signal thread */
pthread_mutex_lock(&var.mutex);
set condition true
pthread_cond_signal(&var.cond);
thread_mutex_unlock(&var.mutex)

fork() vs pthread_create()
fork()

• Heavy-weight

• Passing information from
the parent to the child
before the fork is easy

• Returning information
from the child to the
parent takes more work

• Needn’t synchronize
processes

• Greater isolation between
the parent and the child

pthread_create()

• Light-weight

• Passing information from
a thread to the others is
easy

• Don’t need signal-driven
processing when the
threads ends.

• May synchronize threads

• If a thread crashes,
process may crash

42

41

42

