LEC 05
CONCURRENT TCP SERVER

Bui Trong Tung, SolCT, HUST

r /"]
Content

- I/0 Models
- Concurrent TCP server: one child per client
- Concurrent TCP server: one thread per client

/O MODELS

r /"]
Review TCP Echo Server

while (1) {
//accept request
connfd = accept(listenfd, (sockaddr *) & clientAddr,
&clientAddrLen) ;
//receive message from client
rcvBytes = recv(connfd, buff, BUFF SIZE, 0);
if (rcvBytes < 0) {
perror ("Error :");

}

else{
buff[rcvBytes] = ‘\0’;
printf ("Receive from client: %s\n",buff);
//Echo to client
sendBytes = send(connfd, buff, strlen(buff), 0);
if (sendBytes < 0)

perror ("Error: ",);
}
closesocket (connfd) ;
} //end while

]
Blocking 1/0O Model and TCP server

TCP Server

TCP client

establish

connect(

)

Cannot

accept new

connection
Block until until the
data from current
client connection

data closes.

r /"]
I/O Models

- blocking I/O

- nonblocking 1/0

- I/0O multiplexing (select and poll)

- signal driven 1/0O (SIGIO)

- asynchronous I/O (the POSIX aio_functions)

/]
Blocking 1/0 Model

- Blocking I/0 model: 1/O function block process/thread until
returning.

caccept (), connect(), send(), recv(),..

application kernel
(" recvirom —“th no datagram ready 3
> wait for data
process blocks in r
all to £
c recvirom datagram ready
copy datagram il
’mp)’ditn from
kernel to user
r
return OK
L e r— copy complete 2]
process 7
datagram

/"]
Non-blocking 1/0O Model

- Non-blocking I/O model: 1/0O function returns immediately

- If there is no data to return, so the kernel immediately
returns an error of EWOULDBLOCK instead

application kernel
(" recvirom system call no datagram ready)
BEWOULDBLOCK
recvirom Sy cal no datagram ready
BWOULDBLOCK walk for data
recvirom —"w- no datagram ready
process repeatedly EWGULDBLOCK
calls recvirom, e
waiting foran OKY vecvirom system call datagram ready
return (polli %
polling) copy datagram b
| copy data from
kemel to user
A copy complete
~ prses o
datagram

/O Multiplexing Model
- With 1/0 multiplexing, we call select or poll and block in
one of these two system calls, instead of blocking in the
actual 1/0O system call
application kemel
select “—.ﬂ.ML—.- no datagram ready h
process blocks in
call to selecs,
‘wailing for one of » wait for data
possibly many sockets
1o becone readable
L -M datagram ready N
r recvirom _’w-. copy datagram h
process blocks while
d Ay copy data from
np]:i.:\:l‘l‘:‘nhnff;r‘n [ernel to user
return OK copy complete
S proces
datagram 9

Signal-Driven 1/0 Model
- Use signals, telling the kernel to notify app with the SIGIO
signal when the descriptor is ready
application kernel
establish 51610 sigact ion system <all 3
. signal handler g T
process
conlinues ¢ »wait for data
execuling
¢ signal handber el ST datagran ready
svstem call
recvirom ——— = copy datagram
process blocks while
data copied into ¢ copy data from
application buffer kemel to user
q& copy ¢m[¢|¢
T process
datagram 10

10

/]
Asynchronous |/O Model

application kemnel
alo_read —’}w- no datagram ready N
r reburn
wait for data
PrOcess continmes
expcuting datagram ready |
copy datagram &
copy data from
kermel touser
b deliver signal g =
signal handler -'W copy complete J

process
datagram

1"

11

]
Asynchronous /O Model (2)

- App calls aio_read (the POSIX asynchronous I/O
functions begin with aio)
- Pass the kernel
- the descriptor
- buffer pointer
- buffer size (the same three arguments for read)
- buffer offset (similar to Iseek)
- how to notify us when the entire operation is complete
- This system call returns immediately and our process
is not blocked while waiting for the 1/0 to complete.

12

12

/("0]
Comparison of the /O Models

blocking nonblocking | 1/0 multiplexing | signal-driven 140 | asynchronous 1/0
nataate check check initiate b
check
check
Mll % wait for
ik E data
check
% chick 1
E check ready notification p
imithate initianwe
o o copy data
from kemel
[RTE o
complete complete <wn;k|-r complete notification J
\ AN vl
15t phase handled differently, handles both
2nd phase handled the same phases.

iblocked in call to recvEron)

13

13

]
Iterating server

- Simple server

- But when a client request can take longer to service,
we can’t handle other clients

—Use a concurrent server

- One child per client: fork () function spawns one
child process to handle each client

- One thread per client: pthread create () creates
one thread to handle each client

14

14

MULTI-PROCESS SERVER

15

15

]
fork ()

#include <unistd.h>
pid t fork(void);

- Create a new process by copying itself.

- Returns twice:

- Once in the calling process (called the parent) with a return
value that is the process ID of the newly created process (the
child).

- Once in the child, with a return value of 0

- All descriptors open in the parent before the call

to fork are shared with the child after fork returns

16

16

(/"""]
One child per client

client server
connection _ _ _ _ _ 8 listenfd
connect () ¢~ — =~~~ 7 7 equest
client server
listenfd
connect () 4 Connection

connfd

/"]
One child per client

client server (parent)

¢ listenfd
connect () 4 ELHOn

connfd

fork

server Y (child)

¢ listenfd

connfd

r——————//—/// +/" ;"]
Use fork ()

pid t pid;

int listenfd, connfd;

//Step 1: Construct socket

//Step 2: Bind address to socket
//Step 3: Listen request from client

//Step 4: Communicate with client
while (1) {
connfd = accept (listenfd, ...);

if((pid = fork()) == 0) {// process in child
close(listenfd); // child closes listening socket
doit (connfd) ; // process the request
close (connfd) ; // done with this client
exit (0); // child terminates

}

close (connfd); // parent closes connected socket

19

19

]
Handling SIGCHLD Signals

- When a child process ends, it sends the SIGCHLD signal
to the parent

- Information about the child process is still maintained in “process
table” in order to allow its parent to read the child exit status
afterward.

- If we ignore the SIGCHLD, the child process will enter the
zombie state

- We need to wait and handle SIGCHLD signal

20

20

10

/]
Signaling

- A'signal is a notification to a process that an event
has occurred.

- Signals are sometimes called software interrupts.

- Signals usually occur asynchronously. By this we
mean that a process doesn't know ahead of time
exactly when a signal will occur.

- Signals can be sent
- By one process to another process (or to itself)

- By the kernel to a process

21

21

]
Signal (cont.)

- Typing certain key combinations at the controlling terminal
of a running process causes the system to send it certain
signals:

- Ctrl-C sends an INT signal ("interrupt", SIGINT)
- Ctrl-Z sends a TSTP signal ("terminal stop", SIGTSTP)
- Ctrl-\ sends a QUIT signal (SIGQUIT)

- SIGHUP is sent to a process when its controlling terminal

is closed (a hangup)

- SIGTERM is sent to a process to request its termination.

- Unlike the SIGKILL signal, it can be caught and interpreted or
ignored by the process.

22

22

/]
Handling SIGCHLD Signals

- The purpose of the zombie state is to maintain information
about the child for the parent to fetch at some later time.

- They take up space in the kernel and eventually we can
run out of processes

~Whenever we fork children, we must wait for them to
prevent them from becoming zombies > establish a

signal handler to catch SIGCHLD, and within the handler,
we call wait

~Establish the signal handler by adding the function call :
signal (SIGCHLD, handler);

23

23

r /']
wait () and waitpid ()

#include <sys/wait.h>
pid t wait (int *statloc);
pid t waitpid (pid t pid, int *statloc, int options);

- Wait for the status change of a process.
- Use to handle the terminated child

- Both return two values:

- The return value of the function:
- the process ID of the terminated child
- 0 or-1if error
- The termination status of the child (an integer) is
returned through the statloc pointer.
24

24

walt ()

client

server server server seTVer seTver server
43210 parent child #1 child #2 child #3 child #4 child &3

i |

- Create 5 connections from a client to a forking server

- When the client terminates, all open descriptors are
closed automatically by the kernel - five connections
ended simultaneous

25

25

waltpid ()
EICONLD
SIRCHLD
SIGTHLD
SIGCALD
EICCHLD
client g #%1T lf]
server server servVer server server server
/44 o parent child #1 child #2 child#3 | | childad | | child 85
Ten— 1
AN -
FiN =
FIN
FIN—

- Client terminates, closing all five connections, terminating
all five children - four children are zombies

- It can happen when many users connect to a server
- = we have to use waitpid()

26

26

13

r /"]
waltpid ()

pid_t waitpid (pid_t pid, int *statloc, int options);
- pid < 0: wait for any child process whose process group ID is
equal to the absolute value of pid.

- pid = -1: wait for any child process.

- pid = 0: wait for any child process whose process group ID is
equal to that of the calling process

- pid > 0: wait for the child whose process ID is equal to the
value of pid

- Without option WNOHANG, waitpid blocks until the status
change

- With option WNOHANG, waitpid returns immediately

- Return
- Pid of the child whose state has changed

- with option WNOHANG, return 0 if the specified process has not
changed status.

27

27

void sig chld(int signo)

void sig chld(int signo)
{
pid t pid;
int stat;
pid = waitpid (-1, &stat, WNOHANG);
printf ("child %d terminated\", pid);

- WNOHANG: waitpid () does not block

- while loop: waitpid () repeatedly until there is no child
process change status, i.e until waitpid returns 0.

28

28

14

Forking server

pid t pid;

int listenfd, connfd;

//Step 1: Construct socket

//Step 2: Bind address to socket
//Step 3: Listen request from client

// wait for a child process to stop
signal (SIGCHLD, sig_chld);
//Step 4: Communicate with client
while (1) {

connfd = accept (listenfd, ...);

if((pid = fork()) == 0) {// process in child
close (listenfd); // child closes listening socket
doit (connfd) ; // process the request
close (connfd) ; // done with this client
exit (0); // child terminates

}

close (connfd); // parent closes connected socket

29

Handling EINTR Errors

- When a process is blocked in a slow system call and the
process catches a signal and the signal handler returns,
the system call can return an error of EINTR.

- Slow system call: connect, accept, send, recv...

- Not all kernels automatically restart some interrupted
system calls

- We must rewrite function to handle EINTR error

while (1)
if ((connfd = accept (listenfd...) < 0) {
if (errno == EINTR)
continue; /* back to for () */
else
perror ("Error: ");
}

a0

30

15

Other problems

- Connection abort before accept return
- Termination of server process

- Crashing of sever host

- Crashing and Reboot of server host

31

31

MULTI-THREAD SERVER

32

32

16

]
pthread create()

#include <pthread.h>
int pthread create(pthread t *tid, const pthread attr t *attr,
void * (*routine) (void *), void *arg);

- Create a new thread

- Parameters:
+ [OUT] tid:points to ID of the new thread

- [IN] attr : points to structure whose contents are used to determine
attributes for the new thread

- [IN] routine: the new thread starts execution by invoking
routine ()

- [IN] arg: points to the argument is passed as the sole argument of
routine ()
- Return:
- On success, returns 0
- On error, returns an error number

- Compile and link with -pthread 53

33

]
pthread create()

- By default, the new thread is joinable:
- Not automatically cleaned up by GNU/Linux when it terminates

- the thread’s exit state hangs around in the system until another
thread calls pthread join () to obtain its return value

- Detached thread is cleaned up automatically when it
terminates
- Another thread may not obtain its return value
- Detach a thread: int pthread detach(pthread t tid)
- On success, returns 0
- On error, returns an error number

34

34

main(){
pthread_create(tid,....);
pthread_join(tid);
return O;

35

35

r /"]
Multi-thread TCP Echo Server

pthread t tid;

int listenfd, *connfd;

//Step 1: Construct socket

//Step 2: Bind address to socket
//Step 3: Listen request from client

//Step 4: Communicate with client

while (1) {
connfd = malloc (sizeof (int));
*connfd = accept (listenfd, ...);

pthread create(&tid, NULL, &client handler, connfd);
}

close(listenfd);
return 0;

36

36

/("0]
Multi-thread TCP Echo Server(cont.)

void *client handler (void *arg) {
int connfd;
int sendBytes, rcvBytes;
char buff[BUFF SIZE + 1];

pthread detach (pthread self());
connfd = *((int *) arg);
while (1) {
rcvBytes = recv(connfd, buff, BUFF SIZE, 0);
if (rcvBytes <= 0)
break;

sendBytes = send(connfd, buff, rcvBytes,0);
if (sendBytes <= 0)
break;
}

close (connfd) ;

37

]
Synchronize threads

- Since multiple threads can be running concurrently,
accessing the shared variables:
- The order of the accessing shared memory is unpredictable, so
- The processing flow of the thread may be incontrollable, and/or
« The process crash
- Synchronize threads so that only one thread can access
shared meory:
+ Mutex
- Condition variable
+ Inter-lock

38

38

19

r——————//—/// +/" ;"]
Mutex

#include <pthread.h>
int pthread mutex lock(pthread mutex t * mptr);
int pthread mutex unlock (pthread mutex t * mptr);

- The thread can access the shared variable only when it
hold the mutex

- pthread mutex lock(): lock a mutex

© pthread mutex unlock() : unlock a mutex

- If the thread try to lock a mutex that is already locked by some other
thread, it is blocked until the mutex is unlocked.

void *routine(void *arg) {
/).
pthread mutex lock (mptr) ;
// access shared memory
pthread mutex unlock (mptr);
Y
} 39

39

r /"]
Condition variable

- Mutexes are for locking and cannot be used for waiting

- Condition variable can be used to waiting

#include <pthread.h>

int pthread cond wait (pthread cond t *cond,
pthread mutex t *mutex);

int pthread cond signal (pthread cond t *cond);

- pthread cond wait () : wait on a condition
- pthread cond signal) : signal a condition

40

40

20

Mutex + Condition variables template

struct {
pthread mutex t mutex;
pthread cond_t cond;
whatever variables maintain the condition
} var = (PTHREAD MUTEX INITIALIZER, PTHREAD COND_INITIALIZER};

/* on signal thread */

pthread mutex lock(&var.mutex);
set condition true

pthread cond signal (&var.cond);
thread mutex_unlock (&var.mutex)

/* on waiting thread */

pthread mutex lock(&var.mutex);

while (condition is false)
pthread cond wait (&var.cond, &var.mutex);

modify condition

pthread mutex unlock(&var.mutex)

41

41

fork () vspthread create()

fork()

- Heavy-weight

- Passing information from
the parent to the child
before the fork is easy

- Returning information
from the child to the
parent takes more work

- Needn’t synchronize
processes

- Greater isolation between
the parent and the child

pthread create()

- Light-weight

- Passing information from
a thread to the others is
easy

- Don’t need signal-driven
processing when the
threads ends.

- May synchronize threads

- If a thread crashes,
process may crash

42

42

21

