
1

LEC 05

CONCURRENT TCP SERVER
Bui Trong Tung, SoICT, HUST

1

Content

• I/O Models

• Concurrent TCP server: one child per client

• Concurrent TCP server: one thread per client

2

1

2

2

I/O MODELS

3

Review TCP Echo Server
while(1){

//accept request
connfd = accept(listenfd, (sockaddr *) & clientAddr,

&clientAddrLen);
//receive message from client
rcvBytes = recv(connfd, buff, BUFF_SIZE, 0);
if(rcvBytes < 0){

perror("Error :");
}
else{

buff[rcvBytes] = ‘\0’;
printf("Receive from client: %s\n",buff);
//Echo to client
sendBytes = send(connfd, buff, strlen(buff), 0);
if(sendBytes < 0)

perror("Error: ",);
}
closesocket(connfd);

} //end while
4

3

4

3

Blocking I/O Model and TCP server
socket()

bind()

listen()

accept()

socket()

connect()

recv()

close()

TCP client

TCP Server

send()
recv()

send()

close()

data

data

establish

5

Block until
data from
client

Cannot
accept new
connection
until the
current
connection
closes.

I/O Models

• blocking I/O

• nonblocking I/O

• I/O multiplexing (select and poll)

• signal driven I/O (SIGIO)

• asynchronous I/O (the POSIX aio_functions)

6

5

6

4

Blocking I/O Model

• Blocking I/O model: I/O function block process/thread until
returning.

• accept(), connect(), send(), recv(),…

7

Non-blocking I/O Model

• Non-blocking I/O model: I/O function returns immediately

• If there is no data to return, so the kernel immediately
returns an error of EWOULDBLOCK instead

8

7

8

5

I/O Multiplexing Model

• With I/O multiplexing, we call select or poll and block in
one of these two system calls, instead of blocking in the
actual I/O system call

9

Signal-Driven I/O Model

• Use signals, telling the kernel to notify app with the SIGIO
signal when the descriptor is ready

10

9

10

6

Asynchronous I/O Model

11

Asynchronous I/O Model (2)

• App calls aio_read (the POSIX asynchronous I/O
functions begin with aio_)

• Pass the kernel
• the descriptor

• buffer pointer

• buffer size (the same three arguments for read)

• buffer offset (similar to lseek)

• how to notify us when the entire operation is complete

• This system call returns immediately and our process
is not blocked while waiting for the I/O to complete.

12

11

12

7

Comparison of the I/O Models

13

Iterating server

• Simple server

• But when a client request can take longer to service,
we can’t handle other clients

Use a concurrent server

• One child per client: fork() function spawns one
child process to handle each client

• One thread per client: pthread_create() creates
one thread to handle each client

14

13

14

8

MULTI-PROCESS SERVER

15

fork()

• Create a new process by copying itself.

• Returns twice:
• Once in the calling process (called the parent) with a return

value that is the process ID of the newly created process (the
child).

• Once in the child, with a return value of 0

• All descriptors open in the parent before the call
to fork are shared with the child after fork returns

#include <unistd.h>

pid_t fork(void);

16

15

16

9

One child per client

17

One child per client

X

18

17

18

10

Use fork()

pid_t pid;
int listenfd, connfd;
//Step 1: Construct socket
//Step 2: Bind address to socket
//Step 3: Listen request from client

//Step 4: Communicate with client
while (1) {

connfd = accept (listenfd, ...);
if((pid = fork()) == 0) {// process in child

close(listenfd); // child closes listening socket
doit(connfd); // process the request
close(connfd); // done with this client
exit(0); // child terminates

}
close(connfd); // parent closes connected socket

}

19

Handling SIGCHLD Signals

• When a child process ends, it sends the SIGCHLD signal
to the parent
• Information about the child process is still maintained in “process

table” in order to allow its parent to read the child exit status
afterward.

• If we ignore the SIGCHLD, the child process will enter the
zombie state

• We need to wait and handle SIGCHLD signal

20

19

20

11

Signaling

• A signal is a notification to a process that an event
has occurred.

• Signals are sometimes called software interrupts.

• Signals usually occur asynchronously. By this we
mean that a process doesn't know ahead of time
exactly when a signal will occur.

• Signals can be sent
• By one process to another process (or to itself)

• By the kernel to a process

21

Signal (cont.)

• Typing certain key combinations at the controlling terminal
of a running process causes the system to send it certain
signals:
• Ctrl-C sends an INT signal ("interrupt", SIGINT)

• Ctrl-Z sends a TSTP signal ("terminal stop", SIGTSTP)

• Ctrl-\ sends a QUIT signal (SIGQUIT)

• SIGHUP is sent to a process when its controlling terminal
is closed (a hangup)

• SIGTERM is sent to a process to request its termination.
• Unlike the SIGKILL signal, it can be caught and interpreted or

ignored by the process.

22

21

22

12

Handling SIGCHLD Signals

• The purpose of the zombie state is to maintain information
about the child for the parent to fetch at some later time.

• They take up space in the kernel and eventually we can
run out of processes

Whenever we fork children, we must wait for them to
prevent them from becoming zombies  establish a
signal handler to catch SIGCHLD, and within the handler,
we call wait

Establish the signal handler by adding the function call :
signal (SIGCHLD, handler);

23

wait() and waitpid()

• Wait for the status change of a process.

• Use to handle the terminated child

• Both return two values:
• The return value of the function:

• the process ID of the terminated child

• 0 or -1 if error

• The termination status of the child (an integer) is
returned through the statloc pointer.

#include <sys/wait.h>

pid_t wait (int *statloc);

pid_t waitpid (pid_t pid, int *statloc, int options);

24

23

24

13

wait()

• Create 5 connections from a client to a forking server
• When the client terminates, all open descriptors are

closed automatically by the kernel  five connections
ended simultaneous

25

waitpid()

• Client terminates, closing all five connections, terminating
all five children  four children are zombies

• It can happen when many users connect to a server
•  we have to use waitpid()

26

25

26

14

waitpid()
pid_t waitpid (pid_t pid, int *statloc, int options);
• pid < 0: wait for any child process whose process group ID is

equal to the absolute value of pid.
• pid = -1: wait for any child process.
• pid = 0: wait for any child process whose process group ID is

equal to that of the calling process
• pid > 0: wait for the child whose process ID is equal to the

value of pid
• Without option WNOHANG, waitpid blocks until the status

change
• With option WNOHANG, waitpid returns immediately
• Return

• Pid of the child whose state has changed
• with option WNOHANG, return 0 if the specified process has not

changed status.

27

void sig_chld(int signo)

void sig_chld(int signo)

{

pid_t pid;

int stat;

pid = waitpid(-1, &stat, WNOHANG);

printf("child %d terminated\", pid);

}

• WNOHANG: waitpid() does not block
• while loop: waitpid() repeatedly until there is no child

process change status, i.e until waitpid returns 0.

28

27

28

15

Forking server

pid_t pid;
int listenfd, connfd;
//Step 1: Construct socket
//Step 2: Bind address to socket
//Step 3: Listen request from client

// wait for a child process to stop
signal(SIGCHLD, sig_chld);
//Step 4: Communicate with client
while (1) {

connfd = accept (listenfd, ...);
if((pid = fork()) == 0) {// process in child

close(listenfd); // child closes listening socket
doit(connfd); // process the request
close(connfd); // done with this client
exit(0); // child terminates

}
close(connfd); // parent closes connected socket

} 29

Handling EINTR Errors

• When a process is blocked in a slow system call and the
process catches a signal and the signal handler returns,
the system call can return an error of EINTR.

• Slow system call: connect, accept, send, recv…

• Not all kernels automatically restart some interrupted
system calls

• We must rewrite function to handle EINTR error

while(1)
if ((connfd = accept (listenfd...) < 0) {

if (errno == EINTR)
continue; /* back to for () */

else
perror ("Error: ");

}
30

29

30

16

Other problems

• Connection abort before accept return

• Termination of server process

• Crashing of sever host

• Crashing and Reboot of server host

31

MULTI-THREAD SERVER

32

31

32

17

pthread_create()

• Create a new thread
• Parameters:

• [OUT] tid:points to ID of the new thread
• [IN] attr : points to structure whose contents are used to determine

attributes for the new thread
• [IN] routine: the new thread starts execution by invoking
routine()

• [IN] arg: points to the argument is passed as the sole argument of
routine()

• Return:
• On success, returns 0
• On error, returns an error number

• Compile and link with -pthread

#include <pthread.h>
int pthread_create(pthread_t *tid, const pthread_attr_t *attr,

void *(*routine) (void *), void *arg);

33

pthread_create()

• By default, the new thread is joinable:
• Not automatically cleaned up by GNU/Linux when it terminates

• the thread’s exit state hangs around in the system until another
thread calls pthread_join() to obtain its return value

• Detached thread is cleaned up automatically when it
terminates
• Another thread may not obtain its return value

• Detach a thread: int pthread_detach(pthread_t tid)

• On success, returns 0

• On error, returns an error number

34

33

34

18

main(){

pthread_create(tid,….);

pthread_join(tid);

return 0;

}

35

Multi-thread TCP Echo Server

pthread_t tid;
int listenfd, *connfd;
//Step 1: Construct socket
//Step 2: Bind address to socket
//Step 3: Listen request from client

//Step 4: Communicate with client
while (1) {

connfd = malloc(sizeof(int));
*connfd = accept (listenfd, ...);
pthread_create(&tid, NULL, &client_handler, connfd);

}

close(listenfd);
return 0;

36

35

36

19

Multi-thread TCP Echo Server(cont.)
void *client_handler(void *arg){

int connfd;
int sendBytes, rcvBytes;
char buff[BUFF_SIZE + 1];

pthread_detach(pthread_self());
connfd = *((int *) arg);
while(1){

rcvBytes = recv(connfd, buff, BUFF_SIZE, 0);
if (rcvBytes <= 0)

break;

sendBytes = send(connfd, buff, rcvBytes,0);
if (sendBytes <= 0)

break;
}
close(connfd);

}

37

Synchronize threads

• Since multiple threads can be running concurrently,
accessing the shared variables:
• The order of the accessing shared memory is unpredictable, so

• The processing flow of the thread may be incontrollable, and/or

• The process crash

• Synchronize threads so that only one thread can access
shared meory:
• Mutex

• Condition variable

• Inter-lock

38

37

38

20

Mutex

• The thread can access the shared variable only when it
hold the mutex

• pthread_mutex_lock(): lock a mutex

• pthread_mutex_unlock(): unlock a mutex

• If the thread try to lock a mutex that is already locked by some other
thread, it is blocked until the mutex is unlocked.

#include <pthread.h>
int pthread_mutex_lock(pthread_mutex_t * mptr);
int pthread_mutex_unlock(pthread_mutex_t * mptr);

void *routine(void *arg){
//...
pthread_mutex_lock(mptr);
// access shared memory
pthread_mutex_unlock(mptr);

//...
} 39

Condition variable

• Mutexes are for locking and cannot be used for waiting

• Condition variable can be used to waiting

• pthread_cond_wait(): wait on a condition

• pthread_cond_signal): signal a condition

40

#include <pthread.h>
int pthread_cond_wait(pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_signal(pthread_cond_t *cond);

39

40

21

Mutex + Condition variables template

41

struct {
 pthread_mutex_t mutex;
 pthread_cond_t cond;
 whatever variables maintain the condition
} var = (PTHREAD_MUTEX_INITIALIZER, PTHREAD_COND_INITIALIZER};

/* on waiting thread */
pthread_mutex_lock(&var.mutex);
while (condition is false)
 pthread_cond_wait(&var.cond, &var.mutex);
modify condition
pthread_mutex_unlock(&var.mutex)

/* on signal thread */
pthread_mutex_lock(&var.mutex);
set condition true
pthread_cond_signal(&var.cond);
thread_mutex_unlock(&var.mutex)

fork() vs pthread_create()
fork()

• Heavy-weight

• Passing information from
the parent to the child
before the fork is easy

• Returning information
from the child to the
parent takes more work

• Needn’t synchronize
processes

• Greater isolation between
the parent and the child

pthread_create()

• Light-weight

• Passing information from
a thread to the others is
easy

• Don’t need signal-driven
processing when the
threads ends.

• May synchronize threads

• If a thread crashes,
process may crash

42

41

42

