
1

Directed graphs

anhtt-fit@mail.hut.edu.vn

dungct@it-hut.edu.vn

http://www.4shared.com/file/43395119/3907952d/lect08.
html

Terminology

� Connected graph
� A graph is connected if and only if there exists a path between every 

pair of distinct vertices

� Sub-graph
� A graph with the vertex and edge set being subsets of the original 

graph

� Connected Components
� A connected component of a graph is a maximally connected 

subgraph of a graph

� Cycle
� A path in a graph that starts and ends at the same vertex

� Tree
� A graph G is a tree if and only if it is connected and acyclic

� Directed Graph
� A graph whose the edges (arcs) are directional

� Directed Acyclic Graph
� A directed graph with no directed cycles



2

Directed Graphs

� A directed graph can be 

represented by an 
adjacency matrix/list the 

same way as in 

undirected graph, 

except:

� An arc (u, v) only 
contributes to 1 entry in 
the adj. matrix or 1 
node in the adj. list

Paths/Cycles

� A directed graph can 

also contain paths and 
cycles 

(“directed paths” and 

“directed cycles”)

� Graph on top has 
directed paths and 
directed cycle

� Graph on bottom has 
directed paths but NO 
directed cycle (acyclic)

a c

b

a c

b



3

Graph traversal

� BFS and DFS can be used to traverse a 
directed graph, the same way as in undirected 
graph

� To check for connectivity of a graph

� run BFS or DFS using an arbitrary vertex as the 

source. If all vertices have been visited, then the 

graph is connected; otherwise, the graph is 

disconnected

Finding Connected Components

� Run DFS or BFS from a vertex

� the set of visited vertices form a connected 

component

� Find another vertex i which has not been visited 
before, run DFS or BFS from it 

� we have another connected component

� Repeat the steps until all vertices are visited

� Running time is 

∑∑∑ +=+=+

i

i

i

i

i

ii
mnOmnOmnO )()()(



4

A complete graph API

� In the current graph API, only the edges are 
managed. Therefore we can not know how 
many vertices there are in the graph. Each 

vertex need also a name for identification.

� Redefine the graph structure in order the 
vertices data are stored in a tree as the 
following

typedef struct {

JRB edges;

JRB vertices;

} Graph;

Quiz 1

� Rewrite the (directed) graph API based the 
new data structure with the functions below

Graph createGraph();

void addVertex(Graph graph, int id, char* name);

char *getVertex(Graph graph, int id);

void addEdge(Graph graph, int v1, int v2);

void hasEdge(Graph graph, int v1, int v2);

int indegree(Graph graph, int v, int* output);

int outdegree(Graph graph, int v, int* output);

int getComponents(Graph graph);

void dropGraph(Graph graph);



5

Topological Sort

� A topological sort is an ordering of vertices in a 
DAG such that if there is a path from wi to wj, 

then wj appears after wi in the ordering.

� Note, this does not mean that if a vertex appears 

after another in the ordering there is a path 

between those vertices.

� Note that a topological sort is not possible if there 
are cycles.

� Note also that the ordering is not necessarily 

unique – any legal ordering will do.

Topological Sort

� One can make use of the direction in the directed 

graph to represent a dependent relationship

� COMP104 is a pre-requisite of COMP171

� Breakfast has to be taken before lunch

� A typical application is to schedule an order preserving 

the order-of-completion constraints following a 

topological sort algorithm

� We let each vertex represents a task to be executed. Tasks 

are inter-dependent that some tasks cannot start before 

another task finishes

� Given a directed acyclic graph, our goal is to output a linear 

order of the tasks so that the chronological constraints posed 

by the arcs are respected

� The linear order may not be unique



6

Topological Sort Algorithm

1. Build an “indegree table” of the DAG

2. Output a vertex v with zero indegree

3. For vertex v, the arc (v, w) is no longer useful 
since the task (vertex) w does not need to 
wait for v to finish anymore

� So after outputting the vertex v, we can remove v 
and all its outgoing arcs. The result graph is still a 

directed acyclic graph. So we can repeat from 

step 2 until no vertex is left

Demo

� demo-topological.ppt



7

Topological Sort Algorithm

� The algorithm is very simple:

for i = 1 to V {

Find any vertex with no incoming edges;

Print this vertex, and remove it, along with

its edges, from the graph;

}

The for loop takes O(V) time and it also takes O(V) time to find

a vertex with no incoming edges, so the total time is O(V2).

Example

v1 v2

v3 v4 v5

v6 v7

Two topological orderings are (v1, v2, v5, v4, v3, v7, v6) and

(v1, v2, v5, v4, v7, v3, v6). Note there is no path from v3 to v7,

or v7 to v3.



8

Example

v1 v2

v3 v4 v5

v6 v7

The vertex v1 has no incoming edges. Thus we have (v1) thus

far for our topological sort. Now remove v1..

Example

v2

v3 v4 v5

v6 v7

The vertex v2 has no incoming edges. Thus we have (v1, v2) thus

far for our topological sort. Now remove v2..



9

Example

v3 v4 v5

v6 v7

The vertex v5 has no incoming edges. Thus we have (v1, v2, v5)

thus far for our topological sort. Now remove v5..

Example

v3 v4

v6 v7

The vertex v4 has no incoming edges. Thus we have (v1, v2, v5, v4)

thus far for our topological sort. Now remove v4..



10

Example

v3

v6 v7

The vertices v3 and v7 has no incoming edges. Pick either (say v3).

We have (v1, v2, v5, v4, v3) thus far for our topological sort. 

Now remove v3..

Example

v6 v7

The vertex v7 has no incoming edges. We have 

(v1, v2, v5, v4, v3, v7) thus far for our topological sort. 

Now remove v7..



11

Example

v6

The vertex v6 has no incoming edges. We have 

(v1, v2, v5, v4, v3, v7, v6) for our topological sort. Done! 

Try this with the CS prerequisite graph as well.

Pseudocode

Algorithm TSort(G)

Input: a directed acyclic graph G

Output: a topological ordering of vertices

Initialize Q to be an empty queue;

For each vertex v

do if indegree(v) = 0

then enqueue(Q,v);

While Q is non-empty

do v := dequeue(Q);

output v;

for each arc(v,w)

do indegree(w) = indegree(w)-1;

if indegree(w) = 0

then enqueue(w);



12

Quiz 2

� Let a file describe the perquisites between 
classes as the following

CLASS CS140

PREREQ CS102

CLASS CS160

PREREQ CS102

CLASS CS302

PREREQ CS140

CLASS CS311

PREREQ MATH300

PREREQ CS302 

� Use the last graph API to write a program to 
give a topological order of these classes


