
1

Depth-First Search

1. From the given vertex, visit one of its
adjacent vertices and leave others;

2. Then visit one of the adjacent vertices of the
previous vertex;

3. Continue the process, visit the graph as deep
as possible until:

� A visited vertex is reached;

� An end vertex is reached.

Depth-First Traversal

1. Depth-first traversal of a graph:

2. Start the traversal from an arbitrary vertex;

3. Apply depth-first search;

4. When the search terminates, backtrack to the previous vertex of
the finishing point,

5. Repeat depth-first search on other adjacent vertices, then

backtrack to one level up.

6. Continue the process until all the vertices that are reachable from

the starting vertex are visited.

7. Repeat above processes until all vertices are visited.

2

4
3

5

1 7

6

9

80

2

4
3

5

1 7

6

9

80

source source

2

Algorithm

The pseudocode of depth-first traversal algorithm:
Boolean visited[V.size];

void DepthFirst(Graph G) {

Vertex u;

for each vertex u in V

do visited[u] = false;

for each vertex u in V

do if visited[u] = false

then RDFS(u);

}

void RDFS(Vertex u){

visited[u] = true;

Visit(u);

for each vertex w in Adj[u]

do if visited[w] = false

then RDFS(w);

}

Example: Depth-First Traversal

An adjacent list of a graph:

3

Function calls of depth-first traversal of the graph

visit 0

visit 7 (first on 0’s list)

visit 1 (first on 7’s list)

check 7 on 1’s list

check 0 on 1’s list

visit 2 (second on 7’s list)

check 7 on 2’s list

check 0 on 2’s list

check 0 on 7’s list

visit 4 (fourth on 7’s list)

visit 6 (first on 4’s list)

check 4 on 6’s list

check 0 on 6’s list

Example: Depth-First Traversal

visit 5 (second on 4’s list)

check 0 on 5’s list

check 4 on 5’s list

visit 3 (third on 5’s list)

check 5 on 3’s list

check 4 on 3’s list

check 7 on 4’s list

check 3 on 4’s list

check 5 on 0’s list

check 2 on 0’s list

check 1 on 0’s list

check 6 on 0’s list

End recursive calls

Example: Depth-First Traversal

4

Using a stack

� DFS can be implemented with stack, since recursion

and programming with stacks are equivalent;

� Visit a vertex v

� Push all adjacent unvisited vertices of v onto a stack

� Pop a vertex off the stack until it is unvisited

� Repeat these steps

� If the stack is empty and there is no vertex to push

onto the stack, then the traversal process finishes.

Algorithm

The pseudocode of depth-first traversal algorithm:

DFS(G,s)

for each vertex u in V

do visited[u] = false

Report(s)

visited[s] = true

initialize an empty stack S

Put(S, s)

While S is not empty

do u = Pop(S)

for each v in Adj[u]

do if visited[v] = false

then Report(v)

visited[v] = true

Put(S,v)

5

Quiz 2

� Continue to write a function to traverse the
graph using DFS algorithm

void DFS(Graph* graph, int s, int (*func)(int));

// func is a pointer to the function that process on the

visited vertices

Applications

� The paths traversed by BFS or DFS form a
tree (called BFS tree or DFS tree).

� BFS tree is also a shortest path tree starting
from its root. i.e. Every vertex v has a path to
the root s in T and the path is the shortest path
of v and s in G.

� DFS is used to check a the path existence
between two vertices. It can be used to
determine if a graph is connected.

6

Path finding with DFS

dfs-path(v, w)

dfs-path(v, w, empty stack)

dfs-path(v, w, S)

push(S, v)

for each u in Adj[v]

if visited[u] = false and visited[w]

= false

dfs(u, w, S)

if visited[w]= false

pop(S, v)

return S

Quiz 3

� Add a new functionality in your program in
order to find a path between two metro
stations by modifying DFS.

7

Cycle detecting: Colored DFS

� All nodes are initially marked white. When a

node is encountered, it is marked grey

� When its descendants are completely

visited, it is marked black.

� If a grey node is ever encountered, then

there is a cycle.

Pseudo algorithme

For each vertex u in G

Color [u] = WHITE,

Predecessor [u] = NULL;

For each vertex u in G do

if color [u] = white

DFS_visit(u);

DFS_visit(u)

color(u) = GRAY

For each v in adj[u] do

if color[v] = GRAY and Predecessor[u] ≠ v

return "cycle exists"

if color[v] = while

Predecessor[v] = u

Recursively DFS_visit(v)

color[u] = Black;

8

Quiz 4:

� Add a functionality to a metro program to
check if there is a loop train.

