
1

Graph traversal

anhtt-fit@mail.hut.edu.vn

Graph Traversal

� We need also algorithm to traverse a graph
like for a tree

� Graph traversal may start at an arbitrary vertex.
(Tree traversal generally starts at root vertex)

� Two difficulties in graph traversal, but not in
tree traversal:
- The graph may contain cycles;
- The graph may not be connected.

� There are two important traversal methods:
- Breadth-first traversal, based on breadth-

first search (BFS).
- Depth-first traversal, based on depth-first

search (DFS).

2

Breadth-First Search Traversal

Breadth-first traversal of a graph:

- Is roughly analogous to level-by-level traversal of an
ordered tree

- Start the traversal from an arbitrary vertex;

- Visit all of its adjacent vertices;

- Then, visit all unvisited adjacent vertices of those visited
vertices in last level;

- Continue this process, until all vertices have been visited.

2

4

3
5

1 7

6

9

80

source 2

4

3
5

1 7

6

9

80

source

Breadth-First Traversal

The pseudocode of breadth-first traversal algorithm:

BFS(G,s)

for each vertex u in V

do visited[u] = false

Report(s)

visited[s] = true

initialize an empty Q

Enqueue(Q,s)

While Q is not empty

do u = Dequeue(Q)

for each v in Adj[u]

do if visited[v] = false

then Report(v)

visited[v] = true

Enqueue(Q,v)

3

An Example

Breadth-First Search Traversal

Example of breadth-first traversal

- Visit the first vertex (in this example 0)

- Visit its adjacent nodes in Adj[0] :7 5 2 1 6

- Visit adjacent unvisited nodes of the those visited in last level
- Visit adjacent nodes of 7 in Adj[7] : 4

- Visit adjacent nodes of 5 in Adj[5] : 3

- Visit adjacent nodes of 2 in Adj[2] : none

- Visit adjacent nodes of 1 in Adj[1] : none

- Visit adjacent nodes of 6 in Adj[6] : none

- Visit adjacent unvisited nodes of the those visited in last level
- Visit adjacent nodes of 4 in Adj[4] : none

- Visit adjacent nodes of 3 in Adj[3] : none

- Done

4

Breadth-First Traversal

Breadth-first traversal of a graph:

- Implemented with queue;

- Visit an adjacent unvisited vertex to the current vertex,
mark it, insert the vertex into the queue, visit next.

- If no more adjacent vertex to visit, remove a vertex from
the queue (if possible) and make it the current vertex.

- If the queue is empty and there is no vertex to insert into
the queue, then the traversal process finishes.

Quiz 1

� Let implement a graph using the red black tree
as in the previous lab.
typedef JRB Graph;

Graph createGraph();

void setEdge(Graph* graph, int v1, int v2);

int connected(Graph* graph, int v1, int v2);

� Write a function to traverse the graph using
BFS algorithm
void BFS(Graph* graph, int s, int (*func)(int));

// func is a pointer to the function that process on the
visited vertices

5

Unweighted Shortest Path Problem

� Unweighted shortest-path problem: Given as
input an unweighted graph, G = (V,E), and a
distinguished vertex, s, find the shortest

unweighted path from s to every other vertex
in G.

� After running BFS algorithm with s as starting
vertex, the shortest path length from s to i is
given by d[i].

Pseudo Algorithm

BFS(G,s)

for each vertex u in V

do

visited[u] = false; d[u]= ∞∞∞∞

Report(s)

visited[s] = true

initialize an empty Q

Enqueue(Q,s); d[s]=0;

While Q is not empty

do u = Dequeue(Q)

for each v in Adj[u]

do if visited[v] = false

then Report(v)

d[v]=d[u]+1;

visited[v] = true

Enqueue(Q,v)

6

Quiz 1.1

� Continue with the exercise about Metro
stations.

� Write a function that print out a unweighted
shortest path between two given vertices and
return its length.

int UShortestPath(Graph* graph, int v1, int v2);

