

Advanced Computer Networks

<u>Internal Routing - Link State</u> <u>protocols</u>

Prof. Andrzej Duda duda@imag.fr

http://duda.imag.fr

1

Contents

- Link state
 - flooding topology information
 - finding the shortest paths (Dijkstra)
 - areas hierarchical routing
- OSPF
 - neighbor discovery Hello protocol
 - database synchronization
 - · link state updates
 - examples

2

Link State Routing

- Principles
 - estimate metrics with neighbors
 - bandwidth, delay, cost (fixed by administrator)
 - build a packet with the metrics of all neighbors
 - flood to all routers
 - compute the shortest path to all destinations (Dijkstra)
 - update if modification of topology
- Used in OSPF (Open Shortest Path First) and PNNI (ATM routing protocol)

3

<u>Topology Database</u> Synchronization

- Neighbouring nodes synchronize before starting any relationship
 - Hello protocol; keep alive
 - initial synchronization of database
 - description of all links (no information yet)
- Once synchronized, a node accepts link state advertisements
 - contain a sequence number, stored with record in the database
 - only messages with new sequence number are accepted
 - accepted messages are flooded to all neighbours
 - sequence number prevents anomalies (loops or blackholes)

.

Example network

Each router knows directly connected networks

Towards OSPF

- OSPF (Open Shortest Path First)
 - · Link State protocol
 - Link State information: LSA (Link State Advertisement)
 - different sub-protocols: Hello, Database Description, Link State flooding
- It allows to
 - · separate hosts and routers
 - consider different types of networks
 - broadcast (Ethernet), NBMA (ATM, X.25), point-to-point (PPP)
 - · divide large networks into several areas
 - · independent route computing in each area

19

Separate hosts and routers

- · Link should be described in the DB
 - link between a router and each host, but LANs in most cases: advertize the link to the "stub network"
 - link of the form of a broadcast network (Ethernet)
 - IP address of the subnetwork (stub network)
 - e.g. n3 identified by 128.88.38/24
 - link to a neighbor router
 - IP address of the neighbor router
 - e.g. n2 identified by 176.44.23.254
 - no IP address assigned to the interface
 - interface index

20

<u>Designated routers</u>

- · Number of neighbors
 - if *n* routers, *n*(*n*-1)/2 neighbors
- Election of a designated router on a LAN
 - *n*-1 neighbors
 - flooding
 - advertise to 224.0.0.6 (all designated routers)
 - flooded to 224.0.0.5 (all routers)
 - back-up designated router
 - listens to advertisements, but does not flood
 - failure of the designated router detected by Hello
 - back-up becomes designated router

Virtual networks

- LAN represented as a virtual network
 - less entries in the DB
 - real cost to n1, zero to routers

D

22

NBMA networks and P-to-P

- NBMA (Non Broadcast, Multiple Access)
 - several hosts, but no broadcast
- Virtual circuits between all hosts each link appears in the database
- Managed as broadcast networks
 - designated and back-up router
 - permanent virtual circuits only to them
- Flooding
 - designated router sends a copy of update to all routers

Divide large networks

- Why divide large networks?
- Cost of computing routing tables
 - update when topology changes
 - SPF algorithm
 - n routers, k links
 - complexity O(n*k)
 - size of DB, update messages grows with the network size
- Limit the scope of updates and computational overhead
 - divide the network into several areas
 - independent route computing in each area
 - inject aggregated information on routes into other areas

Hierarchical Routing

- A large OSPF domain can be configured into areas
 - one backbone area (area 0)
 - non backbone areas (areas numbered other than 0)
- All inter-area traffic goes through area 0
 - strict hierarchy
- Inside one area: link state routing as seen earlier

one topology database per area

Principles

- Routing method used in the higher level:
 - distance vector
 - no problem with loops one backbone area
- Mapping of higher level nodes to lower level nodes
 - area border routers (inter-area routers) belong to two areas
- Inter-level routing information
 - summary link state advertisements (LSA) from other areas are injected into the local topology databases

26

Example

Assume networks n1 and n2 become visible at time
 Show the topology databases at all routers

27

Explanations

- All routers in area 2 propagate the existence of n1 and n2, directly attached to B1 (resp. B2).
- Area border routers X4 and X6 belong to area 2, thus they can compute their distances to n1 and n2
- Area border routers X4 and X6 inject their distances to n1 and n2 into the area 0 topology database (item 3 of the principle). The corresponding summary LSA is propagated to all routers of area 0.
- All routers in area 0 can now compute their distance to n1 and n2, using their distances to X4 and X6, and using the principle of distance vector (item 1 of the principle).

Stub area

- Many networks are connected only via one router
- Stub area
 - all external networks aggregated into default route
 - e.g. route to n1, n2 or any other network in Area 0 and 2 goes through X3

30

Classification of routers

- Internal routers
 - a router with all directly connected networks belonging to the same area
- Area border routers
 - attached to multiple areas
 - condense LSA of their attached areas for distribution to the backbone
- Backbone routers
 - a router that has an interface to the backbone area
- AS boundary routers
 - exchange routing information with routers belonging to other AS

31

OSPF protocol

- On top of IP (protocol type = 89)
- Multicast
 - 224.0.0.5 all routers of a link
 - 224.0.0.6 all designated and backup routers
- Sub-protocols
 - Hello to identify neighbors, elect a designated and a backup router
 - Database description to diffuse the topology between adjacent routers
 - Link State to request, update, and ack the information on a link (LSA Link State Advertisement)
- LSA
 - tagged with the router Id and checksum
 - 5 different types

33

OSPF protocol PDUs

- OSPF protocol type = 1
 - Hello
- OSPF protocol type = 2
 - Database description
- OSPF protocol type = 3
 - Link State Request
- OSPF protocol type = 4
 - Link State Update
- OSPF protocol type = 5
 - Link State Ack

34

Example

OSPFv2-hello 44

area 0.0.0.1 E mask 255.255.255.0 int 10 pri 5 dead 40 dr 10.1.1.1 nbrs

- 224.0.0.5 to all routers of a link
- Router 10.1.1.1 with priority 5, prefix 10.1.1.0/24
- Area 1, not stub area (bit E), interval 10 sec, dead interval 40, it proposes itself as designated router, no neighbors

Example

OSPFv2-hello 44:

area 0.0.0.1 E mask 255.255.255.0 int 10 pri 4
 dead 40 nbrs

- Router 10.1.1.2 with priority 4, prefix 10.1.1.0/24
- Area 1, not stub area (bit E), interval 10 sec, dead interval 40, no neighbors

Database Description protocol

- Unicast packets between a router and its neighbor
- Master/slave relationship election of the Master
 - router with larger Id becomes Master
- Master sends packets to slave (polls)
- Slave acknowledges by echoing the sequence number
- If lost packet, master retransmits
- Exchange finished when bit M=0 sent by both routers

Metric

- Metric
 - time to send 100 Mb over the interface
 - C = 10⁸/bandwidth
 - 1 if greater than 100 Mb/s
 - can be configured by administrator

43

Router-LSA

```
Router R3 for the area 1
LS age = 0, LS Type = 1
LS Id = 192.1.1.3
Adv. router = 192.1.1.3
bit E = 0, bit B = 1
                                 ; area border router
\#links = 2
  Link ID = 192.1.1.4
                          :IP address of Desig. Rtr.
  Link Data = 192.1.1.3
                          ;R3's IP interface to net
  Type = 2
                           ; connects to transit network
  # TOS metrics = 0
  metric = 1
  Link ID = 192.1.4.0
                          ;IP Network number
  Link Data = 0xffffff00 ;Network mask
  Type = 3
                           ; connects to stub network
  # TOS metrics = 0
  metric = 2
                                                          45
```

Router-LSA

```
Router R3 for the backbone
LS age = 0, LS Type = 1
LS Id = 192.1.1.3
Adv. router = 192.1.1.3
bit E = 0, bit B = 1
                                 ;area border router
#links = 1
   Link ID = 18.10.0.6
                                 ;Neighbor's Router ID
   Link Data = 0.0.0.3
                                 ;interface index (3rd)
   Type = 1
                                 ;connects to router
   # TOS metrics = 0
   metric = 8
                                                           46
```

Network-LSA

```
R4 on behalf of Network n3
LS age = 0, LS type = 2,
Link State ID = 192.1.1.4 ; IP address of Desig. Rtr.
Adv. Router = 192.1.1.4 ; R4's Router ID

Network Mask = 0xffffff00
Attached Router = 192.1.1.4 ; Router ID
Attached Router = 192.1.1.1 ; Router ID
Attached Router = 192.1.1.2 ; Router ID
Attached Router = 192.1.1.3 ; Router ID
```

Summary-LSA

```
Summary-LSA for Network n1 by Router R4 into the backbone
  LS age = 0, LS type = 3
  Link State ID = 192.1.2.0
                                   ;n1's IP network number
  Adv. Router = 192.1.1.4
                                   ;R4's ID
  Network Mask = 0xffffff00
  metric = 4
Summary-LSA for AS boundary router R7 by Router R4 into Area 1
  LS age = 0, LS type = 4
  Link State ID = 128.88.38.7
                                    ;R7's ID
  Adv. Router = 192.1.1.4
                                    ;R4's ID
  Network Mask = 0xffffff00
  metric = 14
                                                           48
```

AS-external-LSA

AS-external-LSA for Network n12 by Router R7 LS age = 0, LS type = 5

Link State ID = 12.1.0.0 Advertising Router = 128.88.38.7 ;Router R7's ID

;n12's IP network number

bit E = 1

Network Mask = 0xffff0000

;metric>than internal

metric = 2

Forwarding address = 0.0.0.0

;packets for external
;destination n12 should ;be forwarded to Adv. ;router - R7

49

Convergence

- Route timeout after 1 hour
 - LS Update every 30 min.
- Detect a failure
 - 40 sec (dead interval)
- Smallest interval to recompute SPF
 - 30 sec (Dijkstra interval)
- Reconfiguration time
 - 70 sec.
- Proposals
 - Hello each 100 ms
 - SPF immediately

50

Conclusion

- OSPF vs. RIP
 - much more complex, but presents many advantages
 - no count to infinity
 - no limit on the number of hops (OSPF topologies limited by Network and Router LSA size (max 64KB) to O(5000) links)
 - less signaling traffic (LS Update every 30 min)
 - advanced metric
 - large networks hierarchical routing
 - most of the traffic when change in topology
 - but periodic Hello messages
 - in RIP: periodic routing information traffic
 - drawback
 - difficult to configure

51