
2/18/2013

1

1

The SQL language

NGUYEN Hong Phuong

phuongnh@soict.hut.edu.vn

2

Contents

� Data types in PostGreSQL

� Creating a new table

� Populating a Table With Rows

� Querying a Table

� Joins Between Tables

� Aggregate Functions

� Updates

� Deletions

Data types in PostGreSQL

3

Name Alias Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte integer

bit[(n)] fixed length bit string

bit varying[(n)] varbit variable length bit string

boolean bool logical boolean (true/false)

character varying[(n)] varchar[(n)] variable length character string

character[(n)] char[(n)] fixed length character string

Data types in PostGreSQL (cont)

4

Name Alias Description

date calendar date (year, month, day)

double precision float8
double precison floating point 
number

integer int,int4 signed four byte integer

money currency amount

numeric[(p,s)] decimal[(p,s)]
exact numeric of selectable 
precision

real float4
single precision floating point 
number

smallint int2 signed two byte integer

5

Data types in PostGreSQL (cont)

Name Alias Description

serial serial4
autoincrementing four-byte 
integer

text
variable length character 
string

time[(p)]{without time 
zone}

time of day

time[(p)]{with time 
zone}

timez
time of day, including time 
zone

timestamp[(p)]{without 
timezone}

date and time

timestamp[(p)]{with 
timezone}

timestamptz
date and time, including time 
zone

-- Table: "DeTai”

-- DROP TABLE "DeTai“;

CREATE TABLE "DeTai”(

"DT#" character(4) NOT NULL,

"TenDT" character varying(50) NOT NULL,

"Cap" character(12) NOT NULL,

"KinhPhi" integer,

CONSTRAINT "KhoaChinhDeTai" PRIMARY KEY ("DT#“)

);

ALTER TABLE "DeTai" OWNER TO postgres;

COMMENT ON TABLE "DeTai" IS 'Bảng Đề tài chứa thông tin về tên 
ñề tài, cấp quản lý và kinh phí';

6

Creating a new table



2/18/2013

2

-- Table: "GiangVien"

-- DROP TABLE "GiangVien";

CREATE TABLE "GiangVien"(

"GV#" character(4) NOT NULL,

"HoTen" character(30) NOT NULL,

"DiaChi" character varying(50) NOT NULL,

"NgaySinh" date NOT NULL,

CONSTRAINT "KhoaChinhGiangVien" PRIMARY KEY 
("GV#")

);

ALTER TABLE "GiangVien" OWNER TO postgres;

COMMENT ON TABLE “GiangVien" IS 'Bảng Giảng viên chứa 
thông tin về giảng viên';

7

Creating a new table

-- Table: "ThamGia"

-- DROP TABLE "ThamGia";

CREATE TABLE "ThamGia"(

"GV#" character(4) NOT NULL,

"DT#" character(4) NOT NULL,

"SoGio" smallint,

CONSTRAINT "KhoaChinhThamGia" PRIMARY KEY ("GV#", 
"DT#"),

CONSTRAINT "KhoaNgoai1" FOREIGN KEY ("GV#")

REFERENCES "GiangVien" ("GV#") MATCH SIMPLE

ON UPDATE CASCADE ON DELETE CASCADE,

CONSTRAINT "KhoaNgoai2" FOREIGN KEY ("DT#")

REFERENCES "DeTai" ("DT#") MATCH SIMPLE

ON UPDATE CASCADE ON DELETE CASCADE

);

ALTER TABLE "ThamGia" OWNER TO postgres; 8

Creating a new table

Another simple example

CREATE TABLE weather (

city varchar(80),

temp_lo int, -- low temperature

temp_hi int, -- high temperature

prcp real, -- precipitation

date date

);

9

CREATE TABLE cities (

name varchar(80),

location point

);

10

Populating a Table With Rows

� The INSERT statement is used to 
populate a table with rows:
� INSERT INTO weather VALUES (’San 

Francisco’, 46, 50, 0.25, ’1994-11-27’);

� INSERT INTO cities VALUES (’San Francisco’, 
’(-194.0, 53.0)’);

� INSERT INTO weather (city, temp_lo, 
temp_hi, prcp, date) VALUES (’San 
Francisco’, 43, 57, 0.0, ’1994-11-29’);

� INSERT INTO weather (date, city, temp_hi, 
temp_lo) VALUES (’1994-11-29’, ’Hayward’, 
54, 37);

11

Querying a Table

� To retrieve data from a table, the 
table is queried. An SQL SELECT 
statement is used to do this.

� to retrieve all the rows of table 
weather, type: 
� SELECT * FROM weather;

� SELECT city, temp_lo, temp_hi, prcp, 
date FROM weather;

� SELECT city, (temp_hi+temp_lo)/2 AS 
temp_avg, date FROM weather;

12



2/18/2013

3

� SELECT * FROM weather WHERE city = 
’San Francisco’ AND prcp > 0.0;

� SELECT * FROM weather ORDER BY 
city;

� SELECT * FROM weather ORDER BY 
city, temp_lo;

� SELECT DISTINCT city FROM weather;

� SELECT DISTINCT city FROM weather 
ORDER BY city;

13

Joins Between Tables

SELECT * FROM weather, cities WHERE city = 
name;

SELECT city, temp_lo, temp_hi, prcp, date, 
location FROM weather, cities WHERE city = 
name;

SELECT weather.city, weather.temp_lo, 
weather.temp_hi, weather.prcp, weather.date, 
cities.location FROM weather, cities WHERE 
cities.name = weather.city;

14

� Join queries of the kind seen thus far 
can also be written in this alternative 
form:
� SELECT * FROM weather INNER JOIN 

cities ON (weather.city = cities.name);

� SELECT * FROM weather LEFT OUTER 
JOIN cities ON (weather.city = 
cities.name);

15

� We can also join a table against itself. 
This is called a self join.

SELECT W1.city, W1.temp_lo AS low, 
W1.temp_hi AS high, W2.city, W2.temp_lo 
AS low, W2.temp_hi AS high 

FROM weather W1, weather W2 

WHERE W1.temp_lo < W2.temp_lo AND 
W1.temp_hi > W2.temp_hi;

16

SELECT *

FROM weather w, cities c

WHERE w.city = c.name;

17

Aggregate Functions

� PostgreSQL supports aggregate 
functions.

� An aggregate function computes a 
single result from multiple input rows.

� there are aggregates to compute the 
count, sum, avg (average), max 
(maximum) and min (minimum) over 
a set of rows
� SELECT max(temp_lo) FROM weather;

18



2/18/2013

4

� SELECT city FROM weather WHERE 
temp_lo = max(temp_lo); --WRONG

� SELECT city FROM weather WHERE 
temp_lo = (SELECT max(temp_lo) 
FROM weather);

� Aggregates are also very useful in 
combination with GROUP BY clauses.

� SELECT city, max(temp_lo) FROM 
weather GROUP BY city;

19

SELECT city, max(temp_lo)

FROM weather

GROUP BY city

HAVING max(temp_lo) < 40;

20

SELECT city, max(temp_lo)
FROM weather
WHERE city LIKE ’S%’
GROUP BY city
HAVING max(temp_lo) < 40;

Updates

� You can update existing rows using 
the UPDATE command
� UPDATE weather SET temp_hi = temp_hi 

- 2, temp_lo = temp_lo – 2 WHERE date 
> ’1994-11-28’;

21

Deletions

� Rows can be removed from a table 
using the DELETE command
� DELETE FROM weather WHERE city = 

’Hayward’;

� Without a qualification, DELETE will 
remove all rows from the given table, 
leaving it empty
� DELETE FROM tablename;

22


