
2/18/2013

1

1

Advanced Features

NGUYEN Hong Phuong

phuongnh@soict.hut.edu.vn

2

Contents

1. Views

2. Foreign Keys

3. Transactions

4. Inheritance

1. Views

� Create a view over the query, which gives a
name to the query that you can refer to like an
ordinary table:

CREATE VIEW myview AS

SELECT city, temp_lo, temp_hi, prcp, date, location

FROM weather, cities

WHERE city = name;

SELECT * FROM myview;

� Views allow you to encapsulate the details of
the structure of your tables, which might
change as your application evolves, behind
consistent interfaces.

3

2. Foreign Keys

� Recall the weather and cities tables from previous
chapter. Consider the following problem: You want to
make sure that no one can insert rows in the weather
table that do not have a matching entry in the cities
table. This is called maintaining the referential integrity
of your data.

4

CREATE TABLE cities (
city varchar(80) primary key,
location point
);

CREATE TABLE weather (
city varchar(80) references cities(city),
temp_lo int,
temp_hi int,
prcp real,
date date
);

3. Transactions

� A transaction comprises a unit of work
performed within a DBMS (or similar system)
against a database, and treated in a coherent
and reliable way independent of other
transactions.

� It bundles multiple steps into a single, all-or-
nothing operation

� The intermediate states between the steps are
not visible to other concurrent transactions

� If some failure occurs that prevents the
transaction from completing, then none of the
steps affect the database at all.

5

An example

� Consider a bank database that contains balances
for various customer accounts, as well as total
deposit balances for branches.

� Suppose that we want to record a payment of
$100.00 from Alice’s account to Bob’s account
UPDATE accounts SET balance = balance - 100.00

WHERE name = ’Alice’;

UPDATE branches SET balance = balance - 100.00

WHERE name = (SELECT branch_name FROM accounts WHERE
name = ’Alice’);

UPDATE accounts SET balance = balance + 100.00

WHERE name = ’Bob’;

UPDATE branches SET balance = balance + 100.00

WHERE name = (SELECT branch_name FROM accounts WHERE
name = ’Bob’);

6

2/18/2013

2

An example (cont.)

� Assure that either all these updates
happen, or none of them happen.

� Bob received $100.00 that was not debited
from Alice?

� Alice was debited without Bob being
credited?

� If something goes wrong partway
through the operation, none of the steps
executed so far will take effect.

� Grouping the updates into a transaction
gives us this guarantee

7

Properties of a transaction - ACID

� Atomicity

� A series of DB operations either all occur
or nothing occurs

� Prevent updates to the DB occurring only
partially, which can cause greater
problems than rejecting the whole series
outright.

� In other words, atomicy means
indivisibility and irreducibility

� Consistency

� Data is consistent after the transaction

8

Properties of a transaction - ACID

� Isolation

� Define how/when the changes made by one
operation become invisible to other
concurrent operations

� Durability

� Guarantees that transactions that have
committed will survive permanently.

� For example, if a flight booking reports that
a seat has successfully been booked, then
the seat will remain booked even if the
system crashes.

9

� In PostgreSQL, a transaction is set up
by surrounding the SQL commands of
the transaction with BEGIN and
COMMIT commands

BEGIN;

UPDATE accounts SET balance = balance - 100.00

WHERE name = ’Alice’;

…………..

COMMIT;

10

� We do not want to commit (perhaps we just
noticed that Alice’s balance went negative), we
can issue the command ROLLBACK instead of
COMMIT, and all our updates so far will be
canceled.

� PostgreSQL actually treats every SQL
statement as being executed within a
transaction.

� If you do not issue a BEGIN command, then
each individual statement has an implicit
BEGIN and (if successful) COMMIT wrapped
around it.

11

� A group of statements surrounded by
BEGIN and COMMIT is sometimes
called a transaction block.

12

2/18/2013

3

Save points

� Using savepoints to control the statements in a
transaction.

� Savepoints allow you to selectively discard
parts of the transaction, while committing the
rest.

� After defining a savepoint with SAVEPOINT,
you can roll back to the savepoint with
ROLLBACK TO.

� All the transaction’s database changes between
defining the savepoint and rolling back to it are
discarded, but changes earlier than the
savepoint are kept.

13

BEGIN;

UPDATE accounts SET balance = balance - 100.00

WHERE name = ’Alice’;

SAVEPOINT my_savepoint;

UPDATE accounts SET balance = balance + 100.00

WHERE name = ’Bob’;

-- oops ... forget that and use Wally’s account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00

WHERE name = ’Wally’;

COMMIT;

14

4. Inheritance

� Inheritance is a concept from object-
oriented databases. It opens up
interesting new possibilities of
database design.

CREATE TABLE cities(

name text,

population real,

altitude int);

CREATE TABLE capitals(

state char(2)

) INHERITS (cities);

15

� In this case, a row of capitals inherits
all columns (name, population, and
altitude) from its parent, cities.

Insert into cities values('Las

Vergas',4.2,2174), ('Mariposa',2.1,1953);

Insert into capitals values('Madison',5.6,845,
'CA');

SELECT *

FROM cities

WHERE altitude > 500;

16

SELECT *

FROM cities

SELECT name, altitude

FROM ONLY cities

WHERE altitude > 500;

� In PostgreSQL, a table can inherit
from zero or more other tables.

17

