Index

NGUYEN Hong Phuong
Email: phuongnh@soict.hust.edu.vn
Site: https://users.soict.hust.edu.vn/phuongnh

Content

[0 What is Index?

[0 What is the index database used for?
[0 The structure of the index

[1 Types of indexes

[0 How to use index database effectively?

Why Indexing is important?

Un-Indexed Database
INDEXED Database

What is Index?

[0 A data structure is used to locate and
fast access data in tables or views.

[0 One way to increase database query
performance, by reducing the amount
of access to memory during query

execution
[0 SQL Server provides two types of
indexes

B Clustered
B Non-clustered

What is the index database used for?

1 Query: SELECT * FROM student WHERE
last_ hame = 'May'

1 If there is no index for the last_name
column, the system will scan all the rows
of the 'student' table to compare and
retrieve the row that satisfies

student
student_id first_name last_name dob gender address note clazz_id
1234 Cravid Beckham 12211997 Male Londan, UK 1
12338 Theresa May 0a/06M99s8 Female London, LK 1
1452 David Cameran oyo6Maay Male Bangor, LK 1
1497 Tony Blair 03/01/1999 Male Bath, UK 2
1516 John Major 03/01/M19498 Male Bradford 2
1542 Margaret Thatcher 05/0&8/M1997 Female Cambridge 2

[0 An index points to the address of data
in a table, similar to a book's table of
contents, making queries fast

] Index ca

columns
created

n be created for one or more

in a table. Indexes are usually

oy default for primary keys,

foreign keys. In addition, it is also
possible to create additional indexes for
columns if needed.

The structure of the index

0 Index includes:

B Search Key column: contains a copy of the
indexed column’'s values

B Data Reference column: contains the
pointer to the address of the record with
the corresponding index column value

Data
Reference

Search Key

Structure of an index

Types of indexes

[1 B-tree
[J Hash

B-tree

Usually, if you don't specify the index type, the
default is to use B-Tree.

Syntax:

B Create index

CREATE INDEX id index ON table name

(column _name [, column name..]) USING BTREE;
ALTER TABLE table name ADD INDEX id index
(column_name [, column_name..])

B Delete the index
DROP INDEX index name ON table name

B-tree

[0 Features of B-Tree Index:

B Index data is organized and stored in the
form of tree, ie root, branch, leaf.

B The values of the organized nodes increase
from left to right.

B The B-tree index is used in comparison
expressions: =,>,> =, <, <=, BETWEEN,
and LIKE. = Possible good for the ORDER
BY statement

10

B-tree

B When searching for data, it will not scan
the entire table. A search in B-Tree is a
process that starts from the root node and
searches for the branch and leaf, until
finding all data satisfying the query
condition.

Cn.nlu - .g .m.a-m .m.m m
M OWM W M N b 4 M W Y # o\ M W

11

Hash

Hash index is based on Hash Function
algorithm. Corresponding to each block of
data, index will generate a bucket key
(hash value) to distinguish.

Syntax:
B Create index

CREATE INDEX id index
ON table name(column _name [, column_name..]) USING HASH;

ALTER TABLE table name
ADD INDEX id index(column _name [, column name..]) USING HASH;

12

Hash

1 The features of Hash Index:

B Hash index should be used only in operator
'="and '<>'. Do not use for operators to
find a range of values such as> or <.

B The ORDER BY operator cannot be
optimized using the Hash index because it
cannot find the next element in the Order.

B Hash is faster than B-Tree type.

13

Hash

Hash
function Buckets
X
| e
id=1, name=John Smith :
X
id=2, name=Mary Black
X
| °
id=3, name=John Doe ! :
[]
L]
L]
id=4, name=Sandra Dee —
X
—— X
id=5, name=Alice White
L]

2 | Mary Black 534-789
5 | Alice White 578-634
1 | John Smith 138-765
v

3 | JohnDoe 432-514
4 | SandraDee 135-478

14

Storage Engine

Choosing the index of B-Tree or Hash
type, apart from the purpose of use, also
depends on whether or not the Storage
Engine supports the type of index.

Storage Engine and index types are
supported

® InnoDB BTREE

m MyISAM BTREE

B MEMORY/HEAP HASH, BTREE

m NDB HASH, BTREE

15

How to use Index Database effectively?

Should index the columns which are used in
WHERE, JOIN and ORDER BY

Do not use index in the following cases:

B Small tables, containing little data

B Tables are updated and data inserted regularly
B Columns that contain so many NULL values

B Columns are regularly updated

Although index plays an important role in query
optimization and speeding up in searching in the
database, its downside is that it takes up more
memory to store. Therefore, indexing of columns
should be carefully considered

16

customers (sales)
% customer_id

first_name
last_name
phone
email
street

city

state

zip_code

:

BikeStores sample database

Practice with SQL Server

staffs (sales)
¢ staff_id

first_name
last_name
email
phone
active
store_id

manager_id

cateaories (production)

?

category_id

category_name

orders (sales)
v order_id

customer_id
order_status
order_date
required_date
shipped_date
store_id
staff_id

stores (sales)
v store_id

store_name
phone
email
street

city

state

zip_code

products (production)

?

product_id
product_name

order items (sales)
¢ order_id

7 item_id
product_id
quantity
list_price

discount

brands (production)
¢ brand_id

brand_name

brand_id
category_id
A

model_year
list_price

stocks (production)

@ store_id

= 1 ¢ product_id
quantity

17

[0 Create a new 'production.parts' table

CREATE TABLE production.parts(
part id INT NOT NULL,
part name VARCHAR(100)

=

INSERT INTO

production.parts(part id, part name)
VALUES

(1, 'Frame'),

(2, '"Head Tube'),

(3, '"Handlebar Grip'),

(4, 'Shock Absorber'),

(5, 'Fork');

18

The 'parts' table doesn't have a

PK, so the records are stored in

an ordered structure called a .

heap. part_id, part_name

. FROM
The statement finds records =

with id 5 e
See execution plan estimates in EE

SQL Server Management Studio

B Select Display Estimated Execution
Plan (press Ctrl + L)

19

Two types of indexes in SQL Server

[Clustered index
[0 Non-clustered index

20

Clustered index

[0 Stores the records in an ordered
structure based on its key value

[1 Each table has only one clustered index
because the data records can only be
arranged in one order

1 A table that has a clustered index is
called a clustered table

[0 Data in clustered index are organized
under the form of B-tree

21

Clustered index

Clustered index

[0 The root node and the intermediate
node contain index pages for storing
the indexes of the records

[0 The leaf node contains the data pages
of the table.

[0 Pages within each level of the index are
linked in a double linked list structure

23

Clustered index

0 When creating a table with the primary key PK, SQL Server
automatically creates a clustered index on the PK columns.

[0 The statement creates a 'part_prices' table with a PK
consisting of 2 columns:

#= production.brands
*2 production.categories

=17 production.part_prices CREATE TABLE production.part prices(
== Columns 1 1
¥ part_id (PK, int, not null) pa Pt_ld i § nt £)
? valid_from (PK, date, not null) :
2 price (decimal(18,4), not null) va].' 1d—-Fr\0rT] d ate)
= Keys price decimal(18,4) not null,
? PK__part_pri__20299A2BE6E35412 = =
= Constramts PRIMARY KEY(part id, valid from)
[+ Triggers) .
=2 ndexes)

? PK__part_pri__20299A2BE6E35412 (Clustered)
[+ Statistics

#= production.parts
1+/= production.products
[#2 production.stocks
+d sales.customers

[*1 2 sales.order_items
[*12 sales.orders

[sales.staffs

+ 2 sales.stores

24

[+= Views

Clustered index

If you add the primary key to a table that already
has a clustered index, SQL Server forces the PK
to use the non-clustered index

= proauction.pranas

jﬁ+ﬁ = production.categories A LT E R TAB I— E
m o production. parts
_MI%(PK, int, not null) I ADD PRIMARY K EY(pa Pt_id) ;

& part_name (varchar(100), null)
-I= Keys
? PK__parts__AOE3FAB926086B37
+/3 Constraints
+/@ Triggers
-I= Indexes
& ix_parts_id (Clustered)
* PK__parts_ AOE3FAB926086B37 (Unique, Non-Clustered)
+3 Statistics

1+3 production.products
[3 production.stocks

[+/3 sales.customers

[+/3 sales.order_items

25

Clustered index

Create clustered index

B In the case the table does not have a PK

CREATE CLUSTERED INDEX index_ name
ON schema name.table name (column list);
CREATE CLUSTERED INDEX ix parts_id

ON production.parts (part_id);

Query
SELECT part id,
part name

FROM production.parts
WHERE part id = 5;

JESKTOP-4NVDPI3\SQLEXPRESS (SQL Server 12.0.2000 - sa)
1 Databases
= System Databases
10 BikeStores
== Database Diagrams
= dbo.Diagram_0
=I= Tables
+/= System Tables
+/= FileTables
+2 dbo.t1
+3 dbo.t2
+3 production.brands
+/3 production.categories
+9 production.part_prices
=I5 production.parts
=I= Columns
? part_id (PK, int, not null)
@ part_name (varchar(100), null)
=L Keys
? PK__parts_ AOE3FAB926086B37
= Constraints
+Triggers
=/~ Indexes
4 ix_parts_id (Clustered)
? PK__parts__AOE3FAB926086B37 (Unique, Non-Clustel
i Statistics
+/3 production.products
+3 production.stocks
+3 sales.customers
+ 3 sales.order_items
+9 sales.orders
+3 sales.staffs
+3 sales.stores
Views
+13 Synonyms
#1 Programmability
#= Service Broker

+/3 Storage
#= Security

J ComnanvSunnlvProduct

HSELECT
part_id,
part_name

FROM

production.parts
WHERE

part_id = 5;|

Clustered Index Seek (Clustered)
Scanning a particular range of rows from a clustered
index.
177% ~
Physical Operation
= lLogical Operation
Query 1: Query cOstggtimated Execution Mode

Clustered Index

1" Execution plan
Clustered Index

s Messages

CI“CHEdl Estimated Operator Cost

SELECT
Cost: 0 %

Seek

Seekf

Row
SELECT part_id, pa1 Storage RowStore
- % Estimated I/0O Cost 0.003125

0.0032831 (100%)

[BikeStores].[production].[parts].part_id, [BikeStores].
[production].[parts].part_name
Seek Predicates

@ Query executed successfully Seek Keys[1]: Prefix: [BikeStores].[production].

[parts].part_id = Scalar Operator(CONVERT_IMPLICIT(int,

[parts).[

il | Subtree Cost 0.0032831

Estimated CPU Cost 0.0001581
i i NI k of E 1

Estimated Number of Rows 1
Estimated Row Size 65B
Ordered True
Node ID 0
Object
[BikeStores].[production].[parts].[ix_parts_id]
Output List

id

26

Non-clustered index

Data structure that improves the speed of
retrieving data from tables

Different from clustered index: Sorts and stores
data separately from records in the table.

Is the data copy of selected columns from a
linked table.

Use a B-tree structure to organize data

A table can have one or more non-clustered
indexes. Each non-clustered index can consist of
one or more table columns.

27

Non-clustered index

Leaf nodes/

data pages

Previous | Next

Il

» Rows Pointers

Previous | Next

——»{ Rows Pointers

»

Previous | Next

Rows Pointers

Previous | Next

i
I

Previous | Next

28

Non-clustered index

[0 In addition to storing the index key
values, the leaf nodes also store
pointers to the records containing the
key values.

[1 These record pointers are also known
as row locators.

29

Non-clustered index

1 Create non-clustered index

CREATE [NONCLUSTERED] INDEX index name
ON table name(column list);

The 'customers' table is a g P
clustered table because it e
has the customer id PK At e

phone
email
street
city
state
zip_code

30

Non-clustered index

Search for customers whose address is at
'Atwater’

SELECT customer id, city
FROM sales.customers
WHERE city = 'Atwater’;

See execution plan estimation, the query
optimizer scans the clustered index for records,
since the 'customers' table doesn't have an index
for the 'city' column.

Type the following command, and then see the
estimation again

CREATE INDEX ix customers city
ON sales.customers(city);

31

Non-clustered index

Create non-clustered indexes for multiple

columns

B Find a customer with the last name 'Berg' and first name
'Monika’
SELECT customer id, first name, last name

FROM sales.customers
WHERE last name = 'Berg' AND first name = 'Monika';

B See execution plan estimation, type the
following command, and run the above step
again

CREATE INDEX ix_ customers name
ON sales.customers(last name, first name);

32

Rename index in SQL Server

The statement uses the sp_rename stored
procedure

EXEC sp rename 1index name, new index name, N'INDEX';

EXEC sp rename @objname = N'index name', @newname =
N'new _index name', @objtype = N'INDEX';

B Vidu:

EXEC sp_rename
@objname = N'sales.customers.ix customers city',
@newname = N'ix cust city' ,
@objtype = N'INDEX';

EXEC sp_rename
N'sales.customers.ix customers city',

N'ix cust city' ,
N'INDEX';

33

Rename index in SQL Server

[0 Or use SQL Server Management Studio,
right click,....

34

Unique index in SQL Server

Unique indexes can be one or more

columns.

B If a column, the values in the column are
unique

B [f more than one column, the combination of
values in these columns is unique

Unique indexes can be clustered or non-

clustered indexes

Syntax:

CREATE UNIQUE INDEX index name
ON table name(column list);

35

Unique index

[0 For example, create a unique index for
an email column

B First of all, check to make sure there are
no duplicate email addresses

SELECT email, COUNT(email)
FROM sales.customers
GROUP BY email

HAVING COUNT(email) > 1;

CREATE UNIQUE INDEX ix cust email
ON sales.customers(email);

36

Unique index

[1 Try creating a table with 2 columns,
then create a unique index on both of
those columns

[0 Then, insert the data

(] Is it okay if applying a unique index on
a column with multiple NULL values?

[0 Unique index vs. unique constraint

37

Disable indexing in SQL Server

Before updating the table, disabling the index
speed up this process

ALTER INDEX index name
ON table name
DISABLE;

Disable all indexes

ALTER INDEX ALL ON table name
DISABLE;

38

Disable indexing in SQL Server

If an index is disabled, the optimizer will not use
that index to plan the query execution

Disabling indexing on a table, SQL Server retains
index definition in metadata and index statistics
in non-clustered indexes.

Disable index on view, SQL Server will delete all
index data

If a clustered index of a table is disabled, the
data of the table cannot be accessed using

SELECT, INSERT, UPDATE, and DELETE until the
clustered index is rebuilt / deleted.

39

Disable indexing in SQL Server

[0 Example:

ALTER INDEX ix cust city
ON sales.customers

DISABLE; ALTER INDEX ALL

ON sales.customers

SELECT DISABLE;

first name,

last name,

city
FROM

sales.customers
WHERE

city = 'San Jose’;

SELECT * FROM sales.customers;

40

Enable indexes in SQL Server

[0 After disabling the index for UPDATE, it
IS necessary to re-enable the index

B The index needs to be rebuilt to reflect the
new data in the table

[0 Use one of the following two commands
B ALTER INDEX
B DBCC DBREINDEX

41

Enable indexes in SQL Server

1 ALTER INDEX and CREATE INDEX

ALTER INDEX index name
ON table name
REBUILD;

CREATE INDEX index name
ON table name(column list)
WITH(DROP EXISTING=ON)

ALTER INDEX ALL ON table name
REBUILD;

42

Enable indexes in SQL Server

1 DBCC DBREINDEX

DBCC DBREINDEX (table name, index name);

ALTER INDEX ALL ON sales.customers
REBUILD;

43

Delete indexes in SQL Server

DROP INDEX

DROP INDEX [IF EXISTS] index_nhame
ON table name;

The DROP INDEX statement cannot delete

indexes created by PK or a unigue constraint

B To remove indexes associated with these constraints,
use the ALTER TABLE DROP CONSTRAINT command

Remove multiple indexes from one/multiple

tables, use the following command:

DROP INDEX [IF EXISTS]
index _namel ON table namel,
index _name2 ON table name2,

°)

44

Filtered index in SQL Server

Sometimes, it is inefficient to index all the
records by a certain column, as it is only partially
queried for a few of records of the whole table.

A filtered index is a non-clustered index with an
expression that specifies which records should be
added to the index.

Syntax:

CREATE INDEX index name
ON table name(column list)
WHERE predicate;

45

Filtered index in SQL Server

For example, using the 'customers' table, the

phone column has so many NULL values

SELECT
SUM(CASE
WHEN phone IS NULL
THEN 1
ELSE ©
END) AS [Has Phone],
SUM(CASE
WHEN phone IS NULL
THEN ©
ELSE 1
END) AS [No Phone]
FROM sales.customers;

CREATE INDEX ix cust phone

ON sales.customers(phone)
WHERE phone IS NOT NULL;

SELECT
first name,
last name,
phone

FROM sales.customers
WHERE phone =

'(281) 363-3309"';

46

Filtered index in SQL Server

[0 INCLUDE

CREATE INDEX ix cust phone

ON sales.customers(phone)
INCLUDE (first name, last name)
WHERE phone IS NOT NULL;

47

