
1

Relational database design

NGUYEN Hong Phuong 
Email: phuongnh@soict.hust.edu.vn
Site: https://users.soict.hust.edu.vn/phuongnh



2

Contents

 Introduction to Database Design
 Approaches
 Identifying Entities
 Identifying Relationships
 Identifying Attributes
 Normalization



Introduction to Database Design

 Designing a database is in fact fairly easy, but
there are a few rules to stick to. It is important
to know what these rules are, but more
importantly is to know why these rules exist,
otherwise you will tend to make mistakes!

 Standardization makes your data model
flexible and that makes working with your data
much easier.

3



Introduction to Database Design (cont'd)

 A good database design starts with a list of the
data that you want to include in your database
and what you want to be able to do with the
database later on. This can all be written in
your own language, without any SQL. In this
stage you must try not to think in tables or
columns, but just think: "What do I need to
know?". Don't take this too lightly, because if
you find out later that you forgot something,
usually you need to start all over. Adding
things to your database is mostly a lot of work.

4



Approaches

 Top-down
 Entity-relationship

 Bottom-up
 Functional Dependency
 Normalization

5



Identifying Entities

 The types of information that are saved in the database 
are called 'entities'. These entities exist in four kinds: 
people, things, events, and locations. Everything you 
could want to put in a database fits into one of these 
categories. If the information you want to include 
doesn't fit into these categories then it is probably not an 
entity but a property of an entity, an attribute.

 To clarify the information given in this material, we'll use 
an example. Imagine that you are creating a website for 
a shop, what kind of information do you have to deal 
with? In a shop you sell your products to customers. The 
"Shop" is a location; "Sale" is an event; "Products" are 
things; and "Customers" are people. These are all 
entities that need to be included in your database.

6



Identifying Entities (cont'd)

 But what other things are happening
when selling a product? A customer
comes into the shop, approaches the
vendor, asks a question and gets an
answer. "Vendors" also participate, and
because vendors are people, we need a
vendors entity.

7



Identifying Relationships

 The next step is to determine the relationships
between the entities and to determine the
cardinality of each relationship.

 The relationship is the connection between the
entities, just like in the real world: what does
one entity do with the other, how do they
relate to each other?
 For example, customers buy products, products are

sold to customers, a sale comprises products, a sale
happens in a shop.

8



Identifying Relationships (cont'd)

 The cardinality shows how much of one side of 
the relationship belongs to how much of the 
other side of the relationship. First, you need 
to state for each relationship, how much of one 
side belongs to exactly 1 of the other side. 
 For example: How many customers belong to 1 

sale?; How many sales belong to 1 customer?; How 
many sales take place in 1 shop?

 You'll get a list like this: (please note that 
'product' represents a type of product, not an 
occurance of a product)

9



Identifying Relationships (cont'd)

 Customers --> Sales; 1 customer can buy something several times
 Sales --> Customers; 1 sale is always made by 1 customer at the time
 Customers --> Products; 1 customer can buy multiple products
 Products --> Customers; 1 product can be purchased by multiple 

customers
 Customers --> Shops; 1 customer can purchase in multiple shops
 Shops --> Customers; 1 shop can receive multiple customers
 Shops --> Products; in 1 shop there are multiple products
 Products --> Shops; 1 product (type) can be sold in multiple shops
 Shops --> Sales; in 1 shop multiple sales can me made
 Sales --> Shops; 1 sale can only be made in 1 shop at the time
 Products --> Sales; 1 product (type) can be purchased in multiple 

sales
 Sales --> Products; 1 sale can exist out of multiple products

10



Identifying Relationships (cont'd)

 Did we mention all relationships? There are 
four entities and each entity has a relationship 
with every other entity, so each entity must 
have three relationships, and also appear on 
the left end of the relationship three times. 
Above, 12 relationships were mentioned, which 
is 4*3, so we can conclude that all 
relationships were mentioned.

11



Identifying Relationships (cont'd)

 Now we'll put the data together to find the cardinality of 
the whole relationship. In order to do this, we'll draft the 
cardinalities per relationship. To make this easy to do, 
we'll adjust the notation a bit, by noting the 'backward'-
relationship the other way around:
 Customers --> Sales; 1 customer can buy something 

several times
 Sales --> Customers; 1 sale is always made by 1 customer 

at the time

 The second relationship we will turn around so it has the 
same entity order as the first. Please notice the arrow 
that is now faced the other way!
 Customers <-- Sales; 1 sale is always made by 1 customer 

at the time

12



Identifying Relationships (cont'd)

 Cardinality exists in four types: one-to-one, 
one-to-many, many-to-one, and many-to-
many. In a database design this is indicated 
as: 1:1, 1:N, M:1, and M:N. To find the right 
indication just leave the '1'. If there is a 'many' 
on the left side, this will be indicated with 'M', 
if there is a 'many' on the right side it is 
indicated with 'N'.
 Customers --> Sales; 1 customer can buy something 

several times; 1:N.
 Customers <-- Sales; 1 sale is always made by 1 

customer at the time; 1:1.

13



Identifying Relationships (cont'd)

 The true cardinality can be calculated through 
assigning the biggest values for left and right, 
for which 'N' or 'M' are greater than '1'. In 
thisexample, in both cases there is a '1' on the 
left side. On the right side, there is a 'N' and a 
'1', the 'N' is the biggest value. The total 
cardinality is therefore '1:N'. A customer can 
make multiple 'sales', but each 'sale' has just 
one customer.

14



Identifying Relationships (cont'd)

 If we do this for the other relationships too, 
we'll get:
 Customers --> Sales; --> 1:N
 Customers --> Products; --> M:N
 Customers --> Shops; --> M:N
 Sales --> Products; --> M:N
 Shops --> Sales; --> 1:N
 Shops --> Products; --> M:N

15



Identifying Relationships (cont'd)

 So, we have two '1-to-many' relationships, and 
four 'many-to-many' relationships.

16



Identifying Relationships (cont'd)

 Between the entities there may be a mutual 
dependency. This means that the one item 
cannot exist if the other item does not exist. 
For example, there cannot be a sale if there 
are no customers, and there cannot be a sale if 
there are no products.

 The relationships Sales --> Customers, and 
Sales --> Products are mandatory, but the 
other way around this is not the case. A 
customer can exist without sale, and also a 
product can exist without sale. This is of 
importance for the next step.

17



Recursive Relationships

 Sometimes an entity refers back to itself. For 
example, think of a work hierarchy: an 
employee has a boss; and the bosschef is an 
employee too. The attribute 'boss' of the entity 
'employees' refers back to the entity 
'employees'.

 In an ERD this type of relationship is a line that 
goes out of the entity and returns with a nice 
loop to the same entity.

18



Redundant Relationships

 Sometimes in your model you will get a 'redundant 
relationship'. These are relationships that are already 
indicated by other relationships, although not directly.

 In the case of our example there is a direct relationships 
between customers and products. But there are also 
relationships from customers to sales and from sales to 
products, so indirectly there already is a relationship 
between customers and products through sales. The 
relationship 'Customers <----> Products' is made twice, 
and one of them is therefore redundant. In this case, 
products are only purchased through a sale, so the 
relationships 'Customers <----> Products' can be 
deleted. The model will then look like this:

19



20



Solving Many-to-Many Relationships

 Many-to-many relationships (M:N) are 
not directly possible in a database. What 
a M:N relationship says is that a number 
of records from one table belongs to a 
number of records from another table. 
Somewhere you need to save which 
records these are and the solution is to 
split the relationship up in two one-to-
many relationships.

21



Solving Many-to-Many Relationships (cont'd)

 This can be done by creating a new entity that 
is in between the related entities. In our 
example, there is a many-to-many relationship 
between sales and products. This can be solved 
by creating a new entity: sales-products. This 
entity has a many-to-one relationship with 
Sales, and a many-to-one relationship with 
Products. In logical models this is called an 
associative entity and in physical database 
terms this is called a link table, intersection 
table or junction table.

22



Solving Many-to-Many Relationships (cont'd)

23



Solving Many-to-Many Relationships (cont'd)

 In the example there are two many-to-many 
relationships that need to be solved: 'Products 
<----> Sales', and 'Products <----> Shops'. 
For both situations there needs to be created a 
new entity, but what is that entity?

 For the Products <----> Sales relationship, 
every sale includes more products. The 
relationship shows the content of the sale. In 
other words, it gives details about the sale. So 
the entity is called 'Sales details'. You could 
also name it 'sold products'.

24



Solving Many-to-Many Relationships (cont'd)

 The Products <----> Shops relationship shows 
which products are available in which the 
shops, also known as 'stock'. Our model would 
now look like this:

25



Identifying Attributes

 The data elements that you want to save for each entity
are called 'attributes'.

 About the products that you sell, you want to know, for
example, what the price is, what the name of the
manufacturer is, and what the type number is. About the
customers you know their customer number, their name,
and address. About the shops you know the location
code, the name, the address. Of the sales you know
when they happened, in which shop, what products were
sold, and the sum total of the sale. Of the vendor you
know his staff number, name, and address. What will be
included precisely is not of importance yet; it is still only
about what you want to save.

26



Identifying Attributes (cont'd)

27



Derived Data

 Derived data is data that is derived from the other data
that you have already saved. In this case the 'sum total'
is a classical case of derived data. You know exactly
what has been sold and what each product costs, so you
can always calculate how much the sum total of the
sales is. So really it is not necessary to save the sum
total.

 So why is it saved here? Well, because it is a sale, and
the price of the product can vary over time. A product
can be priced at 10 euros today and at 8 euros next
month, and for your administration you need to know
what it cost at the time of the sale, and the easiest way
to do this is to save it here. There are a lot of more
elegant ways, but they are too profound for this article.

28



Entity Relationship Diagram (ERD)

 The Entity Relationship Diagram (ERD) gives a graphical
overview of the database. There are several styles and
types of ER Diagrams. A much-used notation is the
'crowfeet' notation, where entities are represented as
rectangles and the relationships between the entities are
represented as lines between the entities. The signs at
the end of the lines indicate the type of relationship. The
side of the relationship that is mandatory for the other to
exist will be indicated through a dash on the line. Not
mandatory entities are indicated through a circle. "Many"
is indicated through a 'crowfeet'; the relationship-line
splits up in three lines.

29



 A 1:1 mandatory relationship is represented as follows:

 A 1:N mandatory relationship:

 A M:N relationship is:

30



 The model of our example will look like this:

31



Assigning Keys

 Primary Keys
 A primary key (PK) is one or more data attributes

that uniquely identify an entity. A key that consists of
two or more attributes is called a composite key. All
attributes part of a primary key must have a value in
every record (which cannot be left empty) and the
combination of the values within these attributes
must be unique in the table.

 In the example there are a few obvious candidates
for the primary key. Customers all have a customer
number, products all have a unique product number
and the sales have a sales number. Each of these
data is unique and each record will contain a value,
so these attributes can be a primary key. Often an
integer column is used for the primary key so a
record can be easily found through its number. 32



 Link-entities usually refer to the primary key attributes
of the entities that they link. The primary key of a link-
entity is usually a collection of these reference-
attributes. For example in the Sales_details entity we
could use the combination of the PK's of the sales and
products entities as the PK of Sales_details. In this way
we enforce that the same product (type) can only be
used once in the same sale. Multiple items of the same
product type in a sale must be indicated by the quantity.

 In the ERD the primary key attributes are indicated by
the text 'PK' behind the name of the attribute. In the
example only the entity 'shop' does not have an obvious
candidate for the PK, so we will introduce a new attribute
for that entity: shopnr.

33



 Foreign Keys
 The Foreign Key (FK) in an entity is the reference to the

primary key of another entity. In the ERD that attribute will be
indicated with 'FK' behind its name. The foreign key of an
entity can also be part of the primary key, in that case the
attribute will be indicated with 'PF' behind its name. This is
usually the case with the link-entities, because you usually
link two instances only once together (with 1 sale only 1
product type is sold 1 time).

 If we put all link-entities, PK's and FK's into the ERD, we get
the model as shown below. Please note that the attribute
'products' is no longer necessary in 'Sales', because 'sold
products' is now included in the link-table. In the link-table
another field was added, 'quantity', that indicates how many
products were sold. The quantity field was also added in the
stock-table, to indicate how many products are still in store.

34



35



Defining the Attribute's Data Type

 Now it is time to figure out which data types
need to be used for the attributes. There are a
lot of different data types. A few are
standardized, but many databases have their
own data types that all have their own
advantages. Some databases offerthe
possibility to define your own data types, in
case the standard types cannot do the things
you need.

 The standard data types that every database
knows, and are most-used, are: CHAR,
VARCHAR, TEXT, FLOAT, DOUBLE, and INT.

36



 Text:
 CHAR(length) - includes text (characters, numbers, 

punctuations...). 
 VARCHAR(length) - includes text (characters, 

numbers, punctuation...).
 TEXT - can contain large amounts of text. Depending 

on the type of database this can add up to gigabytes.

 Numbers:
 INT - contains a positive or negative whole number. 

A lot of databases have variations of the INT, such as 
TINYINT, SMALLINT, MEDIUMINT, BIGINT, INT2, 
INT4, INT8. 

 FLOAT, DOUBLE - The same idea as INT, but can also 
store floating point numbers. 

37



 For our example the data types are as follows:

38



Normalization

 Normalization makes your data model flexible
and reliable. It does generate some overhead
because you usually get more tables, but it
enables you to do many things with your data
model without having to adjust it.

39



Normalization (cont'd)

 Normalization, the First Form
 The first form of normalization states that

there may be no repeating groups of
columns in an entity. We could have created
an entity 'sales' with attributes for each of
the products that were bought. This would
look like this:

40



Normalization (cont'd)

 What is wrong about this is that now only 3
products can be sold. If you would have to sell
4 products then you would have to start a
second sale or adjust your data model by
adding 'product4' attributes. Both solutions are
unwanted. In these cases you should always
create a new entity that you link to the old one
via a one-to-many relationship.

41



Normalization (cont'd)

 Normalization, the Second Form
 The second form of normalization states

that all attributes of an entity should be fully
dependent on the whole primary key. This
means that each attribute of an entity can
only be identified through the whole primary
key. Suppose we had the date in the
Sales_details entity:

42



Normalization (cont'd)

 This entity is not according the second normalization
form, because in order to be able to look up the date of
a sale, I do not have to know what is sold (productnr),
the only thing I need to know is the sales number. This
was solved by splitting up the tables into the sales and
the Sales_details table:

 Now each attribute of the entities is dependent on the
whole PK of the entity. The date is dependent on the
sales number, and the quantity is dependent on the
sales number and the sold product.

43



Normalization (cont'd)

 Normalization, the Third Form
 The third form of normalization states that all

attributes need to be directly dependent on the
primary key, and not on other attributes. This seems
to be what the second form of normalization states,
but in the second form is actually stated the
opposite. In the second form of normalization you
point out attributes through the PK, in the third form
of normalization every attribute needs to be
dependent on the PK, and nothing else.

44



Normalization (cont'd)

 In this case the price of a loose product is dependent on
the ordering number, and the ordering number is
dependent on the product number and the sales number.
This is not according to the third form of normalization.
Again, splitting up the tables solves this.

45



Normalization (cont'd)

 Normalized Data Model
 If you apply the normalization rules, you will find that

the 'manufacturer' in the product table should also be
a separate table:

46



Other ERD for a shop

47



Online tools

 https://vertabelo.com/
 Lucidchart
 https://www.lucidchart.com

 Drawio
 https://www.draw.io/
 https://app.diagrams.net/

 Một số mô hình ERD tham khảo
 http://www.databaseanswers.org/data_

models/index.htm

48


