
1

SQL Injection

NGUYEN Hong Phuong
Email: phuongnh@soict.hust.edu.vn
Site: https://users.soict.hust.edu.vn/phuongnh

SQL Injection

 SQL injection is a code injection
technique that might destroy your
database.

 SQL injection is one of the most
common web hacking techniques.

 SQL injection is the placement of
malicious code in SQL statements, via
web page input.

2

SQL in Web Pages

 SQL injection usually occurs when you ask a
user for input, like their username/userid, and
instead of a name/id, the user gives you an
SQL statement that you will unknowingly run
on your database.

 Look at the following example which creates a
SELECT statement by adding a variable
(txtUserId) to a select string. The variable is
fetched from user input (getRequestString):

3

txtUserId = getRequestString("UserId");
txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserId;

SQL Injection Based on 1=1 is Always True

 Look at the example above again.
The original purpose of the code was
to create an SQL statement to select
a user, with a given user id.

 If there is nothing to prevent a user
from entering "wrong" input, the user
can enter some "smart" input like
this:

4

UserId: 105 OR 1=1

SQL Injection Based on 1=1 is Always True

 Then, the SQL statement will look like this:

 The SQL above is valid and will return ALL rows from the
"Users" table, since OR 1=1 is always TRUE.

 Does the example above look dangerous? What if the
"Users" table contains names and passwords?

 The SQL statement above is much the same as this:

 A hacker might get access to all the user names and
passwords in a database, by simply inserting 105 OR
1=1 into the input field.

5

SELECT * FROM Users WHERE UserId = 105 OR 1=1;

SELECT UserId, Name, Password FROM Users
WHERE UserId = 105 or 1=1;

SQL Injection Based on ""="" is Always True

 Here is an example of a user login on a
web site:

 Example

6

Username: John Doe
Password: myPass

uName = getRequestString("username");
uPass = getRequestString("userpassword");

sql = 'SELECT * FROM Users WHERE Name ="' +
uName + '" AND Pass ="' + uPass + '"'

SELECT * FROM Users WHERE Name ="John Doe" AND Pass ="myPass"

 A hacker might get access to user names and passwords
in a database by simply inserting " OR ""=" into the user
name or password text box:

 he code at the server will create a valid SQL statement
like this:

 The SQL above is valid and will return all rows from the
"Users" table, since OR ""="" is always TRUE.

7

User Name: " or ""="
Password: " or ""="

SELECT * FROM Users
WHERE Name ="" or ""="" AND Pass ="" or ""=""

SQL Injection Based on Batched SQL Statements

 Most databases support batched SQL
statement.

 A batch of SQL statements is a group of two or
more SQL statements, separated by
semicolons.

 The SQL statement below will return all rows
from the "Users" table, then delete the
"Suppliers" table.

 Example

8

SELECT * FROM Users; DROP TABLE Suppliers

 Look at the following example:

 And the following input:

 The valid SQL statement would look like
this:

9

txtUserId = getRequestString("UserId");
txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserId;

User id: 105; DROP TABLE Suppliers

SELECT * FROM Users
WHERE UserId = 105; DROP TABLE Suppliers;

Use SQL Parameters for Protection

 To protect a web site from SQL injection, you can use
SQL parameters.

 SQL parameters are values that are added to an SQL
query at execution time, in a controlled manner.

 ASP.NET Razor Example

 Note that parameters are represented in the SQL
statement by a @ marker.

 The SQL engine checks each parameter to ensure that it
is correct for its column and are treated literally, and not
as part of the SQL to be executed.

10

txtUserId = getRequestString("UserId");
txtSQL = "SELECT * FROM Users WHERE UserId = @0";
db.Execute(txtSQL,txtUserId);

 Another Example

 The following examples shows how to
build parameterized queries in some
common web languages.

 SELECT STATEMENT IN ASP.NET:

11

txtNam = getRequestString("CustomerName");
txtAdd = getRequestString("Address");
txtCit = getRequestString("City");
txtSQL = "INSERT INTO Customers (CustomerName,Address,City)
Values(@0,@1,@2)";
db.Execute(txtSQL,txtNam,txtAdd,txtCit);

 INSERT INTO STATEMENT IN ASP.NET:

12

txtUserId = getRequestString("UserId");
sql = "SELECT * FROM Customers WHERE CustomerId = @0";
command = new SqlCommand(sql);
command.Parameters.AddWithValue("@0",txtUserId);
command.ExecuteReader();

txtNam = getRequestString("CustomerName");
txtAdd = getRequestString("Address");
txtCit = getRequestString("City");
txtSQL = "INSERT INTO Customers (CustomerName,Address,City)
Values(@0,@1,@2)";
command = new SqlCommand(txtSQL);
command.Parameters.AddWithValue("@0",txtNam);
command.Parameters.AddWithValue("@1",txtAdd);
command.Parameters.AddWithValue("@2",txtCit);
command.ExecuteNonQuery();

 INSERT INTO STATEMENT IN PHP:

13

$stmt = $dbh->prepare("INSERT INTO
Customers (CustomerName,Address,City)
VALUES (:nam, :add, :cit)");
$stmt->bindParam(':nam', $txtNam);
$stmt->bindParam(':add', $txtAdd);
$stmt->bindParam(':cit', $txtCit);
$stmt->execute();

