SQL Injection

NGUYEN Hong Phuong
Email: phuongnh@soict.hust.edu.vn
Site: https://users.soict.hust.edu.vn/phuongnh

SQL Injection

[0 SQL injection is a code injection
technique that might destroy your
database.

[0 SQL injection is one of the most
common web hacking techniques.

[0 SQL injection is the placement of
malicious code in SQL statements, via
web page input.

SQL in Web Pages

SQL injection usually occurs when you ask a
user for input, like their username/userid, and
instead of a name/id, the user gives you an
SQL statement that you will unknowingly run
on your database.

Look at the following example which creates a
SELECT statement by adding a variable
(txtUserId) to a select string. The variable is
fetched from user input (getRequestString):

txtUserld = getRequestString("UserId");
txtSQL = "SELECT * FROM Users WHERE Userld = " + txtUserId;

SQL Injection Based on 1=1 is Always True

[0 Look at the example above again.
The original purpose of the code was
to create an SQL statement to select
a user, with a given user id.

[1 If there is nothing to prevent a user
from entering "wrong" input, the user
can enter some "smart" input like
this:

Userld: 105 0R 1=1

SQL Injection Based on 1=1 is Always True

O

O

Then, the SQL statement will look like this:

SELECT * FROM Users WHERE UserId = 105 OR 1=1,;

The SQL above is valid and will return ALL rows from the
"Users" table, since OR 1=1 is always TRUE.

Does the example above look dangerous? What if the
"Users" table contains names and passwords?

The SQL statement above is much the same as this:

SELECT UserId, Name, Password FROM Users
WHERE UserlId = 105 or 1=1;

A hacker might get access to all the user names and
passwords in a database, by simply inserting 105 OR
1=1 into the input field.

SQL Injection Based on ""="" is Always True

[0 Here is an example of a user login on a
web site:

Username: John Doe
Password: myPass

[1 Example
uName = getRequestString("username");
uPass = getRequestString("userpassword");
sql = 'SELECT * FROM Users WHERE Name ="' +
uName + '" AND Pass ="' + uPass + '"'

SELECT * FROM Users WHERE Name ="John Doe" AND Pass ="myPass"”

0 A hacker might get access to user names and passwords
in @ database by simply inserting " OR ""=" into the user
name or password text box:

User Name: " or ""="
Password: " or ""="

[0 he code at the server will create a valid SQL statement
like this:

SELECT * FROM Users
WHERE Name =llll Or‘ 1 ll=ll 1 AND PaSS =Illl Or‘ llll_ll 1

0 The SQL above is valid and will return all rows from the
"Users" table, since OR ""="" is always TRUE.

SQL Injection Based on Batched SQL Statements

Most databases support batched SQL
statement.

A batch of SQL statements is a group of two or
more SQL statements, separated by
semicolons.

The SQL statement below will return all rows
from the "Users" table, then delete the
"Suppliers" table.

Example

SELECT * FROM Users; DROP TABLE Suppliers

[0 Look at the following example:

txtUserld = getRequestString("UserId");
txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserId;

[0 And the following input:

User id: 105; DROP TABLE Suppliers

[0 The valid SQL statement would look like
this:

SELECT * FROM Users
WHERE UserId = 105; DROP TABLE Suppliers;

Use SQL Parameters for Protection

[0 To protect a web site from SQL injection, you can use
SQL parameters.

[0 SQL parameters are values that are added to an SQL
query at execution time, in a controlled manner.

[0 ASP.NET Razor Example

txtUserld = getRequestString("UserId");
txtSQL = "SELECT * FROM Users WHERE Userld = @0";
db.Execute(txtSQL,txtUserId);

[0 Note that parameters are represented in the SQL
statement by a @ marker.

0 The SQL engine checks each parameter to ensure that it
is correct for its column and are treated literally, and not
as part of the SQL to be executed.

10

[0 Another Example

txtNam = getRequestString("CustomerName");
txtAdd = getRequestString("Address");
txtCit = getRequestString("City");

txtSQL = "INSERT INTO Customers (CustomerName,Address,City)
Values(@90,@1,@2)";
db.Execute(txtSQL, txtNam, txtAdd, txtCit);

[0 The following examples shows how to
build parameterized queries in some
common web languages.

[0 SELECT STATEMENT IN ASP.NET:

11

txtUserld = getRequestString("UserId");

sql = "SELECT * FROM Customers WHERE CustomerId = @0";
command = new SqlCommand(sqgl);
command.Parameters.AddWithValue("@0", txtUserld);
command.ExecuteReader();

INSERT INTO STATEMENT IN ASP.NET:

txtNam = getRequestString("CustomerName");

txtAdd = getRequestString("Address");

txtCit = getRequestString("City");

txtSQL = "INSERT INTO Customers (CustomerName,Address,City)
Values(@0,@1,@2)";

command = new SqlCommand(txtSQL);
command.Parameters.AddWithValue("@0",txtNam);
command.Parameters.AddWithValue("@1",txtAdd);
command.Parameters.AddWithValue("@2",txtCit);
command . ExecuteNonQuery();

12

INSERT INTO STATEMENT IN PHP:

$stmt = $dbh->prepare("INSERT INTO
Customers (CustomerName,Address,City)
VALUES (:nam, :add, :cit)");
$stmt->bindParam(':nam’', $txtNam);
$stmt->bindParam(':add’', $txtAdd);
$stmt->bindParam(':cit', $txtCit);
$stmt->execute();

13

