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SQL Injection

 SQL injection is a code injection 
technique that might destroy your 
database.

 SQL injection is one of the most 
common web hacking techniques.

 SQL injection is the placement of 
malicious code in SQL statements, via 
web page input.
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SQL in Web Pages

 SQL injection usually occurs when you ask a
user for input, like their username/userid, and
instead of a name/id, the user gives you an
SQL statement that you will unknowingly run
on your database.

 Look at the following example which creates a
SELECT statement by adding a variable
(txtUserId) to a select string. The variable is
fetched from user input (getRequestString):
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txtUserId = getRequestString("UserId");
txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserId;



SQL Injection Based on 1=1 is Always True

 Look at the example above again. 
The original purpose of the code was 
to create an SQL statement to select 
a user, with a given user id.

 If there is nothing to prevent a user 
from entering "wrong" input, the user 
can enter some "smart" input like 
this:

4

UserId: 105 OR 1=1



SQL Injection Based on 1=1 is Always True

 Then, the SQL statement will look like this:

 The SQL above is valid and will return ALL rows from the 
"Users" table, since OR 1=1 is always TRUE.

 Does the example above look dangerous? What if the 
"Users" table contains names and passwords?

 The SQL statement above is much the same as this:

 A hacker might get access to all the user names and 
passwords in a database, by simply inserting 105 OR 
1=1 into the input field.
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SELECT * FROM Users WHERE UserId = 105 OR 1=1;

SELECT UserId, Name, Password FROM Users
WHERE UserId = 105 or 1=1;



SQL Injection Based on ""="" is Always True

 Here is an example of a user login on a 
web site:

 Example
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Username: John Doe
Password: myPass

uName = getRequestString("username");
uPass = getRequestString("userpassword");

sql = 'SELECT * FROM Users WHERE Name ="' + 
uName + '" AND Pass ="' + uPass + '"'

SELECT * FROM Users WHERE Name ="John Doe" AND Pass ="myPass"



 A hacker might get access to user names and passwords 
in a database by simply inserting " OR ""=" into the user 
name or password text box:

 he code at the server will create a valid SQL statement 
like this:

 The SQL above is valid and will return all rows from the 
"Users" table, since OR ""="" is always TRUE.
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User Name: " or ""="
Password: " or ""="

SELECT * FROM Users
WHERE Name ="" or ""="" AND Pass ="" or ""=""



SQL Injection Based on Batched SQL Statements 

 Most databases support batched SQL 
statement.

 A batch of SQL statements is a group of two or 
more SQL statements, separated by 
semicolons.

 The SQL statement below will return all rows 
from the "Users" table, then delete the 
"Suppliers" table.

 Example
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SELECT * FROM Users; DROP TABLE Suppliers



 Look at the following example:

 And the following input:

 The valid SQL statement would look like 
this:

9

txtUserId = getRequestString("UserId");
txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserId;

User id: 105; DROP TABLE Suppliers

SELECT * FROM Users
WHERE UserId = 105; DROP TABLE Suppliers;



Use SQL Parameters for Protection

 To protect a web site from SQL injection, you can use 
SQL parameters.

 SQL parameters are values that are added to an SQL 
query at execution time, in a controlled manner.

 ASP.NET Razor Example

 Note that parameters are represented in the SQL 
statement by a @ marker.

 The SQL engine checks each parameter to ensure that it 
is correct for its column and are treated literally, and not 
as part of the SQL to be executed.
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txtUserId = getRequestString("UserId");
txtSQL = "SELECT * FROM Users WHERE UserId = @0";
db.Execute(txtSQL,txtUserId);



 Another Example

 The following examples shows how to 
build parameterized queries in some 
common web languages.

 SELECT STATEMENT IN ASP.NET:
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txtNam = getRequestString("CustomerName");
txtAdd = getRequestString("Address");
txtCit = getRequestString("City");
txtSQL = "INSERT INTO Customers (CustomerName,Address,City) 
Values(@0,@1,@2)";
db.Execute(txtSQL,txtNam,txtAdd,txtCit);



 INSERT INTO STATEMENT IN ASP.NET:
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txtUserId = getRequestString("UserId");
sql = "SELECT * FROM Customers WHERE CustomerId = @0";
command = new SqlCommand(sql);
command.Parameters.AddWithValue("@0",txtUserId);
command.ExecuteReader();

txtNam = getRequestString("CustomerName");
txtAdd = getRequestString("Address");
txtCit = getRequestString("City");
txtSQL = "INSERT INTO Customers (CustomerName,Address,City) 
Values(@0,@1,@2)";
command = new SqlCommand(txtSQL);
command.Parameters.AddWithValue("@0",txtNam);
command.Parameters.AddWithValue("@1",txtAdd);
command.Parameters.AddWithValue("@2",txtCit);
command.ExecuteNonQuery();



 INSERT INTO STATEMENT IN PHP:
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$stmt = $dbh->prepare("INSERT INTO 
Customers (CustomerName,Address,City)
VALUES (:nam, :add, :cit)");
$stmt->bindParam(':nam', $txtNam);
$stmt->bindParam(':add', $txtAdd);
$stmt->bindParam(':cit', $txtCit);
$stmt->execute();


