
1

SELECT

NGUYEN Hong Phuong 
Email: phuongnh@soict.hust.edu.vn
Site: https://users.soict.hust.edu.vn/phuongnh



2

Contents

 Database sample
 SELECT Statement
 DISTINCT
 Comments
 WHERE Clause 
 AND, OR and NOT 

Operators
 ORDER BY
 SELECT TOP Clause
 LIKE Operator
 Wildcard Characters
 IN Operator

 BETWEEN Operator
 Aliases
 Joins
 UNION Operator
 INTERSECT Operator
 EXCEPT Operator
 GROUP BY Statement
 EXISTS Operator
 ANY and ALL Operators
 CASE Statement
 SQL Operators
 Functions



Database sample

 Company-Supply-Product
 Database diagram

3



SELECT Statement

 The SELECT statement is used to select data 
from a database.

 The data returned is stored in a result table, 
called the result-set.

 SELECT Syntax

 Column1, column2, ... are the field names of the 
table you want to select data from. 

 To select all the fields available in the table, 
use the following syntax:

4

SELECT column1, column2, ...
FROM table_name;

SELECT * FROM table_name;



SELECT Column Example

 The following SQL statement selects the
"Name", "NumberofEmployee" and
"Address" columns from the "Company"
table:

 The following SQL statement selects all
the columns from the "Company" table:

5

SELECT Name, NumberofEmployee, Address
FROM Company

SELECT *
FROM Company



SELECT DISTINCT Statement

 Is used to return only distinct (different) 
values.

 Inside a table, a column often contains 
many duplicate values; and sometimes 
you only want to list the different 
(distinct) values.

 Syntax

6

SELECT DISTINCT column1, column2, ...
FROM table_name;



SELECT DISTINCT (cont'd)

 SELECT Example 
Without DISTINCT

 SELECT DISTINCT 
Examples

7

SELECT Address
FROM Company

SELECT DISTINCT Address
FROM Company



Comments

 Comments are used to explain sections 
of SQL statements, or to prevent 
execution of SQL statements.

 Single Line Comments
 Single line comments start with --.
 Any text between -- and the end of the line 

will be ignored (will not be executed).
 The following example uses a single-line 

comment as an explanation:

8

--Select all:
SELECT * FROM Company



SQL WHERE Clause

 Is used to filter records.
 Is used to extract only those records 

that fulfill a specified condition.
 Syntax

 Example

9

SELECT column1, column2, ...
FROM table_name
WHERE condition;

SELECT *
FROM Company
WHERE Address = 'Tokyo, Japan'

SELECT *
FROM Company-- WHERE Address = 'Tokyo, Japan'



SQL WHERE Clause (cont'd)

 Text Fields vs. Numeric Fields
 SQL requires single quotes around text 

values (most database systems will also 
allow double quotes).

 However, numeric fields should not be 
enclosed in quotes:

10

SELECT *
FROM Company
WHERE CompanyID = 12



SQL WHERE Clause (cont'd)

 Operators in The WHERE Clause

11

DescriptionOperator

Equal=
Greater than>
Less than<
Greater than or equal>=
Less than or equal<=
Not equal. Note: In some versions of SQL this 
operator may be written as !=

<>

Between a certain rangeBETWEEN
Search for a patternLIKE
To specify multiple possible values for a columnIN



SQL AND, OR and NOT Operators

 The WHERE clause can be combined with AND, 
OR, and NOT operators.

 The AND and OR operators are used to filter 
records based on more than one condition:
 The AND operator displays a record if all the 

conditions separated by AND are TRUE.
 The OR operator displays a record if any of the 

conditions separated by OR is TRUE.

 The NOT operator displays a record if the 
condition(s) is NOT TRUE.

12



SQL AND, OR and NOT Operators (cont'd)

 AND Syntax

 OR Syntax

 NOT Syntax

13

SELECT column1, column2, ...
FROM table_name
WHERE condition1 AND condition2 AND condition3 ...;

SELECT column1, column2, ...
FROM table_name
WHERE condition1 OR condition2 OR condition3 ...;

SELECT column1, column2, ...
FROM table_name
WHERE NOT condition;



SQL AND, OR and NOT Operators (cont'd)

 Examples

14

SELECT *
FROM Company
WHERE Address = 'London, UK' AND NumberofEmployee>3500

SELECT *
FROM Company
WHERE Address = 'London, UK' OR Address = 'Michigan, US'

SELECT * FROM Company
WHERE NOT Address = 'London, UK'



SQL AND, OR and NOT Operators (cont'd)

 Combining AND, OR and NOT

15

SELECT *
FROM Company
WHERE NumberofEmployee > 3500
AND (Address = 'Tokyo, Japan' OR Address = 'London, UK')

SELECT *
FROM Company
WHERE NOT Address = 'Tokyo, Japan' AND NOT Address = 'London, UK'



ORDER BY

 Is used to sort the result-set in ascending or 
descending order.

 Sorts the records in ascending order by 
default. To sort the records in descending 
order, use the DESC keyword.

 Syntax

 Example

16

SELECT column1, column2, ...
FROM table_name
ORDER BY column1, column2, ... ASC|DESC;

SELECT *
FROM Company
ORDER BY Name ASC

SELECT *
FROM Company
ORDER BY Name DESC



ORDER BY (cont'd)

 ORDER BY Several Columns

17

SELECT *
FROM Company
ORDER BY Address, NumberofEmployee

SELECT *
FROM Company
ORDER BY Address ASC, NumberofEmployee DESC



SELECT TOP Clause

 is used to specify the number of records 
to return.

 is useful on large tables with thousands 
of records. Returning a large number of 
records can impact performance.

 Syntax

18

SELECT TOP number|percent column_name(s)
FROM table_name
WHERE condition;



SELECT TOP Clause (cont'd)

 Example

19

SELECT TOP 3 * FROM Company

SELECT TOP 50 PERCENT * FROM Company



LIKE Operator

 is used in a WHERE clause to search for 
a specified pattern in a column.

 There are two wildcards often used in 
conjunction with the LIKE operator:
 The percent sign (%) represents zero, one, 

or multiple characters
 The underscore sign (_) represents one, 

single character
 Notice: MS Access uses an asterisk (*) 

instead of the percent sign (%), and a 
question mark (?) instead of the underscore 
(_).

20



LIKE Operator (cont'd)

 Syntax

21

SELECT column1, column2, ...
FROM table_name
WHERE columnN LIKE pattern;

DescriptionLIKE Operator
Finds any values that start with "a"WHERE Name LIKE 'a%'

Finds any values that end with "a"WHERE Name LIKE '%a'

Finds any values that have "or" in any positionWHERE Name LIKE '%or%'

Finds any values that have "r" in the second 
position

WHERE Name LIKE '_r%'

Finds any values that start with "a" and are at 
least 2 characters in length

WHERE Name LIKE 'a_%'

Finds any values that start with "a" and are at 
least 3 characters in length

WHERE Name LIKE 'a__%'

Finds any values that start with "a" and ends 
with "o"

WHERE Name LIKE 'a%o'



LIKE Operator (cont'd)

 Example

22

SELECT * FROM Company
WHERE Name LIKE 'F%'

SELECT * FROM Company
WHERE Name LIKE '%a'

SELECT * FROM Company
WHERE Name LIKE '___'

SELECT * FROM Company
WHERE Name LIKE '%o_'



Wildcard Characters

 A wildcard character is used to 
substitute one or more characters in 
a string.

 Wildcard characters are used with the 
LIKE operator. 

23



Wildcard Characters (cont'd)

 Wildcard Characters in SQL Server

24

ExampleDescriptionSymbol
bl% finds bl, black, blue, 
and blob

Represents zero or more 
characters

%

h_t finds hot, hat, and hitRepresents a single 
character

_

h[oa]t finds hot and hat, 
but not hit

Represents any single 
character within the 
brackets

[]

h[^oa]t finds hit, but not 
hot and hat

Represents any character 
not in the brackets

^

c[a-b]t finds cat and cbtRepresents any single 
character within the 
specified range

-



Wildcard Characters (cont'd)

 Example

25

SELECT * FROM Company
WHERE Name LIKE '[HL]%'

SELECT * FROM Company
WHERE Name LIKE '[A-F]%'

SELECT * FROM Company
WHERE Name LIKE '[^A-F]%'



IN Operator

 allows you to specify multiple values in a 
WHERE clause.

 is a shorthand for multiple OR 
conditions.

 Syntax

26

SELECT column_name(s)
FROM table_name
WHERE column_name IN (value1, value2, ...);

SELECT column_name(s)
FROM table_name
WHERE column_name IN (SELECT STATEMENT);



IN Operator (cont'd)

 Example

27

SELECT * FROM Product
WHERE Color IN('red','blue','white')

SELECT * FROM Product
WHERE Color NOT IN('red','blue','white')

SELECT * FROM Company
WHERE CompanyID IN(SELECT CompanyID FROM Supply)

SELECT * FROM Company
WHERE CompanyID NOT IN(SELECT CompanyID FROM Supply)



BETWEEN Operator

 selects values within a given range. The 
values can be numbers, text, or dates.

 is inclusive: begin and end values are 
included. 

 Syntax

28

SELECT column_name(s)
FROM table_name
WHERE column_name BETWEEN value1 AND value2;



BETWEEN Operator (cont'd)

 Example

29

SELECT * FROM Company
WHERE EstablishmentDay BETWEEN '1940/01/01' AND '2000/01/01'

SELECT * FROM Product
WHERE Price BETWEEN 4000 AND 12000;



Aliases

 are used to give a table, or a column in a table, a 
temporary name.

 Aliases are often used to make column names more 
readable.

 An alias only exists for the duration of that query.
 An alias is created with the AS keyword.
 Syntax

 Column

 Table

30

SELECT column_name AS alias_name
FROM table_name;

SELECT column_name(s)
FROM table_name AS alias_name;



Aliases (cont'd)

 Example

31

SELECT CompanyID AS ID, Name AS Title
FROM Company

SELECT Name AS [Tên công ty], NumberofEmployee AS [Số nhân viên]
FROM Company

SELECT Name AS 'Tên công ty', NumberofEmployee AS 'Số nhân viên'
FROM Company

SELECT c.*
FROM Company AS c
WHERE c.Address LIKE '%Japan%'



Joins

 A JOIN clause is used to combine rows from 
two or more tables, based on a related column 
between them.

 Syntax

32

SELECT Column1, Column2, Column3,...
FROM table1, table2, table3,...
WHERE table1.Comlumn1 = table2.Column2 
AND table2.Column3 = table3.Column4...

SELECT Column1, Column2, Column3,...
FROM table1 JOIN table2 ON table1.Comlumn1 = table2.Column2
JOIN table3 ON table2.Column3 = table3.Column4...



Joins (cont'd)

 Example

33

SELECT c.CompanyID, Name, ProductID 
FROM Company c, Supply s
WHERE c.CompanyID = s.CompanyID



Joins (cont'd)

 Different Types of SQL JOINs
 (INNER) JOIN: Returns records that have matching 

values in both tables
 LEFT (OUTER) JOIN: Returns all records from the left 

table, and the matched records from the right table
 RIGHT (OUTER) JOIN: Returns all records from the right 

table, and the matched records from the left table
 FULL (OUTER) JOIN: Returns all records when there is a 

match in either left or right table

34



Joins (cont'd)

 INNER JOIN
 The INNER JOIN keyword selects records 

that have matching values in both tables.
 Syntax

35

SELECT column_name(s)
FROM table1
INNER JOIN table2
ON table1.column_name = table2.column_name;



Joins (cont'd)

 INNER JOIN
 Example

36

SELECT Company.Name, Product.Name, Quantity 
FROM Company INNER JOIN Supply
ON Company.CompanyID = Supply.CompanyID
INNER JOIN Product
ON Supply.ProductID = Product.ProductID

SELECT Company.CompanyID, Name, ProductID 
FROM Company INNER JOIN Supply
ON Company.CompanyID = Supply.CompanyID



Joins (cont'd)

 LEFT JOIN
 returns all records from the left table 

(table1), and the matching records from the 
right table (table2). The result is 0 records 
from the right side, if there is no match.

 Syntax

37

SELECT column_name(s)
FROM table1 LEFT JOIN table2
ON table1.column_name = table2.column_name;



Joins (cont'd)

 LEFT JOIN
 Example

38

SELECT Company.Name, Supply.ProductID
FROM Company LEFT JOIN Supply
ON Company.CompanyID = Supply.CompanyID



Joins (cont'd)

 RIGHT JOIN
 returns all records from the right table 

(table2), and the matching records from the 
left table (table1). The result is 0 records 
from the left side, if there is no match.

 Syntax

39

SELECT column_name(s)
FROM table1 RIGHT JOIN table2
ON table1.column_name = table2.column_name;



Joins (cont'd)

 FULL OUTER JOIN
 returns all records when there is a match in 

left (table1) or right (table2) table records.
 FULL OUTER JOIN and FULL JOIN are the 

same.
 Syntax

40

SELECT column_name(s)
FROM table1 FULL OUTER JOIN table2
ON table1.column_name = table2.column_name
WHERE condition;



Joins (cont'd)

 FULL OUTER JOIN
 Example

41

SELECT Company.Name, Supply.ProductID
FROM Company FULL OUTER JOIN Supply
ON Company.CompanyID = Supply.CompanyID



Joins (cont'd)

 Self Join
 A self join is a regular join, but the table 

is joined with itself.
 Syntax

 Example

42

SELECT column_name(s)
FROM table1 T1, table1 T2
WHERE condition;

SELECT A.Name, B.Name
FROM Company A, Company B
WHERE A.CompanyID <> B.CompanyID
AND A.Address = B.Address



UNION Operator

 The UNION operator is used to combine the 
result-set of two or more SELECT statements.
 Every SELECT statement within UNION must have 

the same number of columns
 The columns must also have similar data types
 The columns in every SELECT statement must also be 

in the same order

 Syntax

 The UNION operator selects only distinct values 
by default. To allow duplicate values, use 
UNION ALL

43

SELECT column_name(s) FROM table1
UNION
SELECT column_name(s) FROM table2;



UNION Operator (cont'd)

 Example

44

SELECT CompanyID FROM Supply
WHERE ProductID = 1
UNION
SELECT CompanyID FROM Supply
WHERE ProductID = 2



INTERSECT Operator

 Return to the result-set that appear 
in both tables

 Example

45

SELECT CompanyID FROM Supply
WHERE ProductID = 1
INTERSECT
SELECT CompanyID FROM Supply
WHERE ProductID = 2



EXCEPT Operator

 Return to the result-set that appear 
in the first table and not in the 
second

 Example

46

SELECT CompanyID FROM Supply
WHERE ProductID = 1
EXCEPT
SELECT CompanyID FROM Supply
WHERE ProductID = 2



GROUP BY Statement

 The GROUP BY statement groups rows that 
have the same values into summary rows

 The GROUP BY statement is often used with 
aggregate functions (COUNT(), MAX(), MIN(), 
SUM(), AVG()) to group the result-set by one 
or more columns.

 Syntax

47

SELECT column_name(s)
FROM table_name
WHERE condition
GROUP BY column_name(s)
ORDER BY column_name(s);

SELECT COUNT(CompanyID), Address
FROM Company
GROUP BY Address



GROUP BY Statement (cont'd)

 HAVING Clause
 The HAVING clause was added to SQL because the 

WHERE keyword cannot be used with aggregate 
functions.

 Syntax

 Example

48

SELECT column_name(s)
FROM table_name
WHERE condition
GROUP BY column_name(s)
HAVING condition
ORDER BY column_name(s);

SELECT COUNT(CompanyID), Address
FROM Company
GROUP BY Address
HAVING COUNT(CompanyID)>1



EXISTS Operator

 The EXISTS operator is used to test for the 
existence of any record in a subquery.

 The EXISTS operator returns TRUE if the 
subquery returns one or more records.

 Syntax

49

SELECT column_name(s)
FROM table_name
WHERE EXISTS
(SELECT column_name FROM table_name WHERE condition);



EXISTS Operator (cont'd)

 Example

50

SELECT Company.Name
FROM Company
WHERE EXISTS(SELECT ProductID FROM Supply
WHERE Company.CompanyID = Supply.CompanyID)



ANY and ALL Operators

 The ANY and ALL operators allow you to 
perform a comparison between a single column 
value and a range of other values.

 The ANY operator:
 returns a boolean value as a result
 returns TRUE if ANY of the subquery values meet the 

condition
 ANY means that the condition will be true if the 

operation is true for any of the values in the range.
 Syntax

51

SELECT column_name(s)
FROM table_name
WHERE column_name operator ANY

(SELECT column_name
FROM table_name
WHERE condition);



ANY and ALL Operators (cont'd)

 The ALL operator:
 returns a boolean value as a result
 returns TRUE if ALL of the subquery values meet the 

condition
 is used with SELECT, WHERE and HAVING statements
 ALL means that the condition will be true only if the 

operation is true for all values in the range. 
 Syntax

52

SELECT column_name(s)
FROM table_name
WHERE column_name operator ALL

(SELECT column_name
FROM table_name
WHERE condition);



CASE Statement

 The CASE statement goes through conditions 
and returns a value when the first condition is 
met (like an if-then-else statement). So, once 
a condition is true, it will stop reading and 
return the result. If no conditions are true, it 
returns the value in the ELSE clause.

 If there is no ELSE part and no conditions are 
true, it returns NULL.

 Syntax

53

CASE
WHEN condition1 THEN result1
WHEN condition2 THEN result2
WHEN conditionN THEN resultN
ELSE result

END;



CASE Statement (cont'd)

 Example

54

SELECT CompanyID, ProductID,
CASE
WHEN Quantity <1000 THEN 'Small'
WHEN Quantity <3000 THEN 'Medium'
ELSE 'Large'
END
FROM Supply 



SQL Operators

 Arithmetic Operators

55

DescriptionOperator

Add+

Subtract-

Multiply*

Divide/

Modulo%

SELECT 2 + 3



SQL Operators (cont'd)

 Bitwise Operators

56

DescriptionOperator

Bitwise AND&

Bitwise OR|

Bitwise exclusive OR^

SELECT 2 | 3



SQL Operators (cont'd)

 Comparison Operators

57

DescriptionOperator

Equal to=

Greater than>

Less than<

Greater than or equal to>=

Less than or equal to<=

Not equal to<>



SQL Operators (cont'd)

 Logical Operators

58

DescriptionOperator

TRUE if all of the subquery values meet the conditionALL

TRUE if all the conditions separated by AND is TRUEAND

TRUE if any of the subquery values meet the conditionANY

TRUE if the operand is within the range of comparisonsBETWEEN

TRUE if the subquery returns one or more recordsEXISTS

TRUE if the operand is equal to one of a list of expressionsIN

TRUE if the operand matches a patternLIKE
Displays a record if the condition(s) is NOT TRUENOT

TRUE if any of the conditions separated by OR is TRUEOR

TRUE if any of the subquery values meet the conditionSOME



Functions

 MIN() and MAX()
 COUNT(), AVG() and SUM()

59



Functions (cont'd)

 MIN() and MAX()
 The MIN() function returns the smallest value of the 

selected column.
 The MAX() function returns the largest value of the 

selected column.
 Syntax

 Example

60

SELECT MIN(column_name)
FROM table_name
WHERE condition;

SELECT MAX(column_name)
FROM table_name
WHERE condition;

SELECT MIN(Quantity)
FROM Supply

SELECT MAX(Price)
FROM Product



Functions (cont'd)

 COUNT(), AVG() and SUM()
 The COUNT() function returns the number of rows 

that matches a specified criterion.
 The AVG() function returns the average value of a 

numeric column. 
 The SUM() function returns the total sum of a 

numeric column. 
 Syntax

61

SELECT COUNT/AVG/SUM(column_name)
FROM table_name
WHERE condition;



Functions (cont'd)

 COUNT(), AVG() and SUM()
 Example

62

SELECT COUNT(CompanyID)
FROM Company

SELECT COUNT(CompanyID), Address
FROM Company
GROUP BY Address

SELECT AVG(Quantity)
FROM Supply

SELECT SUM(NumberofEmployee)
FROM Company
WHERE Address LIKE '%Japan%'



Practice

Hands-on with the BikeStores sample database 
and Lecturers-Projects-Participation

63


