
1

View

NGUYEN HongPhuong
Email: phuongnh@soict.hust.edu.vn
Site: http://users.soict.hust.edu.vn/phuongnh
Face: https://www.facebook.com/phuongnhbk
Hanoi University of Science and Technology

Contents

 1. Introduction
 2. Advantages of views
 3. Types of Views
 4. Creating a view
 5. Querying on a view
 6. Modifying a view
 7. Deleting a view
 8. Indexed views

2

1. Introduction

 In SQL, a view is a virtual table based on
the result-set of an SQL statement.

 A view may consist of columns from
multiple tables using joins or just a subset
of columns of a single table. This makes
views useful for abstracting or hiding
complex queries.

 You can add SQL functions, WHERE, and
JOIN statements to a view and present the
data as if the data were coming from one
single table.

3

1. Introduction (2)

 By definition, views do not store data
except for indexed views.

4

2. Advantages of views

Generally speaking, views provide the
following advantages:
 Security
 You can restrict users to access directly to

a table and allow them to access a subset
of data via views.

 For example, you can allow users to access
customer name, phone, email via a view
but restrict them to access the bank
account and other sensitive information.

5

2. Advantages of views (2)

 Simplicity
 A relational database may have many tables

with complex relationships (e.g., 1-1, 1-n) that
make it difficult to navigate. However, you can
simplify the complex queries with joins and
conditions using a set of views.

 Consistency
 Sometimes, you need to write a complex

formula or logic in every query. To make it
consistent, you can hide the complex queries
logic and calculations in views. Once views are
defined, you can refer the logic from the views
rather than rewriting it in separate queries. 6

3. Types of Views

 Besides the standard role of basic user-
defined views, SQL Server provides the
following types of views that serve special
purposes in a database:
 Indexed Views
 Partitioned Views
 System Views

7

Indexed Views

 An indexed view is a view that has been
materialized. This means the view definition has
been computed and the resulting data stored just
like a table. You index a view by creating a
unique clustered index on it. Indexed views can
dramatically improve the performance of some
types of queries. Indexed views work best for
queries that aggregate many rows. They are not
well-suited for underlying data sets that are
frequently updated.

8

Partitioned Views

 A partitioned view joins horizontally
partitioned data from a set of
member tables across one or more
servers. This makes the data appear
as if from one table. A view that joins
member tables on the same instance
of SQL Server is a local partitioned
view.

9

System Views

 System views expose catalog
metadata. You can use system views
to return information about the
instance of SQL Server or the objects
defined in the instance. For example,
you can query the sys.databases
catalog view to return information
about the user-defined databases
available in the instance.

10

4. Creating a view

 Limitations and Restrictions
 A view can be created only in the current

database.
 A view can have a maximum of 1,024

columns.

 Syntax

11

CREATE VIEW view_name AS
SELECT column1, column2, ...
FROM table_name
WHERE condition;

4. Creating a view (2)

 Examples

12

CREATE VIEW vCompany1 AS
SELECT Name, Address, Telephone
FROM Company

CREATE VIEW vCompany2 AS
SELECT Name, Address, Telephone
FROM Company
WHERE Address LIKE '%Japan%'

CREATE VIEW vComSupPro1(ComName, ProdName, Qty) AS
SELECT Company.Name, Product.Name, Quantity
FROM Company INNER JOIN Supply ON Company.CompanyID
= Supply.CompanyID
INNER JOIN Product ON Supply.ProductID = Product.ProductID

5. Querying on a view

 Later, you can reference to the view in the
SELECT statement like a table as follows:

13

SELECT * FROM vCompany1
WHERE Address LIKE'%Germany%';

 When receiving this query, SQL Server executes
the following query:

SELECT * FROM
(SELECT Name, Address, Telephone
FROM Company)
WHERE Address LIKE'%Germany%';

6. Modifying a view

 Modifying a view does not affect any
dependent objects, such as stored
procedures or triggers, unless the
definition of the view changes in such a
way that the dependent object is no longer
valid.

 ALTER VIEW can be applied to indexed
views; however, ALTER VIEW
unconditionally drops all indexes on the
view.

14

6. Modifying a view (2)

 Syntax

15

ALTER VIEW view_name
AS
SQL_statement

 Example

ALTER VIEW vCompany2 AS
SELECT Name, Address, Telephone
FROM Company
WHERE Address LIKE '%Germany%'

7. Deleting a view

 Syntax

16

DROP VIEW view_name;

 Example

DROP VIEW vCompany1;
DROP VIEW vCompany2;
DROP VIEW vComSupPro1;

8. Indexed view

 Regular views are the saved queries that
provide some benefits such as query
simplicity, business logic consistency, and
security. However, they do not improve
the underlying query performance.

 Unlike regular views, indexed views are
materialized views that stores data
physically like a table hence may provide
some the performance benefit if they are
used appropriately.

17

8. Indexed view (2)

 To create an indexed view, you use the
following steps:
 First, create a view that uses the WITH

SCHEMABINDING option which binds the
view to the schema of the underlying
tables.

 Second, create a unique clustered index on
the view. This materializes the view.

18

8. Indexed view (3)

 Because of the WITH SCHEMABINDING
option, if you want to change the
structure of the underlying tables which
affect the indexed view’s definition, you
must drop the indexed view first before
applying the changes.

19

8. Indexed view (4)

 An example

20

8. Indexed view (5)

 An example

21

CREATE VIEW product_master
WITH SCHEMABINDING
AS
SELECT

product_id, product_name, model_year, list_price,
brand_name, category_name
FROM production.products p INNER JOIN
production.brands b

ON b.brand_id = p.brand_id
INNER JOIN production.categories c ON c.category_id =
p.category_id;

8. Indexed view (6)

 Before creating a unique clustered index for the
view, let’s examine the query I/O cost statistics
by querying data from a regular view and using
the SET STATISTICS IO command:

22

SET STATISTICS IO ON
GO
SELECT *
FROM production.product_master
ORDER BY product_name;
GO

 Let’s add a unique clustered index to the view:
CREATE UNIQUE CLUSTERED INDEX

ucidx_product_id
ON production.product_master(product_id);

8. Indexed view (7)

 You can also add a non-clustered index
on the product_name column of the
view:

23

CREATE NONCLUSTERED INDEX
ucidx_product_name

ON production.product_master(product_name);

24

