
1

Stored Procedure & Trigger

NGUYEN HongPhuong
Email: phuongnh@soict.hust.edu.vn
Site: http://users.soict.hust.edu.vn/phuongnh
Face: https://www.facebook.com/phuongnhbk
Hanoi University of Science and Technology

Contents

1. Stored Procedure
1.1. Introduction
1.2. Syntax

2. Trigger
2.1. Introduction
2.2. Syntax

2

1. Stored Procedure

1.1. Introduction
1.2. Syntax

3

1.1. Introduction to stored procedure

 Concepts:
 A stored procedure (SP) is a set of

Structured Query Language (SQL)
statements with an assigned name, which
are stored in a relational database
management system as a group, so it can
be reused and shared by multiple
programs.

 Stored procedures can access or modify
data in a database, but it is not tied to a
specific database or object, which offers a
number of advantages.

4

1.1. Introduction to stored procedure

 Benefits:
 provides an important layer of security

between the user interface and the
database.

 preserves data integrity because
information is entered in a consistent
manner.

 improves productivity because statements
in a stored procedure only must be written
once.

 offer advantages over embedding queries
in a graphical user interface (GUI).

5

1.1. Introduction to stored procedure

 Since stored procedures are modular, it is
easier to troubleshoot when a problem arises
in an application.

 Stored procedures are also tunable, which
eliminates the need to modify the GUI source
code to improve its performance. It's easier to
code stored procedures than to build a query
through a GUI.

 can reduce network traffic between clients and
servers, because the commands are executed
as a single batch of code. This means only the
call to execute the procedure is sent over a
network, instead of every single line of code
being sent individually.

6

1.1. Introduction to stored procedure

 Stored procedures in SQL Server can
accept input parameters and return
multiple values of output parameters;

7

1.1. Introduction to stored procedure

 Stored procedure vs. function
 Stored procedures and functions can be

used to accomplish the same task. Both
can be custom-defined as part of any
application, but functions are designed to
send their output to a query or T-SQL
statement. Stored procedures are designed
to return outputs to the application, while a
user-defined function returns table
variables and cannot change the server
environment or operating system
environment.

8

1.1. Introduction to stored procedure

 There are 3 types:
 System SP: provided by SQL Server, whose

name starts with prefix "sp_", is used to
manage SQL Server and display database
and user-information.

 SP extensions: dynamic link libraries
(DLLs), written in languages like C, C ++,
..., that SQL Server can load and execute.
 External SP: name starts with "xp_"
 User-defined SP

9

1.2. Syntax

 You can use T-SQL, Enterprise Manager
or wizard to create SP.

 Syntax in SQL Server:

10

CREATE PROC[EDURE] procedure_name
{;number}
[{@parameter data_type}[=default |
NULL][VARYING][OUT PUT]]
[WITH {RECOMPILE | ENCRYPTION |
RECOMPILE,ENCRYPTION}]
[FOR REPLICATION]
AS sql_statement

Example

 Run this procedure:
 EXEC pCompany

11

USE CompanySupplyProduct
GO
IF EXISTS(SELECT name FROM sysobjects
WHERE name='pCompany' AND type='P')
DROP PROCEDURE pCompany
GO
CREATE PROCEDURE pCompany
AS SELECT Name, NumberofEmployee
FROM Company
ORDER BY Name DESC
GO

 To see the content of a SP:
 EXEC sp_helptext pCompany

 Drop a SP:
 DROP PROCEDURE procedure_name

12

Creating a group of SP

 To get a list of name and address of the
companies, use the following command:
 EXEC group_sp;3

13

CREATE PROC group_sp
AS SELECT * FROM Company
GO
CREATE PROC group_sp
AS SELECT Name FROM Company
GO
CREATE PROC group_sp
AS SELECT Name, Address FROM Company
GO

Parameters

 @parameter data_type [=default | NULL]
[VARYING] [OUTPUT]

 @parameter: name of parameter inside the
procedure, can declare up to 1024 parameters
inside a SP.

 data_type: any data type defined by the system
or user-defined, except the image data type.

 Default: Specifies the default value for the
parameter.

 VARYING: Applies to the returned recordset.
 OUTPUT: Defines this as a return parameter.

14

An example

 Write a stored procedure that takes 5
parameters as input, calculates the
average, and outputs it:

15

CREATE PROCEDURE scores
@score1 smallint,
@score2 smallint,
@score3 smallint,
@score4 smallint,
@score5 smallint,
@myAvg smallint OUTPUT
AS SELECT @myAvg = (@score1 + @score2 +
@score3 + @score4 + @score5) / 5

Pass/receive values for/from parameters

 Transmitting in the order

16

DECLARE @AvgScore smallint
EXEC scores 10, 9, 8, 8, 10, @AvgScore OUTPUT
SELECT 'The Average Score is: ',@AvgScore
Go

 Transmitting in any order

DECLARE @AvgScore smallint
EXEC scores
@score1=10, @score3=9, @score2=8, @score4=8,
@score5=10, @myAvg = @AvgScore OUTPUT
SELECT 'The Average Score is: ',@AvgScore
Go

Pass/receive values for/from parameters

 RETURN

17

CREATE PROC MyReturn
@t1 smallint, @t2 smallint, @retval smallint
AS SELECT @retval = @t1 + @t2
RETURN @retval

DECLARE @myReturnValue smallint
EXEC @myReturnValue = MyReturn 9, 9, 0
SELECT 'The return value is: ',@myReturnValue

 Run:

 WITH RECOMPILE option:
 in the CREATE PROCEDURE statement: The

whole procedure is recompiled every time it
runs, the procedure can be optimized for new
parameters.

 in the EXEC PROCEDURE statement: Compile
the stored procedure for that execution and
store the new plan in the procedure buffer for
later EXEC PROCEDURE commands.

 If a SP is created with the ENCRYPTION
option => its contents cannot be viewed

18

An example

19

USE CompanySupplyProduct
GO
IF EXISTS(SELECT name FROM sysobjects
WHERE name='pCompany' AND type='P')
DROP PROCEDURE pCompany
GO
CREATE PROCEDURE pCompany WITH ENCRYPTION
AS SELECT Name, NumberofEmployee
FROM Company
ORDER BY Name DESC
GO

EXEC sp_helptext pCompany;

2. Trigger

2.1. Introduction
2.2. Syntax

20

2.1 Introduction

 A special stored procedure, which is
executed automatically when there are
data-changing events such as Update,
Insert or Delete.

 Used to ensure data integrity or to
implement certain business rules.

 When to use triggers?
 when other data integrity measures like

Constraint cannot satisfy the application's
requirements

21

2.1 Introduction

 Constraint is a declared data integrity type:
check the data before allowing it to be
entered into the table

 The trigger is of procedural data integrity,
so the Insert, Update, Delete happens and
then activates the trigger.

 Sometimes, due to the need to change
chains, triggers can be used

 Characteristics of trigger
 A trigger can do multiple jobs, which can

be triggered by multiple events

22

2.1 Introduction

 Triggers cannot be created on temporary or
system tables

 Triggers can only be triggered automatically
by events and cannot be manually run.

 A trigger can be applied to a view
 When trigger is activated
 The newly inserted data will be contained in the

"inserted" table.
 Newly deleted data will be stored in the

"deleted" table.
 These are two temporary tables that reside in

memory, and only have values inside the
trigger

23

2.2. Syntax

 You can use T-SQL or Enterprise
Manager to create triggers

 The following statements must not be
used in trigger definitions: ALTER
DATABASE, CREATE DATABASE, DISK
INIT, DISK RESIZE, DROP DATABASE,
LOAD DATABASE, LOAD LOG,
RECONFIGURE, RESTORE DATABASE,
RESTORE LOG

24

 Temporary tables: deleted and inserted
 referred to as the real table but stored in

internal memory, not on disk.
 Values in this table are only accessible in

triggers. Once the trigger is completed, the
tables are no longer accessible.

25

Example

 Create the AddCompany trigger on the
Company table: print a message whenever
data is added to the table

26

USE CompanySupplyProduct
GO
IF EXISTS(SELECT name FROM sysobjects
WHERE name='AddCompany' AND Type='TR')
DROP TRIGGER AddCompany
GO
CREATE TRIGGER AddCompany
ON Company
FOR INSERT
AS
PRINT 'The Company table has just been inserted data'
GO

Create deleted trigger

 Create the table DeletedCompany to store the
deleted item from the Company table

 This table should be the same to Company

27

CREATE TABLE [DeletedCompany] (
[CompanyID] int,
[Name] varchar(40),
[NumberofEmployee] int,
[Address] varchar(50),
[Telephone] char(15),
[EstablishmentDay] date,
PRIMARY KEY ([CompanyID])

);

Create deleted trigger

28

 Create deleted trigger on the Company table for
the delete event

CREATE TRIGGER tg_DeleteCompany
ON Company
FOR DELETE
AS
INSERT INTO DeletedCompany SELECT * FROM deleted

Create update trigger

29

CREATE TRIGGER tg_CheckPrice
ON Product
FOR UPDATE
AS
DECLARE @oldprice decimal(10,2), @newprice decimal(10,2)
SELECT @oldprice = Price FROM deleted
PRINT 'Old price ='
PRINT CONVERT(varchar(6), @oldprice)
SELECT @newprice = Price FROM inserted
PRINT 'New price ='
PRINT CONVERT(varchar(6), @newprice)
IF(@newprice > (@oldprice*1.10))
BEGIN

PRINT 'New price increased over 10%, not update'
ROLLBACK

END
ELSE
PRINT 'New price is accepted'

30

