

TRƯỜNG ðẠI HỌC BÁCH KHOA HÀ N ỘI
KHOA CÔNG NGH Ệ THÔNG TIN

-----o0o-----

Web Information System
Version 1.0

NGUYỄN HỒNG PHƯƠNG
TRƯƠNG DIỆU LINH

Hà Nội, tháng 6-2009

Contents
Chapter 1... 10

1. Brief history of Internet and World Wide Web ...10
1.1 History of Internet... 10

1.1.1. Packet switching ... 10
1.1.2. Networks that led to the Internet... 10
1.1.3 TCP/IP.. 12
1.1.4. ARPANET to Several Federal Wide Area Networks: MILNET, NSI, and
NSFNet ... 13
1.1.5. Transition towards the Internet ... 15
1.1.6. TCP becomes worldwide .. 15

1.2. History of World Wide Web.. 16
1.2.1- 1980-1991: Development of the World Wide Web.................................... 16
1.2.2- 1992-1995: Growth of the WWW.. 17
1.2.3- 1996-1998: Commercialization of the WWW.. 18
1.2.4- 1999-2001: "Dot-com" boom and bust... 18
1.2.5- 2002-Present: The Web becomes ubiquitous ... 18

1.3 Statistics on the number of internet user in world over the years....................... 19
1.4 Definition of WWW .. 20

2.What is NOT a web system... 20
2.1.Examples of Not web system.. 21

2.1.1.Email .. 21
2.1.2. FTP.. 23

3. Typical application.. 24
3.1. Blog.. 24
3.2. SNS .. 25
3.3 Search engine.. 25
3.4. Google map.. 26

4. Social Impact... 27
4.1. Advantages... 28
4.2. Disadvantages ... 28

Chapter 2... 29
1. Server-client model... 29

1.1. Introduce client-server model of web system .. 29
1.2. Example of some Web server .. 31
1.3. Example of some Web client: .. 33

2. DNS and URL.. 37
2.1. DNS (Domain Name System).. 37
2.2. URL.. 39

3.HTTP Request and Response... 40
3.1.HTTP Protocol Overview ... 40
3.2. Request Message Structure .. 42
3.3. Response Message Structure.. 45

4.Character Encoding... 46
4.1.Unicode... 46

4.1.1.Over view... 46
4.1.2.Character sets, coded character sets, and encodings.................................... 47

4.1.3.One character set, multiple encodings ... 48
4.1.4.Character escapes... 49
4.1.5.Document character set.. 49

4.2.Different Encodings .. 49
4.2.1.UTF-8... 49
4.2.2.EUC.. 51

5.Media Type... 52
5.1.Type text: Human-readable text and source code... 53
5.2.Type video: Video... 53
5.3. Type image... 54
5.4. Type audio: Audio ... 55
5.5. How multimedia data are included in HTTP message....................................... 55

Chapter 3... 57
1. Markup and rendering ... 57

1.1. Markup language ... 57
1.2. Visualise an HTML document using an web browser....................................... 58

2. Syntax of HTML ... 59
2.1. Structure of an HTML Document.. 59
2.2. Introduce basic tags.. 60

2.2.1.Page formatting tags: ... 60
2.2.2.Text style tags: ... 61
2.2.3. Tables.. 61
2.2.4.The Image Tag and the Src Attribute... 62
2.2.5.Hyperlinks, Anchors, and Links ..62

2.2. Introduce frame tags and input elements ... 63
2.2.1. Frame tags... 63
2.2.2 HTML Input Elements... 64

Chapter 4... 67
1.Stylesheet ... 67

1.1What are style sheets?.. 67
1.2 How do I use a style sheet?... 67
1.3 What are the advantages of style sheets?.. 67
1.4 The advantages of separating structure and presentation 68
1.5 Example .. 68

2. Accessibility... 72
2.1 Structure vs. Presentation.. 73
2.2 Text equivalents .. 73

2.2.1 Overview of technologies .. 74
2.2.2 Backward Compatibility .. 74
2.2.3 Alternative pages ... 75

2.3 Device-independent control for embedded interfaces .. 76
2.4 Navigation... 76
2.5 Comprehension ... 77

2.5.1 Writing style... 77
2.5.2 Multimedia equivalents.. 78

2.6 Content negotiation... 78
2.7 Automatic page refresh... 78
2.8 Screen flicker .. 79

2.9 Bundled documents... 79
2.10 Validation.. 79

2.10.1 Automatic validators.. 79
2.10.2 Repair tools .. 80
2.10.3 User scenarios .. 80
2.10.4 Spell and grammar checks ... 81

2.11 Browser Support ... 81
2.12 Technologies Reviewed for Accessibility .. 81
2.13 Audio information... 81
2.14 Visual information and motion ... 82
2.15 Collated text transcripts .. 82

3. Link CSS with HTML .. 83
3.1 In-line... 83
3.2 Internal ... 83
3.3 External .. 84

4. Systax of CSS... 85
4.1 What is CSS? .. 86
4.2 CSS Syntax ... 86
4.3 The simple CSS example.. 89

Chapter 5 ... 91
1.Dynamic Pages... 91

1.1 What are Dynamic Pages.. 91
1.2 The difference between static and dynamic page web.. 91
1.3 The Advantage of Dynamic Pages.. 92
1.4 The Disadvantages of Dynamic Pages..93
1.5 Example Dynamic pages... 93

2 Client-side and Server-side... 94
2.1 Server side... 94
2.2 Client side ... 94

3. Three-Tier sytem... 95
3.1 Presentation Tier ... 96
3.2 Application Tier (Business Logic/Logic Tier).. 96
3.3 Data Tier ... 96

Chapter 6... 98
1. Scritng in a web browser... 98

1.1 JavaScript.. 98
1.2 Applet.. 98

1.2.1 Advantages of Applet: ... 98
1.2.2 Disadvantages of Java Applet:... 99

1.3 Flash.. 99
1.3.1 What do I have against Flash? ...100
1.3.2 What I like about Flash development?... 100
1.3.3 So when should you use Flash? ... 100

2.Javascript.. 101
2.1 Syntax javascript... 101

2.1.1 JavaScript Variables... 101
2.1.2 JavaScript Functions .. 102

Exlanation of code .. 104

2.1.4 Control structures in JavaScript ... 104
2.2 Using javascript to varity data in a form... 108

2.2.1 Description... 109
2.2.2 Introduction.. 109
2.2.3 Data Validation Precautions .. 110
2.2.4 Available validation functions ... 111
2.2.5 Using the Validation Functions ... 111
2.2.6 Specifying Custom Messages .. 112
2.2.7 Form Validation Command ... 112
2.2.8 Creating Custom Validation Functions.. 113
2.2.9 Smart Validation Behavior .. 114
2.2.10 Technical Specifications of the Validation Function............................... 115

Chapter 7 ... 117
1. CGI ... 117

1.1 What is CGI?... 117
1.2 How CGI works .. 119
1.3 Example web using CGI langueges used for CGI .. 119

2. Form, GET and POST.. 120
3. PHP... 122
3.1 PHP Introduction .. 122

3.2 Php Syntax .. 123
3.3 PHP MySQL Connect to a Database .. 124

Chapter 8... 127
1.SESSION MANAGEMENT ... 127

1.1.Stateless Nature of HTTP ... 127
1.2.Need of Tracking Client Identity and State .. 128
1.3.Session Concept .. 128
1.4.Some of Session Tracking Techniques... 129

1.4.1.URL Rewriting... 129
1.4.2.Hidden Form Field... 129
1.4.3.Cookies (See more on Chap2) ... 130

2.COOKIE ... 132
2.1.Cookie Overview .. 132
2.2.Cookie function... 132
2.3.Type of Cookie ... 133

2.3.1.Session Cookies ... 133
2.3.2.“Persistent” Cookies – Permenant Cookie- Stored Cookie 133

3.SERVLET ... 135
3.1.Static Web vs Dynamic Web .. 135
3.2.CGI-Solution for dynamic content generation.. 135
3.3.Shortcomings of CGI .. 136
3.4.Servlet- A Solution to CGI-Problem... 137
3.5.Merits and Demerits of Servlet. .. 138
3.6.Web container Concept... 138
3.7.Servlet’s Life Cycle .. 138
3.8.HTTP Request Processing Life Cycle .. 139
3.9.Implement Servlet in Java... 139

4.JAVA SERVER PAGES... 141

4.1.What is a JSP Page.. 141
4.2.Benefits of JSP.. 141
4.3.Servlet and JSP ... 142
4.4.Architecture of JSP ... 142
4.5.Translation Unit .. 143
4.6.JSP Life Cycle... 143
4.7.JSP Scripting elements.. 144

4.7.1.Scriptlets .. 144
4.7.2.Expression tag.. 144
4.7.3.Declaration tag... 144
4.7.4.Comments .. 145

4.8.JSP Directives ... 145
4.8.1.Page Directives .. 145
4.8.2.Include Directives .. 146
4.8.3.TagLib Directive.. 147

4.9.JSP Action... 147
Chapter 9... 149

1.Public Key Infrastructure ... 149
1.1.What is PKI ? .. 149
1.2.Components of PKI... 149
1.3.Issuing a certificate ... 151
1.4.CA architectures.. 152

1.4.1.Single Architecture .. 152
1.4.2.Hierarchical Architecture... 152
1.4.3.Mesh Architecture.. 153

1.5.PKI Architecture Overview .. 153
1.6.Digital Signature ... 154

1.6.1.Need of Digital Signature .. 155
1.6.2.What the digital signature made of ? ... 155
1.6.3.Working of digital signature .. 155
1.6.4.Validating data integrity .. 156
1.6.5.Drawback of digital signature.. 156

1.7.Digital Certificates .. 157
1.7.1.Standards and features of digital certificates ... 157
1.7.2.Verify the authenticity of the sender.. 158

2.Secure Socket Layer.. 161
2.1.What is SSL?... 161
2.2.SSL Feature... 161
2.3.SSL with client browser and server .. 161
2.4.Detail in SSL Handsake .. 163

2.4.1.Simple TLS/SSL handshake ... 163
2.4.2.Client-authenticated TLS/SSL handshake .. 165
2.4.3.Resumed TLS/SSL handshake by Session ID ... 166

2.5.TSL/SSL record protocol.. 167
2.6.Handshake protocol .. 169
2.7.Alert protocol .. 169
2.8.ChangeCipherSpec protocol ... 171
2.9.Application protocol ... 171

2.10.Example of Certificate .. 172
3.HTTPS .. 175

3.1.Overview of HTTPS ... 175
3.2.HTTPS Function ... 175
3.3.Browser integration... 176
3.4.Application of HTTPS .. 176

3.4.1.Online payment and Online Shopping... 176
3.4.2.Internet Banking... 179
3.4.3.Manage Certificate... 181

Chapter 10... 183
1.Clustering.. 183

1.1.Cluster ... 183
1.2.Cluster categorizations.. 183

1.2.1.High-availability (HA) clusters.. 183
1.2.2.Load-balancing clusters ... 184
1.2.3.Compute clusters.. 184
1.2.4.Grid computing .. 184

1.3.Technologies ... 185
1.4.Example of clustered web server system.. 185

2.Load balancing... 188
2.1.What ‘s Load balancing .. 188
2.2.For Internet Service... 188
2.3.Persistence... 189
2.4.Load balancer features .. 190
2.5.Implement Load balancing ... 191

2.5.1.Local DNS Caching ... 191
2.5.2.Using Standard DNS for load balancing.. 192
2.5.3.HTTP Redirect ... 192

2.6.Some Alogrithm for Load balancing .. 194
2.6.1.Random.. 194
2.6.2.Round Robin .. 194
2.6.3.Weighted Round Robin (called Ratio on the BIG-IP) 194
2.6.4.Dynamic Round Robin (Called Dynamic Ratio on the BIG-IP) 195
2.6.5.Fastest .. 195
2.6.6.Least Connections.. 195
2.6.7.Observed .. 196
2.6.8.Predictive ... 196
2.6.9.Locality Aware Request Distribution .. 196
2.6.10.Genetic Based GDE Approach in Load Balancing.................................. 197

3.Round robin DNS... 199
3.1.What ‘s round robin DNS ... 199
3.2.Implement Round Robin DNS.. 199

3.2.1.DNS load balancing implementation (Multiple CNAMES)...................... 199
3.2.2.DNS load balancing implementation (Multiple A Records)...................... 200

3.3.Performance .. 200
3.4.Drawbacks... 201

Chapter 11... 202
1.Web Services... 202

1.1. Concept of WebServices.. 202
1.2.Generic Architecture of WebServices .. 202
1.3.Life Cycle of a Web Service... 203
1.4.XML Web Services... 204

1.4.1.Concept of XML Web Services... 204
1.4.2.XML Web Services Infrastructure... 205
1.4.3.Client and XML Web Service Communication... 207

1.5 Advantages and Disadvantages compared to the CORBA & RMI 208
1.5.1.Advantages... 208
1.5.2.Disadvantages .. 208

1.6.SDL (Service Description Language)... 208
1.6.1The need of SDL... 209
1.6.2.Definition of SDL .. 209

1.7.WSDL (Web Service Description Language)... 211
1.7.1.Concept of WSDL.. 211
1.7.2.Element of a WSDL File.. 212

1.8.SOAP (Simple Object Access Protocol).. 212
1.8.1.Overview SOAP... 212
1.8.2.SOAP Specifications.. 213
1.8.3.Working of SOAP.. 214
1.8.4.SOAP Message Architecture ... 215
1.8.5.SOAP request message and SOAP response message............................... 216
11.8.6.SOAP Data Types .. 217

1.9.UDDI... 218
1.9.1.Overview of UDDI .. 218
1.9.2.Purpose... 219
1.9.3.Registry Type... 219
1.9.4.UDDI Architecture... 220
1.9.5.Working of UDDI .. 221
1.9.6.Data Structures... 222

1.10.XML (See more in next chapter). ... 222
2.XML .. 224

2.1.Evolution of XML... 224
2.2.Features of XML... 224
2.3.XML Markup.. 224
2.4.Benefits of XML... 225
2.5.XML Document Structure .. 225
2.6.XML Document Life Cycle .. 226
2.7.Well-formed XML document ... 226
2.8.Classification of character data... 227

3.XHTML .. 228
3.1.What is XHTML... 228
3.2. Why the need for XHTML?... 228
3.3. Valid XHTML documents ... 228

3.3.1.Root element .. 229
3.3.2. DOCTYPEs... 229
3.3.3. XML declaration... 230
3.3.4.Using XHTML with other namespaces ... 230

3.4.Differences with HTML. .. 231
3.4.1.Documents must be well-formed ... 231
3.4.2. Element and attribute names must be in lower case 231
3.4.3. For non-empty elements, end tags are required.. 232
3.4.4. Attribute values must always be quoted ... 232
3.4.5. Attribute Minimization ... 232
3.4.6. Empty Elements .. 233
3.4.7. White Space handling in attribute values.. 233
3.4.8. Script and Style elements.. 233

Chapter 12... 234
1 Web 2.0.. 234

1.1 definition... 234
1.2 Characteristics... 234
1.3 Examples... 239

2.DOM .. 240
2.1 Introduction... 240

3 AJAX .. 250
3.1 What is AJAX? ... 250
3.2 How does it work? .. 251
3.3 AJAX - applications popular .. 252
3.4 THE weakness of AJAX... 253

4 RIA .. 254
4.1 Concept of RIA... 254
4.2 Examples of RIA frameworks .. 254

Chapter 13... 260
1 Web 3.0... 260

1.1 The breakthrough of new media channels .. 260
1.2 definition... 260
1.3 Characteristics... 260

2 Metadata.. 262
2.1 Definitions... 262
2.2 Purpose.. 264
2.3 Examples of metadata ... 264
2.4 Use .. 265
2.5 Types of metadata ... 266

3 RDF.. 267
3.1 Introduction to RDF.. 267

3.1.1 Definitions.. 267
3.1.2 RDF - Examples of Use ... 268

RDF Example.. 278
4. SPARQL Query Language for RDF... 280

4.1 Introduction... 280
4.2 SPARQL Syntax ... 280

4.2..2 Syntax for Literals... 282
4.2..3 Syntax for Query Variables .. 284
4.2.4 Syntax for Blank Nodes... 284
4.2.5 Syntax for Triple Patterns .. 285
4.2.6 Predicate-Object Lists.. 286

4.2.7 Object Lists .. 286
4.2.8 RDF Collections... 287
4.2.9 rdf:type... 287

5.1. Introduction.. 288
5.2 The three sublanguages of OWL .. 289
5.3 Language Synopsis ... 291

5.3.1 OWL Lite Synopsis.. 291
5.3.2 OWL DL and Full Synopsis .. 292

5.4. Language Description of OWL Lite .. 293
5.4.1 OWL Lite RDF Schema Features .. 293
5.4.2 OWL Lite Equality and Inequality .. 294
5.4.3 OWL Lite Property Characteristics ... 295
5.4.4 OWL Lite Property Restrictions .. 296
5.4.5 OWL Lite Restricted Cardinality... 297
5.4.6 OWL Lite Class Intersection ...299
5.4.7 OWL Lite Header Information .. 299
5.4.8 OWL Lite Annotation Properties... 299
5.4.9 OWL Lite Versioning .. 299

5.5. Incremental Language Description of OWL DL and OWL Full 299

Chapter 1.
1. Brief history of Internet and World Wide Web
1.1 History of Internet

The Internet was the result of some visionary thinking by people in the early
1960s who saw great potential value in allowing computers to share information
on research and development in scientific and military fields.

J.C.R. Licklider of MIT, first proposed a global network of computers in 1962,
and moved over to the Defense Advanced Research Projects Agency (DARPA) in
late 1962 to head the work to develop it.

Leonard Kleinrock of MIT and later UCLA developed the theory of packet
switching, which was to form the basis of Internet connections.

Lawrence Roberts of MIT connected a Massachusetts computer with a
California computer in 1965 over dial-up telephone lines. It showed the feasibility
of wide area networking, but also showed that the telephone line's circuit
switching was inadequate. Kleinrock's packet switching theory was confirmed.
Roberts moved over to DARPA in 1966 and developed his plan for ARPANET.
These visionaries and many more left unnamed here are the real founders of the
Internet.

1.1.1. Packet switching

At the tip of the inter-networking problem lay the issue of connecting separate
physical networks to form one logical network, with much wasted capacity inside
the assorted separate networks.

During the 1960s, Donald Davies (NPL), Paul Baran (RAND Corporation),
and Leonard Kleinrock (MIT) developed and implemented packet switching. Early
networks used for the command and control of nuclear forces were message
switched, not packet-switched, although current strategic military networks are,
indeed, packet-switching and connectionless. Baran's research had approached
packet switching from studies of decentralisation to avoid combat damage
compromising the entire network

1.1.2. Networks that led to the Internet
 ARPANET

Promoted to the head of the information processing office at DARPA, Robert
Taylor intended to realize Licklider's ideas of an interconnected networking
system. Bringing in Larry Roberts from MIT, he initiated a project to build such a
network.

The first ARPANET link was established between the University of California,
Los Angeles and the Stanford Research Institute on 22:30 hours on October 29,
1969.

By December 5, 1969, a 4-node network was connected by adding the
University of Utah and the University of California, Santa Barbara.

A complete network with 4 nodes, 56kbps

 Building on ideas developed in ALOHAnet, the ARPANET grew rapidly. By

1981, the number of hosts had grown to 213, with a new host being added
approximately every twenty days.

ARPANET became the technical core of what would become the Internet, and
a primary tool in developing the technologies used.

 X.25 and public access

Following on from ARPA's research, packet switching network standards were
developed by the International Telecommunication Union (ITU) in the form of
X.25 and related standards. In 1974, X.25 formed the basis for the SERCnet
network between British academic and research sites, which later became JANET.

The initial ITU Standard on X.25 was approved in March 1976. This standard
was based on the concept of virtual circuits.

The first dial-in public networks used asynchronous TTY terminal protocols to
reach a concentrator operated by the public network. Some public networks, such
as CompuServe used X.25 to multiplex the terminal sessions into their packet-
switched backbones, while others, such as Tymnet, used proprietary protocols.

In 1979, CompuServe became the first service to offer electronic mail
capabilities and technical support to personal computer users. The company broke
new ground again in 1980 as the first to offer real-time chat with its CB Simulator.
There were also the America Online (AOL) and Prodigy dial in networks and
many bulletin board system (BBS) networks such as FidoNet. FidoNet in

particular was popular amongst hobbyist computer users, many of them hackers
and amateur radio operators.

UUCP (the Unix to Unix Copy Protocol)

UUCP was invented in 1978 at Bell Labs. Usenet was started in 1979 based on
UUCP. Newsgroups, which are discussion groups focusing on a topic, followed,
providing a means of exchanging information throughout the world .

UUCP networks spread quickly due to the lower costs involved, ability to use
existing leased lines, X.25 links or even ARPANET connections, and the lack of
strict use policies (commercial organizations who might provide bug fixes)
compared to later networks like CSnet and Bitnet. All connects were local.

1.1.3 TCP/IP

TCP/IP model

For the first connections between the computers, the Network Working Group

developed the Network Control Protocol.
The Internet matured in the 70's as a result of the TCP/IP architecture first

proposed by Bob Kahn at BBN and further developed by Kahn and Vint Cerf at
Stanford and others throughout the 70's.

DARPA sponsored or encouraged the development of TCP/IP implementations
for many operating systems and then scheduled a migration of all hosts on all of
its packet networks to TCP/IP. On January 1, 1983, TCP/IP protocols became the
only approved protocol on the ARPANET, replacing the earlier NCP protocol.

Map of the TCP/IP test network in January 1982

1.1.4. ARPANET to Several Federal Wide Area Networks: MILNET,
NSI, and NSFNet

After the ARPANET had been up and running for several years, ARPA looked
for another agency to hand off the network to; ARPA's primary mission was
funding cutting edge research and development, not running a communications
utility.

In 1983, the U.S. military portion of the ARPANET was broken off as a
separate network, the MILNET. MILNET subsequently became the unclassified
but military-only NIPRNET, in parallel with the SECRET-level SIPRNET and

JWICS for TOP SECRET and above. NIPRNET does have controlled security
gateways to the public Internet.

The networks based around the ARPANET were government funded and
therefore restricted to noncommercial uses such as research; unrelated commercial
use was strictly forbidden. This initially restricted connections to military sites and
universities. During the 1980s, the connections expanded to more educational
institutions, and even to a growing number of companies such as Digital
Equipment Corporation and Hewlett-Packard, which were participating in research
projects or providing services to those who were.

BBN Technologies TCP/IP internet map early 1986

In the mid 1980s, all three of the National Aeronautics and Space Agency
(NASA), the National Science Foundation (NSF), and the Department of Energy
(DOE) branches developed the first Wide Area Networks based on TCP/IP. NASA
developed the NASA Science Network, NSF developed CSNET and DOE evolved
the Energy Sciences Network or ESNet.

In 1984 NSF developed CSNET exclusively based on TCP/IP. CSNET
connected with ARPANET using TCP/IP, and ran TCP/IP over X.25, but it also
supported departments without sophisticated network connections, using

automated dial-up mail exchange. This grew into the NSFNet backbone,
established in 1986, and intended to connect and provide access to a number of
supercomputing centers established by the NSF.

1.1.5. Transition towards the Internet

The term "internet" was adopted in the first RFC published on the TCP
protocol (RFC 675: Internet Transmission Control Program, December 1974) as
an abbreviation of the term internetworking and the two terms were used
interchangeably. In general, an internet was any network using TCP/IP. It was
around the time when ARPANET was interlinked with NSFNet in the late 1980s,
that the term was used as the name of the network, Internet,. being a large and
global TCP/IP network.

The term "internet protocol" had also been used to refer to other networking
systems such as Xerox Network Services.

Many sites unable to link directly to the Internet started to create simple
gateways to allow transfer of e-mail, at that time the most important application.
Sites which only had intermittent connections used UUCP or FidoNet and relied
on the gateways between these networks and the Internet. Some gateway services
went beyond simple e-mail peering, such as allowing access to FTP sites via
UUCP or e-mail.

Finally, the Internet's remaining centralized routing aspects were removed. The
EGP routing protocol was replaced by a new protocol, the Border Gateway
Protocol (BGP), in order to allow the removal of the NSFNet Internet backbone
network. In 1994, Classless Inter-Domain Routing was introduced to support
better conservation of address space which allowed use of route aggregation to
decrease the size of routing tables.

1.1.6. TCP becomes worldwide

 Between 1984 and 1988 CERN began installation and operation of TCP/IP to
interconnect its major internal computer systems, workstations, PCs and an
accelerator control system. CERN continued to operate a limited self-developed
system CERNET internally and several incompatible (typically proprietary)
network protocols externally. There was considerable resistance in Europe towards
more widespread use of TCP/IP and the CERN TCP/IP intranets remained isolated
from the Internet until 1989.

In 1988 Daniel Karrenberg, from CWI in Amsterdam, visited Ben Segal,
CERN's TCP/IP Coordinator, looking for advice about the transition of the
European side of the UUCP Usenet network (much of which ran over X.25 links)
over to TCP/IP. In 1987, Ben Segal had met with Len Bosack from the then still

small company Cisco about purchasing some TCP/IP routers for CERN, and was
able to give Karrenberg advice and forward him on to Cisco for the appropriate
hardware. This expanded the European portion of the Internet across the existing
UUCP networks, and in 1989 CERN opened its first external TCP/IP connections.
This coincided with the creation of Réseaux IP Européens (RIPE), initially a group
of IP network administrators who met regularly to carry out co-ordination work
together. Later, in 1992, RIPE was formally registered as a cooperative in
Amsterdam.

At the same time as the rise of internetworking in Europe, ad hoc networking
to ARPA and in-between Australian universities formed, based on various
technologies such as X.25 and UUCPNet. These were limited in their connection
to the global networks, due to the cost of making individual international UUCP
dial-up or X.25 connections. In 1989, Australian universities joined the push
towards using IP protocols to unify their networking infrastructures. AARNet was
formed in 1989 by the Australian Vice-Chancellors' Committee and provided a
dedicated IP based network for Australia.

The Internet began to penetrate Asia in the late 1980s. Japan, which had built
the UUCP-based network JUNET in 1984, connected to NSFNet in 1989. It hosted
the annual meeting of the Internet Society, INET'92, in Kobe. Singapore
developed TECHNET in 1990, and Thailand gained a global Internet connection
between Chulalongkorn University and UUNET in 1992

1.2. History of World Wide Web

The World Wide Web ("WWW" or simply the "Web") is a global information
medium which users can read and write via computers connected to the Internet.
The term is often mistakenly used as a synonym for the Internet itself, but the Web
is a service that operates over the Internet, as e-mail does. The history of the
Internet dates back significantly further than that of the World Wide Web.

1.2.1- 1980-1991: Development of the World Wide Web

In 1984 Berners-Lee considered its problems of information presentation:
physicists from around the world needed to share data, with no common machines
and no common presentation software. He wrote a proposal in March 1989 for "a
large hypertext database with typed links", but it generated little interest.

By Christmas 1990, Berners-Lee had built all the tools necessary for a working
Web: the HyperText Transfer Protocol (HTTP) 0.9, the HyperText Markup
Language (HTML), the first Web browser (named WorldWideWeb, which was

also a Web editor), the first HTTP server software (later known as CERN httpd),
the first web server and the first Web pages that described the project itself.

On August 6, 1991, Berners-Lee posted a short summary of the World Wide
Web project on the alt.hypertext newsgroup. This date also marked the debut of
the Web as a publicly available service on the Internet.

1.2.2- 1992-1995: Growth of the WWW

There was still no graphical browser available for computers besides the
NeXT. This gap was filled in April 1992 with the release of Erwise, an application
developed at Helsinki University of Technology, and in May by ViolaWWW,
created by Pei-Yuan Wei, which included advanced features such as embedded
graphics, scripting, and animation. Both programs ran on the X Window System
for Unix.

Early Browser

The turning point for the World Wide Web was the introduction of the Mosaic
web browser in 1993, a graphical browser developed by a team at the National
Center for Supercomputing Applications (NCSA) at the University of Illinois at
Urbana-Champaign (UIUC), led by Marc Andreessen.

The origins of Mosaic had begun in 1992. In November 1992, the NCSA at the
University of Illinois (UIUC) established a website. In December 1992,
Andreessen and Eric Bina, students attending UIUC and working at the NCSA,
began work on Mosaic. They released an X Window browser in February 1993. It
gained popularity due to its strong support of integrated multimedia, and the
authors’ rapid response to user bug reports and recommendations for new features.

The first Microsoft Windows browser was Cello, written by Thomas R. Bruce
for the Legal Information Institute at Cornell Law School to provide legal
information, since more lawyers had access to Windows than to Unix. Cello was
released in June 1993.

After graduation from UIUC, Andreessen and James H. Clark, former CEO of
Silicon Graphics, met and formed Mosaic Communications Corporation to
develop the Mosaic browser commercially. The company changed its name to
Netscape in April 1994, and the browser was developed further as Netscape
Navigator.

Web organization

In May 1994 the first International WWW Conference, organized by Robert
Cailliau, was held at CERN; the conference has been held every year since. In

April 1993 CERN had agreed that anyone could use the Web protocol and code
royalty-free; this was in part a reaction to the perturbation caused by the
University of Minnesota announcing that it would begin charging license fees for
its implementation of the Gopher protocol.

In September 1994, Berners-Lee founded the World Wide Web Consortium
(W3C) at the Massachusetts Institute of Technology with support from the
Defense Advanced Research Projects Agency (DARPA) and the European
Commission. It comprised various companies that were willing to create standards
and recommendations to improve the quality of the Web. Berners-Lee made the
Web available freely, with no patent and no royalties due. The World Wide Web
Consortium decided that their standards must be based on royalty-free technology,
so they can be easily adopted by anyone.

By the end of 1994, while the total number of websites was still minute
compared to present standards, quite a number of notable websites were already
active, many of whom are the precursors or inspiring examples of today's most
popular services.

1.2.3- 1996-1998: Commercialization of the WWW

By 1996 it became obvious to most publicly traded companies that a public
Web presence was no longer optional. Though at first people saw mainly the
possibilities of free publishing and instant worldwide information, increasing
familiarity with two-way communication over the "Web" led to the possibility of
direct Web-based commerce (e-commerce) and instantaneous group
communications worldwide. More dotcoms, displaying products on hypertext
webpages, were added into the Web.

1.2.4- 1999-2001: "Dot-com" boom and bust

The low interest rates in 1998–99 helped increase the start-up capital amounts.
Although a number of these new entrepreneurs had realistic plans and
administrative ability, most of them lacked these characteristics but were able to
sell their ideas to investors because of the novelty of the dot-com concept.

In 2001 the bubble burst, and many dot-com startups went out of business after
burning through their venture capital and failing to become profitable.

1.2.5- 2002-Present: The Web becomes ubiquitous

A handful of companies found success developing business models that helped
make the World Wide Web a more compelling experience. These include airline
booking sites, Google's search engine and its profitable approach to simplified,

keyword-based advertising, as well as Ebay's do-it-yourself auction site and
Amazon.com's big selection of books.

This new era also begot social networking websites, such as MySpace, Xanga,
Friendster, and Facebook, which, though unpopular at first, very rapidly gained
acceptance in becoming a major part of youth culture.

1.3 Statistics on the number of internet user in world over the years
The amount of internet users in the world will keep increase every years.

Statistic datas have shown significant growth level. In June 2008 is predicted
1,463 million people use internet and this number will reach 1,650 millions in
2010.

Statistics on the number of internet user in world over the years

Apparently the increasing users number is influenced by significant growth at
Middle East and Africa during 2000-2008. But Asia, Europe and North America
are still being the top three dominate more than 10% users of the world.

1.4 Definition of WWW

The World Wide Web (commonly abbreviated as "the Web") is a system of
interlinked hypertext documents accessed via the Internet. With a Web browser,
one can view Web pages that may contain text, images, videos, and other
multimedia and navigate between them using hyperlinks.

Using concepts from earlier hypertext systems, the World Wide Web was
started in 1989 by the English physicist Sir Tim Berners-Lee, now the Director of
the World Wide Web Consortium, and later by Robert Cailliau, a Belgian
computer scientist, while both were working at CERN in Geneva, Switzerland. In
1990, they proposed building a "web of nodes" storing "hypertext pages" viewed
by "browsers" on a network, and released that web in December. Connected by the
existing Internet, other websites were created, around the world, adding
international standards for domain names & the HTML language. Since then,
Berners-Lee has played an active role in guiding the development of Web
standards (such as the markup languages in which Web pages are composed), and
in recent years has advocated his vision of a Semantic Web.

The World Wide Web enabled the spread of information over the Internet
through an easy-to-use and flexible format. It thus played an important role in
popularizing use of the Internet. Although the two terms are sometimes conflated
in popular use, World Wide Web is not synonymous with Internet. The Web is an
application built on top of the Internet.

2.What is NOT a web system

2.1.Examples of Not web system
2.1.1.Email

Electronic mail, often abbreviated as email or e-mail, is a method of
exchanging digital messages, designed primarily for human use.

Email

An electronic mail message consists of two components, the message header,
and the message body, which is the email's content. The message header contains
control information, including, minimally, an originator's email address and one or
more recipient addresses. Usually additional information is added, such as a
subject header field.

E-mail formating

Email Services and SMTP/POP Protocols

Simple Mail Transfer Protocol

Email, the most popular network service and run on a computer or other end
device, e-mail requires several applications and services

POP/SMTP define client/server processes.

Mail User Agent (MUA): allows messages to be sent and places received
messages into the clident’s mailbox, both of which are distinct processes. MUA
include: POP and SMTP.

 POP: used to receive e-mail messages from an e-mail server

 SMTP: used to send e-mail from either a client or a server uses message
formats and command strings.

E-mail Client (MUA)
E-mail Server Processes – MTA (Mail Transfer Agent) and MDA (Mail Delivery
Agent)

E-mail Server - MDA

The MDA accepts a piece of e-mail from a MTA and performs the actual
delivery.

The MDA receives all the inbound mail from the MTA and places it into the
appropriate users’ mailboxes.

The MDA can also resolve final delivery issues, such as virus scanning, spam
filtering, and return-receipt handling.

POP and POP3 are inbound mail delivery protocols and are typical
client/server protocols. They deliver e-mail from the e-mail server to the client
(MUA).

The MDA listens for when a client connects to a server. Once a connection is
established, the server can deliver the e-mail to the client.

Some of the commands specified in the SMTP protocol are: HELO, EHLO,
MAIL FROM, RCPT TO, DATA.

2.1.2. FTP

The File Transfer Protocol (FTP) is another commonly used Application layer
protocol.

FTP was developed to allow for file transfers between a client and a server. A
FTP client is an application that runs on a computer that is used to push and pull
files from a server running the FTP daemon (FTPd).

The client establishes the first connection to the server on TCP port 21. The
client establishes the second connection to the server over TCP port 20.

The file transfer can happen in either direction

FTP Process

3. Typical application
3.1. Blog

A blog (a contraction of the term weblog) is a type of website, usually
maintained by an individual with regular entries of commentary, descriptions of
events, or other material such as graphics or video. Entries are commonly
displayed in reverse-chronological order. "Blog" can also be used as a verb,
meaning to maintain or add content to a blog.

There are many different types of blogs, differing not only in the type of
content, but also in the way that content is delivered or written.

- The personal blog, an ongoing diary or commentary by an individual, is the
traditional, most common blog. Personal bloggers usually take pride in their blog
posts, even if their blog is never read by anyone but them. Blogs often become
more than a way to just communicate; they become a way to reflect on life or
works of art.

- Corporate blogs

A blog can be private, as in most cases, or it can be for business purposes.
Blogs, either used internally to enhance the communication and culture in a
corporation or externally for marketing, branding or public relations purposes are
called corporate blogs.

3.2. SNS

A social network service focuses on building online communities of people
who share interests and/or activities, or who are interested in exploring the
interests and activities of others. Most social network services are web based and
provide a variety of ways for users to interact, such as e-mail and instant
messaging services.

Social networking has encouraged new ways to communicate and share
information. Social networking websites are being used regularly by millions of
people.

3.3 Search engine

A Web search engine is a tool designed to search for information on the World
Wide Web. The search results are usually presented in a list and are commonly
called hits.

The information may consist of web pages, images, information and other
types of files. Some search engines also mine data available in databases or open
directories. Unlike Web directories, which are maintained by human editors,
search engines operate algorithmically or are a mixture of algorithmic and human
input.

Search engines diagram.

3.4. Google map

Google Maps (for a time named Google Local) is a web mapping service
application and technology provided by Google, free (for non-commercial use),
that powers many map-based services, including the Google Maps website,
Google Ride Finder, Google Transit, and maps embedded on third-party websites
via the Google Maps API. It offers street maps, a route planner for traveling by
foot, bicycle, car, or public transport and an urban business locator for numerous
countries around the world. It also can help find the location of businesses.

Google Maps uses the Mercator projection, so it cannot show areas around the
poles. A related product is Google Earth, a stand-alone program for Microsoft
Windows, Mac OS X, Linux, SymbianOS, and iPhone OS which offers more
globe-viewing features, including showing polar areas.

Google Map Maker Released

4. Social Impact
Connectivity is increasing, with the number of Internet users and telephone
subscribers expanding worldwide. The most rapid growth has taken place in the
mobile sector, which has been critical to improving communications in regions
with few fixed telephone lines. The number of mobile subscribers worldwide rose
from 11 million in 1990 to 2.2 billion in 2005, compared to growth in fixed lines
of 520 million to 1.2 billion over the same period.

4.1. Advantages
The Internet provides opportunities galore, and can be used for a variety of things.
Some of the things that you can do via the Internet are:

• E-mail: E-mail is an online correspondence system. With e-mail you can
send and receive instant electronic messages, which works like writing
letters. Your messages are delivered instantly to people anywhere in the
world, unlike traditional mail that takes a lot of time.

• Access Information: The Internet is a virtual treasure trove of information.
Any kind of information on any topic under the sun is available on the
Internet. The ‘search engines’ on the Internet can help you to find data on
any subject that you need.

• Shopping: Along with getting information on the Internet, you can also
shop online. There are many online stores and sites that can be used to look
for products as well as buy them using your credit card. You do not need to
leave your house and can do all your shopping from the convenience of
your home.

• Online Chat: There are many ‘chat rooms’ on the web that can be accessed
to meet new people, make new friends, as well as to stay in touch with old
friends.

• Downloading Software: This is one of the most happening and fun things
to do via the Internet. You can download innumerable, games, music,
videos, movies, and a host of other entertainment software from the
Internet, most of which are free.

4.2. Disadvantages

There are certain cons and dangers relating to the use of Internet that can be
summarized as:

• Personal Information: If you use the Internet, your personal information
such as your name, address, etc. can be accessed by other people. If you use
a credit card to shop online, then your credit card information can also be
‘stolen’ which could be akin to giving someone a blank check.

• Pornography: This is a very serious issue concerning the Internet,
especially when it comes to young children. There are thousands of
pornographic sites on the Internet that can be easily found and can be a
detriment to letting children use the Internet.

• Spamming: This refers to sending unsolicited e-mails in bulk, which serve
no purpose and unnecessarily clog up the entire system.

• Virus threat : Virus is nothing but a program which disrupts the normal
functioning of your computer systems. Computers attached to internet are
more prone to virus attacks and they can end up into crashing your whole
hard disk, causing you considerable headache.

Chapter 2.
1. Server-client model

1.1. Introduce client-server model of web system
The client-server software architecture model distinguishes client systems from

server systems, which communicate over a computer network.
In the client/server model, the device requesting the information is called a

client and the device responding to the request is called a server. Client and server
processes are considered to be in the Application layer.

The client begins the exchange by requesting data from the server, which
responds by sending one or more streams of data to the client. Application layer
protocols describe the design of the requests and responds between clients and
servers. In addition to the actual data transfer, this exchange can require control
information, such as user authentication and the identification of a data file to be
transferred.

Data transfer from a client to a server is referred to as an upload, and data from
a server to a client is a download. Data flow can be equal in both directions or can
even be greater in the direction going from the client to the server.

In a general networking context, any device that responds to requests from
client application is functioning as a server.

A server is usually a computer that contains information to be shared with
many client systems.

Different types of server applications can have different requirements for client
access.

Some servers may require authentication of user account information to verify
whether the user has permission to access the requested data or to use a particular
operation. Such servers rely on a central list of user accounts and the
authorizations, or permissions (both for data access and operations), granted to
each user.

1.2. Example of some Web server

IIS (Internet Information Service)
Internet Information Services (IIS) - is a set of Internet-based services for

servers created by Microsoft for use with Microsoft Windows.
It is the world's second most popular web server in terms of overall websites

behind the industry leader Apache HTTP Server.
As of April 2009[update] it served 29.27% of all websites according to

Netcraft. The services provided currently include FTP, FTPS, SMTP, NNTP, and
HTTP/HTTPS.

Versions

IIS 1.0, Windows NT 3.51 available as a free add-on
IIS 2.0, Windows NT 4.0
IIS 3.0, Windows NT 4.0 Service Pack 3
IIS 4.0, Windows NT 4.0 Option Pack
IIS 5.0, Windows 2000
IIS 5.1, Windows XP Professional, Windows XP Media Center Edition
IIS 6.0, Windows Server 2003 and Windows XP Professional x64 Edition
IIS 7.0, Windows Server 2008 and Windows Vista (Business, Enterprise,

Ultimate Editions)
IIS 7.5, Windows Server 2008 R2 (Beta) and Windows 7 (Beta)

Once IIS is installed on your machine you can view your home page in a web browser
by typing http://localhost into the address bar of your web browser. Since you have not
yet created a web site you should see the default IIS page.

Apache HTTP Server
The Apache HTTP Server, commonly referred to as Apache, is a web server

notable for playing a key role in the initial growth of the World Wide Web and in
2009 became the first web server to surpass the 100 million web site milestone.
Apache was the first viable alternative to the Netscape Communications
Corporation web server (currently known as Sun Java System Web Server), and
has since evolved to rival other Unix-based web servers in terms of functionality
and performance. The majority of all web servers using Apache are Linux web
servers.

Apache is developed and maintained by an open community of developers
under the auspices of the Apache Software Foundation. The application is
available for a wide variety of operating systems, including Unix, GNU, FreeBSD,
Linux, Solaris, NoVell NetWare, Mac OS X, Microsoft Windows, OS/2, TPF, and

eComStation. Released under the Apache License, Apache is characterized as free
software and open source software.

Since April 1996 Apache has been the most popular HTTP server on the World
Wide Web. As of March 2009[update] Apache served over 46% of all websites
and over 66% of the million busiest.

Features
Apache supports a variety of features, many implemented as compiled modules

which extend the core functionality. These can range from server-side
programming language support to authentication schemes.

Popular compression methods on Apache include the external extension
module, mod_gzip, implemented to help with reduction of the size (weight) of
web pages served over HTTP. Apache logs can be analyzed through a web
browser using free scripts such as AWStats/W3Perl or Visitors.

Virtual hosting allows one Apache installation to serve many different actual
websites.

Use
Apache is primarily used to serve both static content and dynamic Web pages

on the World Wide Web.
Apache is the web server component of the popular LAMP web server

application stack, alongside Linux, MySQL, and the PHP/Perl/Python (and now
also Ruby) programming languages.

Apache is redistributed as part of various proprietary software packages
including the Oracle Database or the IBM WebSphere application server.

Apache is used for many other tasks where content needs to be made available
in a secure and reliable way.

Programmers developing web applications often use a locally installed version
of Apache in order to preview and test code as it is being developed.

License
The software license under which software from the Apache Foundation is

distributed is a distinctive part of the Apache HTTP Server's history and presence
in the open source software community. The Apache License allows for the
distribution of both open and closed source derivations of the source code.

The Free Software Foundation does not consider the Apache License to be
compatible with version 2 of the GNU General Public License (GPL) in that
software licensed under the Apache License cannot be integrated with software
that is distributed under the GPL.

1.3. Example of some Web client:
IE

Windows Internet Explorer (formerly Microsoft Internet Explorer; abbreviated
to MSIE or, more commonly, IE) is a series of graphical web browsers developed
by Microsoft and included as part of the Microsoft Windows line of operating
systems starting in 1995.

It has been the most widely used, and still most widely used web browser since
1999, attaining a peak of about 95% usage share during 2002 and 2003 with IE5
and IE6. It has been alleged that Internet Explorer's share would have been lower
if it was not bundled with Windows. That percentage share has since declined in
the face of renewed competition from other web browsers – Mozilla Firefox most
of all. Microsoft spent over $100 million a year on IE in the late 1990s, with over
1,000 people working on it by 1999.

The usage share of web browsers

Firefox

Mozilla Firefox is a free and open source web browser descended from the
Mozilla Application Suite and managed by Mozilla Corporation.

Firefox had 22.51% of the recorded usage share of web browsers as of May
2009, making it the second most popular browser in terms of current use
worldwide, after Internet Explorer.

To display web pages, Firefox uses the Gecko layout engine, which
implements some current web standards in addition to a few features which are
intended to anticipate likely additions to the standards.

Firefox features include tabbed browsing, a spell checker, incremental find,
live bookmarking, a download manager, and an integrated search system that uses
the user's desired search engine (Google by default in most localizations).
Functions can be added through add-ons, created by third-party developers, of
which there is a wide selection, a feature that has attracted many of Firefox's users.

Firefox runs on various versions of Linux, Mac OS X, Microsoft Windows,
and many other Unix-like operating systems. Its current stable release is version
3.0.11, released on June 11, 2009.

Firefox's source code is free software, released under a tri-license GNU
GPL/GNU LGPL/MPL. Official versions are distributed under the terms of a
proprietary EULA.

Usage share of alternative web browsers (non IE browsers)

Safari

Safari is a web browser developed by Apple Inc.

First released as a public beta on January 7, 2003 on the company's Mac OS X
operating system, it became Apple's default browser beginning with Mac OS X
v10.3 "Panther". Apple has also made Safari the native browser for the iPhone OS.
A version of Safari for the Microsoft Windows operating system was first released
on June 11, 2007, and supports both Windows XP and Windows Vista. The
current stable release of the browser is 4.0 for both Macintosh and Windows.
Safari has a 8.43% market share as of May 2009.

Features

Safari offers most features common to modern web browsers such as:

• Tabbed browsing
• Bookmark Management
• A resizable web-search box in the toolbar which uses Google on the Mac

and either Google or Yahoo! on Windows
• Pop-up ad blocking
• History and bookmark search
• Text search
• Spell-checking

• Expandable text boxes
• Automatic filling in of web forms
• Built-in password management via Keychain
• Subscribing to and reading web feeds
• Quartz-style font-smoothing
• The Web Inspector, a DOM Inspector-like utility that lets users and

developers browse the Document Object Model of a web page
• Support for CSS 3 web fonts
• Support for CSS animation
• Bookmark integration with Address Book
• ICC colour profile support
• Inline PDF viewing
• Integration with iPhoto photo management
• Mail integration
• Ability to save parts of web pages as web clips for viewing on the Apple

Dashboard.

2. DNS and URL
2.1. DNS (Domain Name System)

The Domain Name System (DNS) is a hierarchical naming system for
computers, services, or any resource participating in the Internet

A domain naming system was developed in order to associate the contents of
the site with the address of that site. The Domain Name System (DNS) is a system
used on the Internet for translating names of domains and their publicly advertised
network nodes into IP addresses.

The Domain Name System makes it possible to assign domain names to groups
of Internet users in a meaningful way, independent of each user's physical
location.

DNS Server Hierarchy

The Domain Name System (DNS) was created for domain name to address
resolution for these networks. DNS uses a distributed set of servers to resolve the
names associated with these numbered addresses.

The DNS protocol defines an automated service that matches resource names
with the required numeric network address.

DNS protocol communications use a single format called a message.

DNS is used for all types of client queries and server responses, error
messages, and the transfer of resource record information beween servers.

The role of DNS

The DNS server stores different types of resource records used to resolve
names. These records contain the name, address, and type of record.

When configuring a network device, we generally provide one or more DNS
Server addresses that the DNS client can use for name resolution.

Computer operating systems also have a utility called nslookup that allows the
user to manually query the name servers to resolve a given host name. This utility
can also be used to troubleshoot name resolution issues and to verify the current
status of the name servers.

2.2. URL

In computing, a Uniform Resource Locator (URL) is a type of Uniform
Resource Identifier (URI) that specifies where an identified resource is available
and the mechanism for retrieving it. In popular usage and in many technical

documents and verbal discussions it is often incorrectly used as a synonym for
URI. In popular language, a URL is also referred to as a Web address.

Every resource on the Web has a unique address. For example, 207.46.130.149
is the address of the Microsoft web site. Now, remembering those numbers can be
quite difficult and confusing. Hence, the Uniform Resourece Locators (URLs) are
used. A URL is a string that supplies the Internet address of a Web site or resource
on the World Wide Web.

The typical format is, www.nameofsite.typeofsite.countrycode

For example, 216.239.33.101 can be represented by the URL,
www.google.com

The URL also identifies the protocol by which the site or resource is accessed.
The most common URL type is “http”, which gives the Internet address of a Web
page. Some other URL types are “gopher”, which gives the Internet address of a
Gopher directory, and “ftp”, which gives the network location of an FTP resource.

The URL can also refer to a location within a resource. For example, you can
create a link to a topic within the same document. In that case, a fragment
identifier is used at the end of the URL.

The format is, protocol: name of site/main document#fragment identifier

The are two types of URLs:

�Absolute URL- is the full Internet address of a page or file, including the
protocol, network location, and optional path and file name. For example,
http://www.microsoft.com is an absolute URL.

�Relative URL- is a URL with one or more of its parts missing. Browsers take
the missing information from the page containing the URL. For example, if the
protocol is missing, the browser uses the protocol of the current page.

3.HTTP Request and Response
3.1.HTTP Protocol Overview

The request and response in Web Application are sent using HTTP.
An HTTP Client, such as Web Browsers (Firefox, IE, Opera), open the

connection and send the request message to an HTTP server asking resource. The
server, in turn, return the response message with the request resource.Once the
resouce is delivered, Server closes the connection.

HTTP doesn’t store any connection information and hence it’s refered to a
stateless protocol.

In HTTP Conection last for only one transaction.A transaction consists a of
several request-response pairs.

Port is a channel used by protocols for sending and receiving data. Networking
protocol assign number to the port for indetification.The default port is 80.

HTTP 1.0

HTTP 1.1

HTTP 1.1 with pipeline.

3.2. Request Message Structure

The request message sent by the client is a stream of text. It consists of the

following elements.
Request line
This component sent method, resource information, such as the type and name,

and the HTTP version of the request message.
Header Information
This component return user- agent along with the Accept Header. The user-

agent element header indicate the browser used by client. The accept header
element provides information on what media types the client can accept. After the
header, client send blank line indecating the end of request message.

Request Parameter
Web application allow user to enter information using forms and send to the

server for processing.

For example, in the banking site, the user enter the username and password.

These are sent to web server through request parameters and after validating the
data received with the database, the account information is send as the response.
The server treat the data entered in each field as request parameter. The server can
extract the values of each request parameter in the request to processing.

Request Method
Get

The get method used for getting information such as a document, a char, a

database query in the form of plain text. Search Engine such as www.google.com
use the get method to retrieve results for a search strings entered by user.
Following is a sample query string constructed by google.

http://www.google.co.uk/search?hl=en&q=java&meta=
Where java is search keyword.
The length of query string is restricted from 240 to 255 character depending on

the server.Hence this method can’t be used to send data from bulky forms.

POST

Post method is used when sending information, such as credit card number or

information to be saved in the database. Data send using post is in encrypted
format and not visible to the client and there is not limit on amount of data being
sent. However, pages request using page method can’t be bookmarked or emailed.
This because Post method is used to transmit sensitive data password.

Example

3.3. Response Message Structure

The Server processes the request sent by a client and generates a response

message consists of the following elements.
Status line
This element indicates the status of request message.

Header Information
The header information contains information such as server, last modify date,

content length and content type. The server header specifies the software being
used on the server. Last-modified header indicates the last modified date of the
requested file. The content length specifies the size of file in bytes. Content type
header specifies the type of document.

Example

The response code

4.Character Encoding
4.1.Unicode
4.1.1.Over view

Unicode is a universal character set, ie. a standard that defines, in one place, all
the characters needed for writing the majority of living languages in use on
computers. It aims to be, and to a large extent already is, a superset of all other
character sets that have been encoded.

The following table lists some of the growing number of scripts that are
covered by Unicode:

Arabic Greek Khmer Runic

Armenian Gujurati Lao Sinhala

Bengali Gurmukhi Latin Syriac

Canadian Syllabics Han Malayalam Tamil

Cherokee Hangul Mongolian Telugu

Cyrillic Hebrew Myanmar Thaana

Devanagari Hiragana Ogham Thai

Ethiopic Kannada Oriya Tibetan

Georgian Katakana Panjabi etc...

The first 65,536 code point positions in the Unicode character set are said to
constitute the Basic Multilingual Plane (BMP). The BMP includes most of the
more common characters in use. Around a million further code point positions are
available in the Unicode character set. Characters in this latter range are referred to
as supplementary characters.

4.1.2.Character sets, coded character sets, and encodings

It is important to clearly distinguish between the concepts character set and
character encoding.

A character set or repertoire comprises the set of characters one might use for a
particular purpose – be it those required to support Western European languages in
computers, or those a Chinese child will learn at school in the third grade (nothing
to do with computers).

A coded character set is a set of characters for which a unique number has been
assigned to each character. Units of a coded character set are known as code
points. For example, the code point for the letter à in the Unicode coded character
set is 225 in decimal, or E1 in hexadecimal notation. (Note that hexadecimal
notation is commonly used for identifying such characters, and will be used here.)

The character encoding reflects the way these abstract characters are mapped to
bytes for manipulation in a computer.

4.1.3.One character set, multiple encodings

Many character encoding standards, such as ISO 8859 series, use a single byte
for a given character and the encoding is straightforwardly related to the scalar
position of the characters in the coded character set. For example, the letter A in
the ISO 8859-1 coded character set is in the 65th character position (starting from
zero), and is encoded for representation in the computer using a byte with the
value of 65. For ISO 8859-1 this never changes.

For Unicode, however, things are not so straightforward. Although the code
point for the letter à in the Unicode coded character set is always 225 (in decimal),
it may be represented in the computer by two bytes. In other words there isn't a
trivial, one-to-one mapping between the coded character set value and the encoded
value for this character.

In addition, in Unicode there are a number of ways of encoding the same
character. For example, the letter à can be represented by two bytes in one
encoding and four bytes in another. The encoding forms that can be used with
Unicode are called UTF-8, UTF-16, and UTF-32.

UTF-8 uses 1 byte to represent characters in the ASCII set, two bytes for
characters in several more alphabetic blocks, and three bytes for the rest of the
BMP. Supplementary characters use 4 bytes.

UTF-16 uses 2 bytes for any character in the BMP, and 4 bytes for
supplementary characters.

UTF-32 uses 4 bytes for all characters.
In the following chart, the first line of numbers represents the position of the

characters in the Unicode coded character set. The other lines show the byte values
used to represent that character in a particular character encoding.

 A א 好
Code point U+0041 U+05D0 U+597D U+233B4

UTF-8 41 D7 90 E5 A5 BD F0 A3 8E B4

UTF-16 00 41 05 D0 59 7D D8 4C DF

B4

UTF-32
00 00 00

41
00 00 05 D0 00 00 59 7D 00 02 33 B4

4.1.4.Character escapes

A character escape is an alternative way of representing a character, without
actually using the code point of the character.

For example, there is no way of representing the Hebrew character א in your
document if you are using an ISO 8859-1 encoding (which covers Western
European languages). One way to indicate that you want to include that character
is to use the XHTML escape א. Because the document character set is
Unicode, the user agent should recognize that this represents a Hebrew aleph
character.

4.1.5.Document character set

For XML and HTML (from version 4.0 onwards) the document character set is
defined to be the Universal Character Set (UCS) as defined by both ISO/IEC
10646 and Unicode standards. (For simplicity and in line with common practice,
we will refer to the UCS here simply as Unicode.)

This means that the logical model describing how XML and HTML are
processed is described in terms of the set of characters defined by Unicode.

Note that this does not mean that all HTML and XML documents have to be
encoded as Unicode! It does mean, however, that documents can only contain
characters defined by Unicode. Any encoding can be used for your document as
long as it is properly declared and a subset of the Unicode repertoire.

4.2.Different Encodings
4.2.1.UTF-8

The bits of a Unicode character are distributed into the lower bit positions
inside the UTF-8 bytes, with the lowest bit going into the last bit of the last byte.
In this table, x represent the lowest 8 bits of the Unicode value, y represent the
next higher 8 bits, and z represent the bits higher than that:

So the first 128 characters (US-ASCII) need one byte. The next 1920

characters need two bytes to encode. This includes Latin letters with diacritics and
characters from Greek, Cyrillic, Coptic, Armenian, Hebrew, Arabic, Syriac and
Tāna alphabets. Three bytes are needed for the rest of the Basic Multilingual Plane
(which contains virtually all characters in common use). Four bytes are needed for
characters in the other planes of Unicode, which are rarely used in practice.

By continuing the pattern given above it is possible to deal with much larger

numbers. The original specification allowed for sequences of up to six bytes
covering numbers up to 31 bits (the original limit of the Universal Character Set).
However, UTF-8 was restricted by RFC 3629 to use only the area covered by the
formal Unicode definition, U+0000 to U+10FFFF, in November 2003.

With these restrictions, bytes in a UTF-8 sequence have the following
meanings. The ones marked in red can never appear in a legal UTF-8 sequence.
The ones in green are represented in a single byte. The ones in white must only
appear as the first byte in a multi-byte sequence, and the ones in orange can only
appear as the second or later byte in a multi-byte sequence:

4.2.2.EUC

Extended Unix Code (EUC) is a multibyte character encoding system used

primarily for Japanese, Korean, and simplified Chinese.
The structure of EUC is based on the ISO-2022 standard, which specifies a

way to represent character sets containing a maximum of 94 characters, or 8836
(942) characters, or 830584 (943) characters, as sequences of 7-bit codes. Only
ISO-2022 compliant character sets can have EUC forms. Up to four coded
character sets (referred to as G0, G1, G2, and G3 or as code sets 0, 1, 2, and 3) can
be represented with the EUC scheme. G0 is almost always an ISO-646 compliant
coded character set (e.g. US-ASCII/KS X 1003/ISO 646:KR in EUC-KR and US-
ASCII/the lower half of JIS X 0201 in EUC-JP) that is invoked on GL (i.e. with
the most significant bit cleared).

To get the EUC form of an ISO-2022 character, the most significant bit of each
7-bit byte of the original ISO 2022 codes is set (by adding 128 to each of these
original 7-bit codes); this allows software to easily distinguish whether a particular
byte in a character string belongs to the ISO-646 code or the ISO-2022 (EUC)
code.

The most commonly-used EUC codes are variable-width encodings with a
character belonging to G0 (ISO-646 compliant coded character set) taking one
byte and a character belonging to G1 (taken by a 94x94 coded character set)
represented in two bytes. The EUC-CN form of GB2312 and EUC-KR are
examples of such two-byte EUC codes. EUC-JP includes characters represented
by up to three bytes whereas a single character in EUC-TW can take up to four
bytes.

EUC-CN is the usual way to use the GB2312 standard for simplified Chinese
characters. Unlike the case of Japanese, the ISO-2022 form of GB2312 is not
normally used, though a variant form called HZ was sometimes used on USENET.

EUC-CN can also be used to encode the Unicode-based GB18030 character
encoding, which includes traditional characters, although GB18030 is more
frequently used without EUC encoding, since GB18030 is already a Unicode
encoding. However, GB18030 encoded in EUC-CN is a variable-width encoding,
because GB18030 contains more than 8836 (94×94) characters.

EUC-JP is a variable-width encoding used to represent the elements of three
Japanese character set standards, namely JIS X 0208, JIS X 0212, and JIS X 0201.

A character from the lower half of JIS-X-0201 (ASCII, code set 0) is
represented by one byte, in the range 0x21 – 0x7E.

A character from the upper half of JIS-X-0201 (half-width kana, code set 2) is
represented by two bytes, the first being 0x8E, the second in the range 0xA1 –
0xDF.

A character from JIS-X-0208 (code set 1) is represented by two bytes, both in
the range 0xA1 – 0xFE.

A character from JIS-X-0212 (code set 3) is represented by three bytes, the
first being 0x8F, the following two in the range 0xA1 – 0xFE.

This encoding scheme allows the easy mixing of 7-bit ASCII and 8-bit
Japanese without the need for the escape characters employed by ISO-2022-JP,
which is based on the same character set standards.

In Japan, the EUC-JP encoding is heavily used by Unix or Unix-like operating
systems (except for HP-UX), while Shift_JIS or its extensions (Windows code
page 932 and MacJapanese) are used on other platforms. Therefore, whether
Japanese web sites use EUC-JP or Shift_JIS often depends on what OS the author
uses.

EUC-JISX0213 is similar to but different from EUC-JP in that two planes of
JIS X 0213 take place of JIS-X-0208 and JIS-X-0212. There is a similar
relationship between Shift_JIS and Shift-JISX0213.

EUC-KR is a variable-width encoding to represent Korean text using two
coded character sets, KS X 1001 (formerly KS C 5601) and KS X 1003 (formerly
KS C 5636)/ISO 646:KR/US-ASCII. KS X 2901 (formerly KS C 5861) stipulates
the encoding and RFC 1557 dubbed it as EUC-KR. A character drawn from KS X
1001 (G1, code set 1) is encoded as two bytes in GR (0xA1-0xFE) and a character
from KS X 1003/US-ASCII (G0, code set 0) takes one byte in GL (0x21-0x7E).

It is the most widely used legacy character encoding in Korea on all three
major platforms (Unix-like OS, Windows and Mac), but its use has been very
slowly decreasing as UTF-8 gains popularity, especially on Linux and Mac OS X.
It is usually referred to as Wansung (好好) in South Korea. The default Korean
codepage for Windows is a proprietary, but upward compatible extension of EUC-
KR referred to as Unified Hangeul Code (好好 好好好, Tonghab Wansunghyung).
Mac Korean used in classic Mac OS is also compatible with EUC-KR.

EUC-TW is a variable-width encoding that supports US-ASCII and 16 planes
of CNS 11643, each of which is 94x94. It is a rarely used encoding for traditional
Chinese characters as used on Taiwan. Big5 is much more common. A character
in US-ASCII (G0, code set 0) is encoded as a single byte in GL(0x21-0x7E) and a
character in CNS 11643 plane 1 (code set 1) is encoded as two bytes in GR (0xA1-
0xFE). A character in plane 1 through 16 of CNS 11643 (code set 2) is encoded as
four bytes with the first byte always being 0x8E(Single Shift 2) and the second
byte indicating the plane (the plane number is obtained by subtracting 0xA0 from
the second byte). The third and fourth bytes are in GR (0xA1-0xFE). Note that the
plane 1 of CNS 11643 is encoded twice as code set 1 and a part of code set 2.

5.Media Type
An Internet media type, originally called a MIME type after MIME and

sometimes a Content-type after the name of a header in several protocols whose
value is such a type, is a two-part identifier for file formats on the Internet. The
identifiers were originally defined in RFC 2046 for use in e-mail sent through
SMTP, but their use has expanded to other protocols such as HTTP and SIP.

A media type is composed of at least two parts: a type, a subtype, and one or
more optional parameters. For example, subtypes of text type have an optional

charset parameter that can be included to indicate the character encoding, and
subtypes of multipart type often define a boundary between parts.

Types or subtypes that begin with x- are nonstandard – they cannot be
registered with IANA. Subtypes that begin with vnd. are vendor-specific; subtypes
in the personal or vanity tree begin with prs.

5.1.Type text: Human-readable text and source code

�Text/css: Cascading Style Sheets. Cascading Style Sheets (CSS) is a style
sheet language used to describe the presentation (that is, the look and formatting)
of a document written in a markup language. Its most common application is to
style web pages written in HTML and XHTML, but the language can be applied to
any kind of XML document, including SVG and XUL.

�Text/csv: Comma-separated values. A Comma separated values (CSV) file is
used for the digital storage of data structured in a table of lists form, where each
associated item (member) in a group is in association with others also separated by
the commas of its set. Each line in the CSV file corresponds to a row in the table.
Within a line, fields are separated by commas, each field belonging to one table
column. CSV files are often used for moving tabular data between two different
computer programs, for example between a database program and a spreadsheet
program.

�Text/html: HTML. HTML, an acronym for HyperText Markup Language, is
the predominant markup language for web pages. It provides a means to describe
the structure of text-based information in a document—by denoting certain text as
links, headings, paragraphs, lists, etc.—and to supplement that text with
interactive forms, embedded images, and other objects. HTML is written in the
form of "tags" that are surrounded by angle brackets. HTML can also describe, to
some degree, the appearance and semantics of a document, and can include
embedded scripting language code (such as JavaScript) that can affect the
behavior of Web browsers and other HTML processors.

�Text/javascript (Obsolete): JavaScript. JavaScript is a scripting language
used to enable programmatic access to objects within other applications. It is
primarily used in the form of client-side JavaScript for the development of
dynamic websites. JavaScript is a dialect of the ECMAScript standard and is
characterized as a dynamic, weakly typed, prototype-based language with first-
class functions. JavaScript was influenced by many languages and was designed to
look like Java, but to be easier for non-programmers to work with.

�Text/plain: Textual data, Defined in RFC 2046 and RFC 3676.
�Text/xml: Extensible Markup Language; Defined in RFC 3023.

5.2.Type video: Video

�Video/mpeg: MPEG-1 video with multiplexed audio. MPEG-1 is a standard
for lossy compression of video and audio. It is designed to compress VHS-quality
raw digital video and CD audio down to 1.5 Mbit/s (26:1 and 6:1 compression

ratios respectively) without excessive quality loss, making Video CDs, digital
cable/satellite TV and digital audio broadcasting (DAB) possible.

�Video/mp4: MP4 video. MPEG-4 Part 14, formally ISO/IEC 14496-14:2003,
is a multimedia container format standard specified as a part of MPEG-4. It is
most commonly used to store digital audio and digital video streams, especially
those defined by MPEG, but can also be used to store other data such as subtitles
and still images. Like most modern container formats, MPEG-4 Part 14 allows
streaming over the Internet. A separate hint track is used to include streaming
information in the file. The official filename extension for MPEG-4 Part 14 files is
.mp4, thus the container format is often referred to simply as MP4.

�Video/quicktime: QuickTime video. QuickTime is a multimedia framework
developed by Apple Inc., capable of handling various formats of digital video,
media clips, sound, text, animation, music, and interactive panoramic images. It is
available for Mac OS (Mac OS 9, 8, 7, etc.), Mac OS X and Microsoft Windows
operating systems.

�Video/x-ms-wmv: Windows Media Video. Windows Media Video (WMV)
is a compressed video file format for several proprietary codecs developed by
Microsoft. The original codec, known as WMV, was originally designed for
Internet streaming applications, as a competitor to RealVideo. The other codecs,
such as WMV Screen and WMV Image, cater for specialized content.
5.3. Type image

�Image/gif: GIF image. The Graphics Interchange Format (GIF) is a bitmap
image format that was introduced by CompuServe in 1987 and has since come
into widespread usage on the World Wide Web due to its wide support and
portability.

�Image/jpeg: JPEG JFIF image. JPEG is a commonly used method of
compression for photographic images. The degree of compression can be adjusted,
allowing a selectable tradeoff between storage size and image quality. JPEG
typically achieves 10:1 compression with little perceptible loss in image quality.

�Image/png: Portable Network Graphics. Portable Network Graphics (PNG)
is a bitmapped image format that employs lossless data compression. PNG was
created to improve upon and replace GIF (Graphics Interchange Format) as an
image-file format not requiring a patent license.

�Image/svg+xml: SVG vector image. Scalable Vector Graphics (SVG) is a
family of specifications of XML-based file format for describing two-dimensional
vector graphics, both static and dynamic (interactive or animated).

�Image/tiff: Tag Image File Format. Tagged Image File Format (abbreviated
TIFF) is a file format for storing images, including photographs and line art. It is
as of 2009 under the control of Adobe Systems. Originally created by the company
Aldus for use with what was then called "desktop publishing", the TIFF format is
widely supported by image-manipulation applications, by publishing and page
layout applications, by scanning, faxing, word processing, optical character
recognition and other applications.

�Image/vnd.microsoft.icon: ICO image. The ICO file format is an image file
format used for icons in Microsoft Windows. The CUR file format for cursors is
almost identical, as the only differences are the identification byte and a
specification of a hotspot in the header.

5.4. Type audio: Audio
�Audio/mpeg: MP3 or other MPEG audio MPEG-1. Audio Layer 3, more

commonly referred to as MP3, is a patented digital audio encoding format using a
form of lossy data compression. It is a common audio format for consumer audio
storage, as well as a de facto standard of digital audio compression for the transfer
and playback of music on digital audio players. MP3 is an audio-specific format
that was designed by the Moving Picture Experts Group. The group was formed
by several teams of engineers at Fraunhofer IIS in Erlangen, Germany, AT&T-
Bell Labs in Murray Hill, NJ, USA, Thomson-Brandt, and CCETT as well as
others. It was approved as an ISO/IEC standard in 1991.

�Audio/x-ms-wma: Windows Media Audio. Windows Media Audio (WMA)
is an audio data compression technology developed by Microsoft. The name can
be used to refer to its audio file format or its audio codecs. It is a proprietary
technology that forms part of the Windows Media framework. WMA consists of
four distinct codecs. The original WMA codec, known simply as WMA, was
conceived as a competitor to the popular MP3 and RealAudio codecs.

�Audio/vnd.rn-realaudio: RealAudio. RealAudio is a proprietary audio format
developed by RealNetworks. It uses a variety of audio codecs, ranging from low-
bitrate formats that can be used over dialup modems, to high-fidelity formats for
music. It can also be used as a streaming audio format, that is played at the same
time as it is downloaded. In the past, many internet radio stations used RealAudio
to stream their programming over the internet in real time. In recent years,
however, the format has become less common and has given way to more popular
audio formats. It is used heavily by the BBC websites.

�Audio/x-wav: WAV audio. WAV (or WAVE), short for Waveform audio
format, also known as Audio for Windows[2], is a Microsoft and IBM audio file
format standard for storing an audio bitstream on PCs. It is an application of the
RIFF bitstream format method for storing data in “chunks”, and thus also close to
the IFF and the AIFF format used on Amiga and Macintosh computers,
respectively. It is the main format used on Windows systems for raw and typically
uncompressed audio. The usual bitstream encoding is the Pulse Code Modulation
(PCM) format.
5.5. How multimedia data are included in HTTP message

Multipurpose Internet Mail Extensions (MIME) is an Internet standard that
extends the format of e-mail to support:

�Text in character sets other than ASCII
�Non-text attachments
�Message bodies with multiple parts
�Header information in non-ASCII character sets

MIME's use, however, has grown beyond describing the content of e-mail to
describing content type in general, including for the web.

Virtually all human-written Internet e-mail and a fairly large proportion of
automated e-mail is transmitted via SMTP in MIME format. Internet e-mail is so
closely associated with the SMTP and MIME standards that it is sometimes called
SMTP/MIME e-mail.

The content types defined by MIME standards are also of importance outside
of e-mail, such as in communication protocols like HTTP for the World Wide
Web. HTTP requires that data be transmitted in the context of e-mail-like
messages, even though the data may not actually be e-mail.

MIME is specified in six linked RFC memoranda: RFC 2045, RFC 2046, RFC
2047, RFC 4288, RFC 4289 and RFC 2049, which together define the
specifications.

Chapter 3.
1. Markup and rendering
1.1. Markup language

A markup language is a set of annotations to text that describe how it is to be
structured, laid out, or formatted. Markup languages might be manuscript form
(often marks among or alongside text describing required formatting or binding),
or they might be markup codes used in computer typesetting and word-processing
systems.

The former are also commonly used to describe the required layout of papers,
articles, standards, or books. The latter tend more to be used to instantiate a
particular document and nowadays are not generally used directly by authors.The
code used to specify the formatting are called tags.

Various markup languages used are SGML , HTML , XML and the latest
being WML.

By markup language we mean a set of markup conventions used together for
encoding texts. A markup language must specify what markup is allowed, what
markup is required, how markup is to be distinguished from text, and what the
markup means.

Historically, markup was used to refer to:

The process of marking manuscript copy for typesetting with directions for use
of type fonts and sizes, spacing, indentation, etc. (from the Chicago Manual of
Style, the bible of most publishers.)

Electronic Markup originally referred to the internal, sometimes invisible
codes in documents which described the formatting.

In WYSIWYG systems, the system inserts the codes. In early WYSIWYG
systems such as Wordstar, the markup is visible on the screen.

Markup can be classified as one of two types:

�Procedural Markup which is concerned with the appearance of text - its font,
spacing etc.

�Descriptive or Declarative Markup which is concerned with the structure or
function of the tagged item.

Markup Langauges permit you to use your information for applications beyond
traditional publishing. For example:

 �World Wide Web home pages

 �Information databases

 �Diagnostic/expert systems

 �Electronic mail

 �Hypermedia and hypertext documents

 �Database publishing

 �CD-ROM publishing

 �Interactive Electronic Technical Manuals (IETMs)

 �Electronic review

1.2. Visualise an HTML document using an web browser

The HTML document is displayed in a browser. What is a browser? A browser
is an application that is installed on the client machine. The browser reads the
HTML source code and displays the page as instructed.

A browser is used to view Web pages and navigate through it. The earliest
known browser was Mosaic developed by the National Center for Supercomputing
Applications (NCSA). Today there are many browser available for browsing the
Internet. Netscape’s Navigator and Microsoft’s Internet Explorer are two popular
browsers in use. For the user, a browser is easy to use because it provides a point-
and-click graphical interface.

To create the source document,an HTML editor is required. There are several
editors in use today: Microsoft FrontPage is a comprehensive tool that can be used
to create, design, and edit Web pages. We can also add text, images, tables and
other HTML elements to the page. In addition, a form can be created through
FrontPage. Once we create the interface, the FrontPage Editor creates the required
HTML code. We can also use Notepad to create the HTML document. In order to
view the document in a browser you have to save the document with a .htm/.html
extension.

HTML command are called Tags. Tags are used to control the content and
appearance of the HTML document. The “opening tag” is a “ < >” pair of
brackets. This indicates the beginning of the HTML command. The “closing tag”
is represented as “</ >” to indicate the end of the HTML command.

2. Syntax of HTML
2.1. Structure of an HTML Document

An HTML document has three basic sections:

 �The HTML Section: Every HTML document must begin with an opening
HTML tag and end with a closing HTML tag.

<HTML> … </HTML>

The HTML tag tells the browser that the content between these two tags is an
HTML document.

 �The header Section: The header section begins with a <HEAD> tag and
is closed with a </HEAD> tag. This section contains the title that is displayed in
the navigation bar of the Web page. The title itself is enclosed within the TITLE
tag, which begins with a <TITLE> and is closed with a </TITLE>.

The title is of considerable importance. Bookmarks are used to mark a web site.
The browser uses the “title” to store the bookmark. Also, when the users are
searching for information, the title of the Web page provides the vital keyword
that the user is “searching”.

 �The body Section: This comes after the HEAD section. The BODY
section contains the text, images and link that you want to display in your Web
page. The BODY section begins with a <BODY> tag and ends with a </BODY>.

2.2. Introduce basic tags

Generally, the first line of an HTML page will be a HEADING tag. If you
think about a HEADING as part of an outline of a document, the first HEADING
(<H1></H1>) tag is roman numeral one, a second level heading (<H2></H2>)
would be roman numeral two, and so on. In most cases, the first heading on a web
page will be the same as, or similar to, the document title to let people know right
off what the page is about.

<H1> is the largest size heading, which you would normally use at the start of a
document. <H6> is the smallest, with <H2> to <H5> of varying sizes in between
them.

2.2.1.Page formatting tags:

These tags affect how the text is spaced on a page:

� <P> </P> - Paragraph. Inserts an empty line (it's like double-spacing
in word processing).

The spaces between this line and the line above and below are examples of
paragraph tags.

� <HR> - Horizontal line. Useful for breaking up sections of your
page. Creates a shadowed line across the page. The shadowed line you see below
this text is an example of the <HR> tag. The <HR> tag is one of those exceptions I
mentioned, and doesn't need a closing tag.

�
 - Line break. Doesn't insert a space between lines, just forces
a break between lines of text. TIP: if you want to create blank lines on your page,
use multiple
 tags, not the <P> tag as the browser only sees the first <P> tag

Example
 Example

<HTML>
 <HEAD>
 <TITLE> Welcome to the world of
HTML</TITLE>
 </HEAD>
 <BODY>
 <P>This is going to be real fun </P>
 </BODY>
</HTML>

and ignores the others but sees and creates a line break for all
 tags.
The space (or lack of it, actually) between this line and the line above it is an
example of a line break. The
 tag doesn't need a closing tag.

2.2.2.Text style tags:

Text style tags affect the appearance of text on a page. You already know
about text style tags as you use them all the time in word processors like MS
Word. When you select text and click on the B button in MS Word your text turns
bold, right? HTML works the same way, but we need to use HTML tags to tell the
browser what text style to use.

The two most useful text style tags are:

 ... - Bold
Example of bold text tag.

<I> ... </I> - Italics
<I>Example of italicized text tag at work.</I>

Text Formatting Tags

Tag Description
 Defines bold text

<big> Defines big text

 Defines emphasized text

<i> Defines italic text

<small> Defines small text

 Defines strong text

<sub> Defines subscripted text

<sup> Defines superscripted text

<ins> Defines inserted text

 Defines deleted text

<s> Deprecated. Use instead

<strike> Deprecated. Use instead

<u> Deprecated. Use styles instead

2.2.3. Tables

Tables are defined with the <table> tag. A table is divided into rows (with the
<tr> tag), and each row is divided into data cells (with the <td> tag). The letters td

stands for "table data," which is the content of a data cell. A data cell can contain
text, images, lists, paragraphs, forms, horizontal rules, tables, etc.

How it looks in a browser:

2.2.4.The Image Tag and the Src Attribute

In HTML, images are defined with the tag.

The tag is empty, which means that it contains attributes only and it has
no closing tag.

To display an image on a page, you need to use the src attribute. Src stands for
"source". The value of the src attribute is the URL of the image you want to
display on your page.

The syntax of defining an image:

The URL points to the location where the image is stored. An image named
"boat.gif" located in the directory "images" on "www.w3schools.com" has the
URL: http://www.w3schools.com/images/boat.gif.

The browser puts the image where the image tag occurs in the document. If
you put an image tag between two paragraphs, the browser shows the first
paragraph, then the image, and then the second paragraph.

2.2.5.Hyperlinks, Anchors, and Links

row 1, cell 1 row 1, cell 2

row 2, cell 1 row 2, cell 2

Example

<table border="1">
<tr>
<td>row 1, cell 1</td>
<td>row 1, cell 2</td>
</tr>
<tr>
<td>row 2, cell 1</td>
<td>row 2, cell 2</td>
</tr>
</table>

In web terms, a hyperlink is a reference (an address) to a resource on the web.

Hyperlinks can point to any resource on the web: an HTML page, an image, a
sound file, a movie, etc.

An anchor is a term used to define a hyperlink destination inside a document.

The HTML anchor element <a>, is used to define both hyperlinks and anchors.

We will use the term HTML link when the <a> element points to a resource, and
the term HTML anchor when the <a> elements defines an address inside a
document..

An HTML Link

Link syntax:

Link text

The start tag contains attributes about the link.

The element content (Link text) defines the part to be displayed.

Note: The element content doesn't have to be text. You can link from an image or
any other HTML element.

The href Attribute

The href attribute defines the link "address".

This <a> element defines a link to HUT:

Visit HUT!

The code above will display like this in a browser:

Visit HUT!

 2.2. Introduce frame tags and input elements
2.2.1. Frame tags

With frames, you can display more than one HTML document in the same
browser window. Each HTML document is called a frame, and each frame is
independent of the others.

The disadvantages of using frames are:

� The web developer must keep track of more HTML documents

� It is difficult to print the entire page

The Frameset Tag

The <frameset> tag defines how to divide the window into frames

Each frameset defines a set of rows or columns

The values of the rows/columns indicate the amount of screen area each
row/column will occupy

The Frame Tag

The <frame> tag defines what HTML document to put into each frame

In the example below we have a frameset with two columns. The first column
is set to 25% of the width of the browser window. The second column is set to
75% of the width of the browser window. The HTML document "frame_a.htm" is
put into the first column, and the HTML document "frame_b.htm" is put into the
second column:

2.2.2 HTML Input Elements

Once we create a form, we can place controls on the form to accept input from
the user. These controls are generally used with a <FORM> element. However, we
can also use them outside a form to create user interfaces.

The INPUT element

The <INPUT> element defines the type and appearance of the control to be
displayed on the form. The attributes of the element are:

Example

<frameset cols="25%,75%">
 <frame src="frame_a.htm">
 <frame src="frame_b.htm">
</frameset>

Attributes Description
TYPE This specifies the type of element. We have a choice of

TEXT, PASSWORD, CHECKBOX, RADIO, SUBMIT,
RESET, FILE, HIDDEN and BUTTON. The default is
TEXT.

NAME This specifies the name of control.
VALUE This is an optional attribute that specifies the initial value of

the control. However, if the TYPE is RADIO then we have
to specify a value.

SIZE This specifies the initial width of the control.
MAXLENGTH This is used to specify the maximum number of characters

that can be entered in the TEXT or PASSWORD element.
The default is unlimited.

CHECKED This is a Boolean attribute that specifies if the button is on.
This attribute is used when the input type is RADIO or
CHECKBOX

SRC SRC = “URL”. This is used when we are using an IMAGE
as the input type.

Button
Name Description
NAME This sets or retrieves the name of the control.
SIZE This sets or retrieves the size of the control.
TYPE This retrieves the type of intrinsic control represented by the

<INPUT type=button>.
VALUE This sets or retrieves the value of the <INPUT type=button>.

Text

This creates a single-line text entry control. The SIZE attribute defines the number
of characters that can be displayed in the Text element. The MAXLENGTH
attribute specifies the maximum number of characters that can be entered in the
Text element.

Example

 <INPUT TYPE=button VALUE=”click” NAME=”b1”>

Example

<INPUT TYPE=text VALUE=”” NAME=”textbox” SIZE=20>

The element Value here displays the initial text string and retrieves the text that is
specified when the form is submitted.

Checkbox
This creates a checkbox. The user can select more than one checkbox. When a
checkbox element is selected, a name/ value pair is submitted with the FORM.
The default value of checkbox is on. The checkbox element is an inline element
and does not require a closing tag.
Name Description
CHECKED This sets or retrieves the state of the checkbox.
NAME This sets or retrieves the name of the checkbox.
SIZE This sets or retrieves the size of the checkbox.
STATUS This sets or retrieves whether the checkbox is selected.
TYPE This sets or retrieves the type of intrinsic control represented

by the <INPUT type=checkbox>.
VALUE This sets or retrieves the value of the <INPUT

type=checkbox>.

Radio

This creates a radio button control. A radio button control is used mutually for
exclusive sets of values. Each radio button control in the group should be given
the same name. The user can select only one option at any given time. Only the
selected radio button in the group generates a name/value pair in the submitted
data. Radio buttons require an explicit value property.

Name Description
CHECKED This sets or retrieves the state of the radio button.
NAME This sets or retrieves the name of the control
SIZE This sets or retrieves the size of the control
STATUS This sets or retrieves whether the radio button is selected.
TYPE This retrieves the type of intrinsic control represented by the

<INPUT type=radio>.
VALUE This sets or retrieves the value of the <INPUT type=radio>.

Example

 <INPUT TYPE=radio NAME=”sex” VALUE=”male”>Male

Chapter 4

1.Stylesheet

1.1What are style sheets?
Style sheets describe how documents are presented on screens, in print, or

perhaps how they are pronounced. W3C has actively promoted the use of style
sheets on the Web since the Consortium was founded in 1994. The Style Activity
has produced several W3C Recommendations (CSS1, CSS2, XPath, XSLT). CSS
especially is widely implemented in browsers.

By attaching style sheets to structured documents on the Web (e.g. HTML),
authors and readers can influence the presentation of documents without
sacrificing device-independence or adding new HTML tags.

The easiest way to start experimenting with style sheets is to find a browser
that supports CSS. Discussions about style sheets are carried out on the www-
style@w3.org mailing list and on
comp.-infosystems.-www.-authoring.-stylesheets.

The W3C Style Activity is also developing XSL, which consists of a
combination of XSLT and “Formatting Objects” (XSL-FO).

1.2 How do I use a style sheet?

A style sheet is saved as a separate document. If you want a web page to follow
the rules outlined in a style sheet, it must contain a link to the style sheet. When a
browser requests a web page, the web page will link to the style sheet, which will
in turn instruct the browser to display the web page using the style attributes
defined in the style sheet.

1.3 What are the advantages of style sheets?

Style sheets ensure visual continuity throughout a site. By referring to the same
style sheet, all pages in a site can display the same stylistic qualities.

Style sheets simplify your site's maintenance. By concentrating your style
definition in one external file, any change you implement in your style sheet will

instantly apply to all the web pages linked to it.

By pulling the style definitions out of your pages, you will make them smaller and
faster to download. This will allow you to make more efficient use of your web
server space and your data transfer allowance.

1.4 The advantages of separating structure and presentation
For principals
Simple management. Thanks to the separation of presentation and content, a

change in layout is easy to implement for the whole site. Even a redesign is
relatively easy to implement.

The smaller individual files and the caching mentioned before save bandwidth
by the web host. Besides improved performance, this can also result in cost cuts.

For web developers and content managers
Separating the presentation of the site results in well-organised content and

simple structure. This renders construction and maintenance of the site easier.
Because the presentation is centralised in one or a few files, the appearance of

many pages in the site can be modified and supplemented quickly and easily.
Without the separation of structure and design, each page would have to be
modified individually, which would take considerably more time. A centralised
presentation may also result in a consistent appearance of the site.

Often several developers are responsible for the construction of a website.
Thanks to the separation principle, developers can largely work on the appearance
and the content/structure of the site independent of each other. This speeds up the
production process and reduces the chance of flaws.

For visitors
Consistency in the appearance of the site makes a site more recognisable and

therefore easier to use.
Individual files are smaller which results in shorter download times and

saving the visitor bandwidth for the visitor.
Visitors can easily influence the presentation of a website so that it meets

their preferences better, by means of User Style Sheets.

1.5 Example

Example 1:

Wikipedia uses structural markup to identify headings, lists, and paragraphs, and
CSS to define their visual properties. www.wikipedia.org

Figure 2.: When structured documents are displayed without styles, the client
software determines the visual formatting. Here, the structured Wikipedia page is
displayed without styles in Safari. Select Safari style definitions are shown in the
inset. www.wikipedia.org

Example 2: HTML document is more readable with CSS

CSS has far more formatting options than standard HTML presentation markup.
And since content and presentation are separate, one document can have many
different designs simply by applying a different style sheet (Figure 3).

When content and presentation are separate, alternate formats are easy to provide
by applying a different style sheet. Through linked style sheets, Boxes and Arrows
allows users to choose between regular (1), large-font (2), and print (3) versions.
www.boxesandarrows.com

Example 3: An HTML document can be displayed with different styles

Style 1

Style 2

Style 3

And without styles

2. Accessibility

2.1 Structure vs. Presentation

When designing a document or series of documents, content developers should
strive first to identify the desired structure for their documents before thinking
about how the documents will be presented to the user. Distinguishing the
structure of a document from how the content is presented offers a number of
advantages, including improved accessibility, manageability, and portability.

Identifying what is structure and what is presentation may be challenging at times.
For instance, many content developers consider that a horizontal line
communicates a structural division. This may be true for sighted users, but to
unsighted users or users without graphical browsers, a horizontal line may have
next to no meaning. For example, in HTML content developers should use the
HTML 4.01 [HTML4] heading elements (H1-H6) to identify new sections. These
may be complemented by visual or other cues such as horizontal rules, but should
not be replaced by them.

The inverse holds as well: content developers should not use structural elements to
achieve presentation effects. For instance in HTML, even though the
BLOCKQUOTE element may cause indented text in some browsers, it is designed
to identify a quotation, not create a presentation side-effect. BLOCKQUOTE
elements used for indentation confuse users and search robots alike, who expect
the element to be used to mark up block quotations.

The separation of presentation from structure in XML documents is inherent. As
Norman Walsh states in "A Guide to XML" [WALSH],

HTML browsers are largely hardcoded. A first level heading appears the way it
does because the browser recognizes the H1 tag. Again, since XML documents
have no fixed tag set, this approach will not work. The presentation of an XML
document is dependent on a stylesheet.

2.2 Text equivalents

Text is considered accessible to almost all users since it may be handled by screen
readers, non-visual browsers, and braille readers. It may be displayed visually,
magnified, synchronized with a video to create a caption, etc. As you design a
document containing non-textual information (images, applets, sounds,
multimedia presentations, etc.), supplement that information with textual
equivalents wherever possible.

When a text equivalent is presented to the user, it fulfills essentially the same
function (to the extent possible) as the original content. For simple content, a text
equivalent may need only describe the function or purpose of content. For

complex content (charts, graphs, etc.), the text equivalent may be longer and
include descriptive information.

Text equivalents must be provided for logos, photos, submit buttons, applets,
bullets in lists, ASCII art, and all of the links within an image map as well as
invisible images used to lay out a page.

2.2.1 Overview of technologies

How one specifies a text equivalent depends on the document language.

For example, depending on the element, HTML allows content developers to
specify text equivalents through attributes (" alt" or "longdesc") or in element
content (the OBJECT element).

Video formats, such as QuickTime, will allow developers to include a variety of
alternative audio and video tracks. SMIL ([SMIL]) allows developers to
synchronize alternative audio and video clips, and text files with each other.

In creating XML DTDs, ensure that elements that might need a description have
some way of associating themselves with the description.

Some image formats allow internal text in the data file along with the image
information. If an image format supports such text (e.g., Portable Network
Graphics, see [PNG]) content developers may also supply information there as
well.

2.2.2 Backward Compatibility

Content developers must consider backward compatibility when designing Web
pages or sites since:

• Some user agents do not support some HTML features,
• People may use older browsers or video players,
• Compatibility problems may arise between software

Therefore, when designing for older technologies, consider these techniques:

• Provide inline text equivalents. For example, include a description of the
image immediately after the image.

Provide links to long text equivalents either in a different file or on the same page.
These are called description links or "d-links". The link text should explain that
the link designates a description. Where possible, it should also explain the nature
of the description. However, content developers concerned about how the

description link will affect the visual appearance of the page may use more
discrete link text such as "[D]", which is recommended by NCAM (refer to
[NCAM]). In this case, they should also provide more information about the link
target so that users can distinguish links that share "[D]" as content (e.g., with the
"title" attribute in HTML).

2.2.3 Alternative pages

Although it is possible to make most content accessible, it may happen that all or
part of a page remains inaccessible. Additional techniques for creating accessible
alternatives include:

1. Allow users to navigate to a separate page that is accessible, contains the
same information as the inaccessible page, and is maintained with the same
frequency as the inaccessible page.

2. Instead of static alternative pages, set up server-side scripts that generate
accessible versions of a page on demand.

3. Refer to the examples for Frames and Scripts.
4. Provide a phone number, fax number, e-mail, or postal address where

information is available and accessible, preferably 24 hours a day

Here are two techniques for linking to an accessible alternative page:

1. Provide links at the top of both the main and alternative pages to allow a
user to move back and forth between them. For example, at the top of a
graphical page include a link to the text-only page, and at the top of a text-
only page include a link to the associated graphical page. Ensure that these
links are one of the first that users will tab to by placing them at the top of
the page, before other links.

2. Use meta information to designate alternative documents. Browsers should
load the alternative page automatically based on the user's browser type and
preferences.

Not every user has a graphic environment with a mouse or other pointing device.
Some users rely on keyboard, alternative keyboard or voice input to navigate links,
activate form controls, etc. Content developers must ensure that users may interact
with a page with devices other than a pointing device. A page designed for
keyboard access (in addition to mouse access) will generally be accessible to users
with other input devices. What's more, designing a page for keyboard access will
usually improve its overall design as well.

Keyboard access to links and form controls may be specified in a few ways:

Image map links

Provide text equivalents for client-side image map areas, or provide
redundant text links for server-side image maps. Refer to the image map
section for examples.

Keyboard shortcuts
Provide keyboard shortcuts so that users may combine keystrokes to
navigate links or form controls on a page. Note. Keyboard shortcuts --
notably the key used to activate the shortcut -- may be handled differently
by different operating systems. On Windows machines, the "alt" and "ctrl"
key are most commonly used while on a Macintosh, it is the apple or
"clover leaf" key. Refer to the Keyboard access for links and Keyboard
Access to Forms sections for examples.

Tabbing order
Tabbing order describes a (logical) order for navigating from link to link or
form control to form control (usually by pressing the "tab" key, hence the
name). Refer to the Keyboard Access to Forms section for examples.

2.3 Device-independent control for embedded interfaces

Some elements import objects (e.g., applets or multimedia players) whose
interfaces cannot be controlled through the markup language. In such cases,
content developers should provide alternative equivalents with accessible
interfaces if the imported objects themselves do not provide accessible interfaces.

2.4 Navigation

A consistent style of presentation on each page allows users to locate navigation
mechanisms more easily but also to skip navigation mechanisms more easily to
find important content. This helps people with learning and reading disabilities but
also makes navigation easier for all users. Predictability will increase the
likelihood that people will find information at your site, or avoid it when they so
desire.

Examples of structures that may appear at the same place between pages:

1. navigation bars
2. the primary content of a page
3. advertising

A navigation mechanism creates a set of paths a user may take through your site.
Providing navigation bars, site maps, and search features all increase the
likelihood that a user will reach the information they seek at your site. If your site
is highly visual in nature, the structure might be harder to navigate if the user can't
form a mental map of where they are going or where they have been. To help
them, content developers should describe any navigation mechanisms. It is crucial

that the descriptions and site guides be accessible since people who are lost at your
site will rely heavily on them.

When providing search functionality, content developers should offer search
mechanisms that satisfy varying skill levels and preferences. Most search facilities
require the user to enter keywords for search terms. Users with spelling disabilities
and users unfamiliar with the language of your site will have a difficult time
finding what they need if the search requires perfect spelling. Search engines
might include a spell checker, offer "best guess" alternatives, query-by-example
searches, similarity searches, etc.

2.5 Comprehension

The following sections discuss techniques for helping comprehension of a page or
site.

2.5.1 Writing style

The following writing style suggestions should help make the content of your site
easier to read for everyone, especially people with reading and/or cognitive
disabilities. Several guides (including [HACKER]) discuss these and other writing
style issues in more detail.

1. Strive for clear and accurate headings and link descriptions. This includes
using link phrases that are terse and that make sense when read out of
context or as part of a series of links (Some users browse by jumping from
link to link and listening only to link text.) Use informative headings so that
users can scan a page quickly for information rather than reading it in
detail.

2. State the topic of the sentence or paragraph at the beginning of the sentence
or paragraph (this is called "front-loading"). This will help both people who
are skimming visually, but also people who use speech synthesizers.
"Skimming" with speech currently means that the user jumps from heading
to heading, or paragraph to paragraph and listens to just enough words to
determine whether the current chunk of information (heading, paragraph,
link, etc.) interests them. If the main idea of the paragraph is in the middle
or at the end, speech users may have to listen to most of the document
before finding what they want. Depending on what the user is looking for
and how much they know about the topic, search features may also help
users locate content more quickly.

3. Limit each paragraph to one main idea.
4. Avoid slang, jargon, and specialized meanings of familiar words, unless

defined within your document.

5. Favor words that are commonly used. For example, use "begin" rather than
"commence" or use "try" rather than "endeavor."

6. Use active rather than passive verbs.
7. Avoid complex sentence structures.

To help determine whether your document is easy to read, consider using the
Gunning-Fog reading measure (described in [SPOOL] with examples and the
algorithm online at [TECHHEAD]). This algorithm generally produces a lower
score when content is easier to read. As example results, the Bible, Shakespeare,
Mark Twain, and TV Guide all have Fog indexes of about 6. Time, Newsweek,
and the Wall St. Journal an average Fog index of about 11.

2.5.2 Multimedia equivalents

For people who do not read well or not at all, multimedia (non-text) equivalents
may help facilitate comprehension. Beware that multimedia presentations do not
always make text easier to understand. Sometimes, multimedia presentations may
make it more confusing.

2.6 Content negotiation

There are a variety of strategies to allow users to select the appropriate content:

1. Include links to other versions of content, such as translations. For example,
the link "Refer to the French version of this document" links to the French
version.

2. Indicate content type or language through markup (e.g., in HTML use
"type" and "hreflang").

3. Use content negotiation to serve content per the client request. For
example, serve the French version of a document to clients requesting
French.

2.7 Automatic page refresh

Content developers sometimes create pages that refresh or change without the user
requesting the refresh. This automatic refresh can be very disorienting to some
users. Instead, in order of preference, authors should:

1. Configure the server to use the appropriate HTTP status code (301). Using
HTTP headers is preferable because it reduces Internet traffic and
download times, it may be applied to non-HTML documents, and it may be
used by agents who requested only a HEAD request (e.g., link checkers).
Also, status codes of the 30x type provide information such as "moved

permanently" or "moved temporarily" that cannot be given with META
refresh.

2. Replace the page that would be redirected with a static page containing a
normal link to the new page.

2.8 Screen flicker

A flickering or flashing screen may cause seizures in users with photosensitive
epilepsy and content developers should thus avoid causing the screen to flicker.
Seizures can be triggered by flickering or flashing in the 4 to 59 flashes per second
(Hertz) range with a peak sensitivity at 20 flashes per second as well as quick
changes from dark to light (like strobe lights).

2.9 Bundled documents

Bundled documents can facilitate reading offline. To create a coherent package:

• Use metadata to describe the relationships between components of the
package (refer to link metadata for HTML).

• Use archiving tools such as zip, tar and gzip, and StuffIt to create the
package.

2.10 Validation

This section discusses strategies and techniques for testing Web documents to
determine accessibility issues that have been resolved and those that haven't.
These tests should highlight major access issues, and are valuable in reducing a
number of accessibility barriers. However, some of these testing scenarios only
replicate conditions caused by a disability; they do not simulate the full experience
a user with a disability might have. In real-life settings, your pages may be less
usable than you expected. Thus, one of the strategies recommends that content
developers observe people with different disabilities as they attempt to use a page
or site.

If, after completing the following tests and adjusting your design accordingly, you
find that a page is still not accessible, it is likely that you should create an
alternative page that is accessible.

2.10.1 Automatic validators

A validator can verify the syntax of your pages (e.g., HTML, CSS, XML). Correct
syntax will help eliminate a number of accessibility problems since software can
process well-formed documents more easily. Also, some validators can warn you
of some accessibility problems based on syntax alone (e.g., a document is missing

an attribute or property that is important to accessibility). Note, however, that
correct syntax does not guarantee that a document will be accessible. For instance,
you may provide a text equivalent for an image according to the language's
specification, but the text may be inaccurate or insufficient. Some validators will
therefore ask you questions and step you through more subjective parts of the
analysis. Some examples of automatic validators include:

1. An automated accessibility validation tool such as Bobby (refer to
[BOBBY]).

2. An HTML validation service such as the W3C HTML Validation Service
(refer to [HTMLVAL]).

3. A style sheets validation service such as the W3C CSS Validation Service
(refer to [CSSVAL]).

2.10.2 Repair tools

Validators usually report what issues to solve and often give examples of how to
solve them. They do not usually help an author walk through each problem and
help the author modify the document interactively. The WAI Evaluation and
Repair Working Group ([WAI-ER]) is working to develop a suite of tools that will
help authors not only identify issues but solve them interactively.

2.10.3 User scenarios

Keep in mind that most user agents (browsers) and operating systems allow users
to configure settings that change the way software looks, sounds, and behaves.
With the variety of user agents, different users will have very different experiences
with the Web. Therefore:

1. Test your pages with a text-only browser such as Lynx ([LYNX]) or a Lynx
emulator such as Lynx Viewer ([LYNXVIEW]) or Lynx-me ([LYNXME]).

2. Use multiple graphic browsers, with:
o sounds and images loaded,
o images not loaded,
o sounds not loaded,
o no mouse,
o frames, scripts, style sheets, and applets not loaded.

3. Use several browsers, old and new. Note. Some operating systems or
browsers do not allow multiple installations of the browser on the same
machine. It may also be difficult to locate older browser software.

4. Use other tools such as a self-voicing browser (e.g., [PWWEBSPEAK] and
[HOMEPAGEREADER]), a screen reader (e.g., [JAWS] and
[WINVISION]), magnification software, a small display, an onscreen
keyboard, an alternative keyboard, etc. Note. If a Web site is usable with
one of these products it does not ensure that the site will be usable by other

products. For a more detailed list of assistive technologies used to access
the Web refer to ([ALTBROWSERS]).

2.10.4 Spell and grammar checks

A person reading a page with a speech synthesizer may not be able to decipher the
synthesizer's best guess for a word with a spelling error. Grammar checkers will
help to ensure that the textual content of your page is correct. This will help
readers for whom your document is not written in their native tongue, or people
who are just learning the language of the document. Thus, you will help increase
the comprehension of your page.

2.11 Browser Support

Please refer to the W3C Web site ([WAI-UA-SUPPORT]) for information about
browser and other user agent support of accessibility features.

In general, please note that HTML user agents ignore attributes they don't support
and they render the content of unsupported elements.

2.12 Technologies Reviewed for Accessibility

"Web Content Accessibility Guidelines 1.0" suggests using W3C technologies
since they have been reviewed for accessibility issues and therefore have
accessibility features built in. The latest W3C technologies are available from the
W3C Technical Reports and Publications page.

Brief overview of current W3C technologies:

• MathML for mathematical equations
• HTML, XHTML, XML for structured documents
• RDF for meta data
• SMIL to create multimedia presentations
• CSS and XSL to define style sheets
• XSLT to create style transformations
• PNG for graphics (although some are best expressed in JPG, a non-w3c

spec)

2.13 Audio information

Auditory presentations must be accompanied by text transcripts, textual
equivalents of auditory events. When these transcripts are presented
synchronously with a video presentation they are called captions and are used by
people who cannot hear the audio track of the video material.

Some media formats (e.g., QuickTime 3.0 and SMIL) allow captions and video
descriptions to be added to the multimedia clip. SAMI allows captions to be
added. The following example demonstrates that captions should include speech
as well as other sounds in the environment that help viewers understand what is
going on.

Until the format you are using supports alternative tracks, two versions of the
movie could be made available, one with captions and descriptive video, and one
without. Some technologies, such as SMIL and SAMI, allow separate audio/visual
files to be combined with text files via a synchronization file to create captioned
audio and movies.

Some technologies also allow the user to choose from multiple sets of captions to
match their reading skills. For more information see the SMIL 1.0 ([SMIL])
specification.

Equivalents for sounds can be provided in the form of a text phrase on the page
that links to a text transcript or description of the sound file. The link to the
transcript should appear in a highly visible location such as at the top of the page.
However, if a script is automatically loading a sound, it should also be able to
automatically load a visual indication that the sound is currently being played and
provide a description or transcript of the sound.

2.14 Visual information and motion

Auditory descriptions of the visual track provide narration of the key visual
elements without interfering with the audio or dialogue of a movie. Key visual
elements include actions, settings, body language, graphics, and displayed text.
Auditory descriptions are used primarily by people who are blind to follow the
action and other non-auditory information in video material.

Note. If there is no important visual information, for example, an animated talking
head that describes (through prerecorded speech) how to use the site, then an
auditory description is not necessary.

For movies, provide auditory descriptions that are synchronized with the original
audio. Refer to the section on audio information for more information about
multimedia formats.

2.15 Collated text transcripts

Collated text transcripts allow access by people with both visual and hearing
disabilities. They also provide everyone with the ability to index and search for
information contained in audio/visual materials.

Collated text transcripts include spoken dialogue as well as any other significant
sounds including on-screen and off-screen sounds, music, laughter, applause, etc.
In other words, all of the text that appears in captions as well as all of the
descriptions provided in the auditory description.

3. Link CSS with HTML

There are three ways to apply CSS to HTML.

3.1 In-line

In-line styles are plonked straight into the HTML tags using the style attribute.

They look something like this:

<p style="color: red">text</p>

This will make that specific paragraph red.

But, if you remember, the best-practice approach is that the HTML should be a
stand-alone, presentation free document, and so in-line styles should be avoided
wherever possible.

3.2 Internal

Embedded, or internal styles are used for the whole page. Inside the head tags, the
style tags surround all of the styles for the page.

This would look something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>CSS Example</title>
<style type="text/css">
 p {
 color: red;
 }

 a {
 color: blue;
 }
</style>
...

This will make all of the paragraphs in the page red and all of the links blue.

Similarly to the in-line styles, you should keep the HTML and the CSS files separate, and
so we are left with our saviour...

3.3 External

External styles are used for the whole, multiple-page website. There is a separate
CSS file, which will simply look something like:

p {
 color: red;
}

a {
 color: blue;
}

If this file is saved as "web.css" then it can be linked to in the HTML like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
 <title>CSS Example</title>
 <link rel="stylesheet" type="text/css" href="web.css" />
...

For example, let's say that your style sheet is named style.css and is located in a
folder named style. The situation can be illustrated like this:

The trick is to create a link from the HTML document (default.htm) to the style
sheet (style.css). Such link can be created with one line of HTML code:

<link rel="stylesheet" type="text/css" href="style/style.css" />

Notice how the path to our style sheet is indicated using the attribute href .

The line of code must be inserted in the header section of the HTML code i.e.
between the <head> and </head> tags. Like this:

<html>
 <head>
 <title>My document</title>
 <link rel="stylesheet" type="text/css" href="style/ style.css" />
 </head>
 <body>
 ...

This link tells the browser that it should use the layout from the CSS file when
displaying the HTML file.
The really smart thing is that several HTML documents can be linked to the same
style sheet. In other words, one CSS file can be used to control the layout of many
HTML documents.

This technique can save you a lot of work. If you, for example, would like to
change the background color of a website with 100 pages, a style sheet can save
you from having to manually change all 100 HTML documents. Using CSS, the
change can be made in a few seconds just by changing one code in the central
style sheet.

4. Systax of CSS

4.1 What is CSS?

• CSS stands for Cascading Style Sheets
• Styles define how to display HTML elements
• Styles are normally stored in Style Sheets
• Styles were added to HTML 4.0 to solve a problem
• External Style Sheets can save a lot of work
• External Style Sheets are stored in CSS files
• Multiple style definitions will cascade into

4.2 CSS Syntax

The CSS syntax is made up of three parts: a selector, a property and a value:

selector {property:value}

The selector is normally the HTML element/tag you wish to define, the property is
the attribute you wish to change, and each property can take a value. The property
and value are separated by a colon, and surrounded by curly braces:

body {color:black}

Note: If the value is multiple words, put quotes around the value:

p {font-family:"sans serif"}

Note: If you want to specify more than one property, you must separate each
property with a semicolon. The example below shows how to define a center
aligned paragraph, with a red text color:

p {text-align:center;color:red}

To make the style definitions more readable, you can describe one property on
each line, like this:

p
{
text-align:center;
color:black;
font-family:arial
}
Grouping

You can group selectors. Separate each selector with a comma. In the example
below we have grouped all the header elements. All header elements will be
displayed in green text color:

h1,h2,h3,h4,h5,h6
{
color:green
}
The class Selector

With the class selector you can define different styles for the same type of HTML
element.

Say that you would like to have two types of paragraphs in your document: one
right-aligned paragraph, and one center-aligned paragraph. Here is how you can
do it with styles:

p.right {text-align:right}
p.center {text-align:center}

You have to use the class attribute in your HTML document:

<p class="right">This paragraph will be right-aligned.</p>
<p class="center">This paragraph will be center-aligned.</p>

Note: To apply more than one class per given element, the syntax is:

<p class="center bold">This is a paragraph.</p>

The paragraph above will be styled by the class "center" AND the class "bold".

You can also omit the tag name in the selector to define a style that will be used by
all HTML elements that have a certain class. In the example below, all HTML
elements with class="center" will be center-aligned:

.center {text-align:center}

In the code below both the h1 element and the p element have class="center". This
means that both elements will follow the rules in the ".center" selector:

<h1 class="center">This heading will be center-aligned</h1>
<p class="center">This paragraph will also be center-aligned.</p>

Note: Do NOT start a class name with a number! It will not work in
Mozilla/Firefox.

Add Styles to Elements with Particular Attributes

You can also apply styles to HTML elements with particular attributes.

The style rule below will match all input elements that have a type attribute with a
value of "text":

input[type="text"] {background-color:blue}
The id Selector

You can also define styles for HTML elements with the id selector. The id selector
is defined as a #.

The style rule below will match the element that has an id attribute with a value of
"green":

#green {color:green}

The style rule below will match the p element that has an id with a value of
"para1":

p#para1
{
text-align:center;
color:red
}

Note: Do NOT start an ID name with a number! It will not work in
Mozilla/Firefox.

CSS Comments

Comments are used to explain your code, and may help you when you edit the
source code at a later date. A comment will be ignored by browsers. A CSS
comment begins with "/*", and ends with "*/", like this:

/*This is a comment*/
p
{
text-align:center;
/*This is another comment*/
color:black;
font-family:arial
}

4.3 The simple CSS example

Example 1: text

Example2: Font

Example 3:margin

Example 4: Dimension

Chapter 5

1.Dynamic Pages

1.1 What are Dynamic Pages

Dynamic pages consist of pages where the logic is maintained separately from the
content. The content is stored in the database until the variable parameters of the
dynamic url tells the database repository what items to pull into the page as it
loads. Based on the url's parameters, the server will return different content.

Dynamic pages are usually coded in such scripting languages as CGI, ASP, PHP,
Perl, Cold Fusion, JSP and others. You can usually tell if an url is dynamically
generated because it will include question marks, equal signs, percentage signs,
and ampersands.

An example of a dynamic url is:

http://www.thedomain.com/index.php?lang=NLD&name=home

The important element in the url above, is the portion after the ?. It is the portion
after the ? that contains the query string - the part that changes.

1.2 The difference between static and dynamic page web

Essentially, static pages are those on your site that send exactly the same response
to every request; dynamic pages can customize the response on the server to offer
personalization based on cookies and information it can get from the visitor.

An obvious example of a static page is an old style HTML document; the only
way to change a HTML page is to upload a new or updated version in its place.
Every time a static file is downloaded, the file contents that are sent to the browser
are the same for everyone that accesses that file.

While most pages written in a particular scripting language will return a
personalized response to each visitor, this is not always the case; the same is true
for pages utilizing Server Side Includes. Suppose for a moment that you had two
SHTML documents, both of which include a single file; the first including a
simple HTML snippet for the menu, the second including an online poll script.
The page including the menu would be static; the menu would be the same for
everyone that downloaded it until either of the files were changed on the server.
The page that included the poll however would be dynamic, as it would display
different pages to people depending on their previous voting history.

Flash and Shockwave presentations are also classed as static content; despite the
fact that user interaction can lead to different ways of presenting the same data,
everyone will download the same file from the server.

1.3 The Advantage of Dynamic Pages

A dynamic page can be customized by a response on a server to help personalize
your site to meet your customer's need. All page content will come from a
database connected to the Web site.

Since the dynamic template is maintained separately from the content, it means
that content changes can be made when needed. In addition, the web site can be
updated without major maintenance, editing and reviewing, which translates into
lower maintenance costs and time.

Many webmasters of large e-commerce sites tend to favor dynamic pages because
it is customer friendly, and allows them to update their pages on a regular basis by
specific time and date sensitive routines. Which is understandable, if their
products and offers change on a daily basis.

On the affiliate side, I'm seeing more merchant webmasters offering the option of
dynamic links for their affiliates. The affiliate can put the code on their website,
and let the merchant create the update. This saves the affiliate time, by eliminating
the manual manipulation of the url and uploading of their web pages on a daily
basis; And second, they have the reassurance of knowing that if something is made

available by the merchant, the link will automatically change and be available to
their customers in a timely manner. However, there are some affiliates that do not
take a liking to this type of link. Why?

For the established affiliate, with more automation tools -- the merchant's dynamic
links takes the control out of their hands. How? The dynamic link may provide
specific links to products or services that the affiliate may or may not wish to see
appear on their site.

So far, dynamic links looks like a workable solution -- saving time and money and
offering only small nuisances. But are there any disadvantages to dynamic pages?

1.4 The Disadvantages of Dynamic Pages
Is there a downside to dynamic pages? Not to be wishy-washy, but -- Yes and No.

In days gone by, many of the web spiders could not read the url parameters to the
right of the question mark in the dynamic url. Today, webmasters have seen some
improvement.

Google and some of the other search engines can handle simple dynamic urls, but
if the query parameters gets to long or complicated (having more than one ? for
example) their crawler will ignore the link completely. If you need or want more
information on what Google can and cannot do with dynamic links, and the
possible procedures and alternatives of getting your dynamic links indexed you
can check out Google Webmaster Center for the details.

Yahoo, on the other hand, suggests that you use dynamic links only in directories
that are not intended to be crawled or indexed. Nicely put, the answer is a simple
"I don't think so." Thus, whether you have a dynamic web page or website, you
may find yourself having problems with getting your web pages crawled, let alone
getting them indexed.

So, where do the search engines stand on the issue of dynamic links today? Some
web spiders are taking the plunge and crawling websites with dynamic links,
which is a positive. But on the negative side, there are still some web spiders that
will not venture near a dynamically-created page for fear of getting stuck in the
page and being lead through some poorly written code and thus, causing a possible
major server crash.

With that being said, what can you do to get your dynamic web pages spidered?
Do you have to bit the bullet and change back to static or is there other
possibilities out there that will get your dynamic url indexed.

1.5 Example Dynamic pages

An example of a dynamic google.com.vn
Dynamic componens:

• Inner search
help user search information quckly
The purpose of the Inner Search Centre is to provide the individual with the tools
to develop their own awareness and personal healing experience. Our focus is the
journey to the heart centre and a re-alignment with the higher self and your creator
source. Discover the Inner Beauty that you have always been. All private sessions
and workshops are designed to help you help yourself.

• Member account: You don't have permission to access in Member Area
• Forum,Mail,blog

Static component
• Tools
• Images
• Icon

2 Client-side and Server-side

2.1 Server side

With server-side scripting, completing an activity involves sending information to
another computer (server) across the internet. The server then runs a program that
process the information and returns the results, typically a webpage.

Search engines use server-side processing. When a keyword is sent, a program on
a server matches the word or phrase entered against an index of website content.
(To complete the same search as a client-side process would require the browser to
download the entire search engine program and index.)

 1)The browser sends an HTTP request.

 2)The server retrieves the requested file with the script.

3)The server executes the script or program which typically outputs an HTML
web page.

4)The server sends the HTML output to the client's browser.

5)Example: www.google.com

Server-side scripting languages include ASP and PHP.

2.2 Client side

Client side (that is to say: in the browser) or what is commonly called DHTML ...
dynamic HTML.

DHTML is basically taking HTML and JavaScript (sometimes VB script) to make
the web page change it’s own content (as far as the viewer is concerned) without
having to reload or load a new page.

Examples of DHTML would include drop down menus, ‘floating’ images that
hover over the rest of the page etc ... if you look around, you will find plenty on
the web.

Client-side scripting languages include JavaScript.

3. Three-Tier sytem

client-server architecture in which the user interface, functional process logic
("business rules"), computer data storage and data access are developed and
maintained as independent modules, most often on separate platforms.

The three-tier model is considered to be a software architecture and a software
design pattern.

Apart from the usual advantages of modular software with well defined interfaces,
the three-tier architecture is intended to allow any of the three tiers to be upgraded
or replaced independently as requirements or technology change. For example, a
change of operating system in the presentation tier would only affect the user
interface code.

Typically, the user interface runs on a desktop PC or workstation and uses a
standard graphical user interface, functional process logic may consist of one or
more separate modules running on a workstation or application server, and an
RDBMS on a database server or mainframe contains the computer data storage
logic. The middle tier may be multi-tiered itself (in which case the overall
architecture is called an "n-tier architecture").

The 3-Tier architecture has the following three tiers:

3.1 Presentation Tier
This is the topmost level of the application. The presentation tier displays
information related to such services as browsing merchandise, purchasing,
and shopping cart contents. It communicates with other tiers by outputting
results to the browser/client tier and all other tiers in the network.

3.2 Application Tier (Business Logic/Logic Tier)
The logic tier is pulled out from the presentation tier and, as its own layer,
it controls an application’s functionality by performing detailed processing.

3.3 Data Tier
This tier consists of Database Servers. Here information is stored and
retrieved. This tier keeps data neutral and independent from application
servers or business logic. Giving data its own tier also improves scalability
and performance.

 Example: SIS in HUT http://sis.hut.edu.vn/

• Presentation Tier:
forms and pages using display databasse: CourseBL.aspx, GroupListBL.aspx,
ClassEnrollmentBL.aspx…

• Application Tier:
functions using insert,select,update,delete data from database

• Data Tier:
 is those class using retrieved data from tables of database:
class,student,department,..are class in Data Tier

Chapter 6.

1. Scritng in a web browser

1.1 JavaScript
JavaScript is an interpreted programming or script language from Netscape. It is
somewhat similar in capability to Microsoft'sVisual Basic, Sun's Tcl, the UNIX-
derived Perl, and IBM's Rexx. In general, script languages are easier and faster to
code in than the more structured and compiled languages such as C and C++.
Script languages generally take longer to process than compiled languages, but are
very useful for shorter programs.

JavaScript is used in Web site development to do such things as:

• Automatically change a formatted date on a Web page
• Cause a linked-to page to appear in a popup window
• Cause text or a graphic image to change during a mouse rollover

JavaScript uses some of the same ideas found in Java, the compiled object-
oriented programming derived from C++. JavaScript code can be imbedded in
HTML pages and interpreted by the Web browser (or client). JavaScript can also
be run at the server as in Microsoft's Active Server Pages before the page is sent to
the requestor. Both Microsoft and Netscape browsers support JavaScript, but
sometimes in slightly different ways.

1.2 Applet

Applet is java program that can be embedded into HTML pages. Java applets runs
on the java enables web browsers such as mozila and internet explorer. Applet is
designed to run remotely on the client browser, so there are some restrictions on it.
Applet can't access system resources on the local computer. Applets are used to
make the web site more dynamic and entertaining.

Java applets are executed in a sandbox by most web browsers, preventing them
from accessing local data. The code of the applet is downloaded from a web server
and the browser either embeds the applet into a web page or opens a new window
showing the applet's user interface. The applet can be displayed on the web page
by making use of the deprecated applet HTML element [1], or the recommended
object element [2]. This specifies the applet's source and the applet's location
statistics.

1.2.1 Advantages of Applet:

• Applets are cross platform and can run on Windows, Mac OS and Linux
platform

• Applets can work all the version of Java Plugin
• Applets runs in a sandbox, so the user does not need to trust the code, so it

can work without security approval
• Applets are supported by most web browsers
• Applets are cached in most web browsers, so will be quick to load when

returning to a web page
• User can also have full access to the machine if user allows

1.2.2 Disadvantages of Java Applet:

• Java plug-in is required to run applet
• Java applet requires JVM so first time it takes significant startup time
• If applet is not already cached in the machine, it will be downloaded from

internet and will take time

• Its difficult to desing and build good user interface in applets

1.3 Flash

Over the releases of new versions of Flash, Macromedia has made Flash more and
more controllable via programming, where they have it positioned as a competitor
to HTML to build interactive web sites and applications such as an e-commerce
store. Macromedia argues that Flash is the way to go instead of HTML because of
the following reasons:

• Flash movies load faster and save on download time because Flash is vector
based whereas HTML is not.

• Flash intelligently ‘caches’ it’s movies so they don’t have to be reloaded.
• Flash gives the user (the person viewing/using the Flash movie) a more

responsive ‘rich-client’ like experience.

All of these points are true, but they can be true for HTML pages as well (except
for the vectors). I will address these points now:

Flash pages can be made to load faster, but most of the time, the way they are
designed in the real world, they do not. That is not a Flash problem, it is more an
issue of the Flash developers going nuts with fancy and heavy Flash movies.

HTML caches pages as well, once images are downloaded they are held in your
browser's cache. The cached images are then used instead of dowloading them
from the server again.

With new technology like ASP.net and Java Server Faces, HTML now can react
just like a ‘rich-client’ application. Even without these new tools, properly
designed HTML for most dynamic sites can provide a good user experience.

1.3.1 What do I have against Flash?

Before I start trashing Flash, I have to first say that I think it is a great tool, but not
in all things and certainly not in the all-encompassing way that Macromedia would
suggest. Here’s why:

Flash handles text very poorly. The web for the most part is about text, we go to
the web to read about things, whether it be articles like this one, or what is in your
shopping cart, or the latest baseball stats, it is all text.

Flash text rendering/displaying is much slower than HTML and noticeably less
clear. Macromedia knows this and that’s why they include the ability to display
basic HTML in Flash and that’s why on their own site, they make heavy use of
 HTML.

Flash development usually takes much longer than the HTML equivalent. This has
been helped to a great degree starting with the release of FLASH MX where they
essential provided HTML form components, but it is still slower to create a Flash
site than an HTML site.

1.3.2 What I like about Flash development?

1. You can do some really nice work in Flash that would be difficult and
sometimes impossible in HTML alone. Things like complex animations and
playing video spring to mind.

2. Practically no browser issues: For the most part, Flash movies will work the
same if the user is on Netscape or IE, on Mac or PC. The browser issues (where
people coming to your site have different browsers that can ‘break’ your pages)
are quickly becoming a thing of the past since most people (thank the web gods)
are using IE. But even today, I still have to deal with people who may be using
some old browser that can break all but the simplest of HTML code.

1.3.3 So when should you use Flash?

In my humble opinion, I would use Flash to create a presentation that is similar to
a television commercial. This type of presentation is something where the user sits
back and enjoys the show as the Flash movie delivers the message to the client
with animation, sound, and possibly video. Please do not get this confused with
those ubiquitous ‘intro’ animations that still plague many Flash sites. Rather I am

talking about informative movies that the user can decide to view to learn about
something like a product or a service.

I can also see Flash being used in straight animations, like what your kids watch
Saturday morning. One last use where I find Flash handy, is with so called ‘rich-
ui’ components like calendars or fancy navigational systems. The only danger here
is that if the user doesn't have the proper Flash plug-in, they won't be able to use
those components and as such in many cases (like with a Flash based navigation
bar) the user will not be able to use your web site!

Instead of Macromedia’s vision, I see Flash being used selectively to enhance an
HTML based site.

2.Javascript

2.1 Syntax javascript

2.1.1 JavaScript Variables

Like other programming languages, JavaScript variables are a container that
contains a value - a value that can be changed as required.

For example, you could prompt your website users for their first name. When they
enter their first name you could store it in a variable called say, firstName. Now
that you have the user's first name assigned to a variable, you could do all sorts of
things with it like display a personalised welcome message back to the user for
example. By using a variable to store the user's first name, you can write one piece
of code for all your users.

Declaring JavaScript variables

First, you need to declare your variables. You do this using the var keyword. You
can declare one variable at a time or more than one. You can also assign values to
the variables at the time you declare them.

Different methods of declaring JavaScript variables
// declaring one javascript variable
var firstName;

// declaring multiple javascript variables
var firstName, lastName;

// declaring and assigning one javascript variable
var firstName = 'Homer';

// declaring and assigning multiple javascript variables
var firstName = 'Homer', lastName = 'Simpson';
Using JavaScript variables

Although there are many uses for JavaScript variables, here is a quick and dirty
example:

<script language="javascript" type="text/javascript" >

<!-- hide me
var firstName = prompt("What's your first name?", "");
// end hide -->

<!-- hide me
document.write(firstName);
// end hide -->

</script>

The above example opens a JavaScript prompt, prompting the user for their first
name. It will then write the name to the page (in practice, you would output the
name somewhere between the <body></body> tags).

I suspect you can find a much better use for your javascript variables but this
simply to demonstrate how easily you can store data inside a variable - data that
could change at any moment.

Rules for JavaScript Variables

• Can contain any letter of the alphabet, digits 0-9, and the underscore
character.

• No spaces
• No punctuation characters (eg comma, full stop, etc)
• The first character of a variable name cannot be a digit.
• JavaScript variables' names are case-sensitive. For example firstName and

FirstName are two different variables

2.1.2 JavaScript Functions

In JavaScript, you will use functions a lot. A function (also known as a method) is
a self-contained piece of code that performs a particular "function". You can

recognise a function by its format - it's a piece of descriptive text, followed by
open and close brackets.

Sometimes there will be text in between the brackets. This text is known as an
argument. An argument is passed to the function to provide it with further info
that it needs to process. This info could be different depending on the context in
which the function is being called.

Arguments can be extremely handy, such as allowing your users to provide
information (say via a form) that is passed to a function to process. For example,
your users could enter their name into a form, and the function would take that
name, do some processing, then present them with a personalised message that
includes their name.

A function doesn't actually do anything until it is called. Once it is called, it takes
any arguments, then performs it's function (whatever that may be).

Writing a function in JavaScript

It's not that hard to write a function in JavaScript. Here's an example of a
JavaScript function.

Write the function:

<script type="text/javascript">
<!--
function displayMessage(firstName) {
 alert("Hello " + firstName + ", hope you like JavaScript functions!")
}
//-->
</script>

Call the function:

<form>
First name:
<input type="input" name="yourName" />
<input
 type="button"
 onclick="displayMessage(form.yourName.value)"
 value="Display Message" />
</form>

This should work like this:

First name:

Exlanation of code

Writing the function:

1. We started by using the function keyword. This tells the browser that a
function is about to be defined

2. Then we gave the function a name, so we made up our own name called
"displayMessage". We specified the name of an argument ("firstName")
that will be passed in to this function.

3. After the function name came a curly bracket { . This opens the function.
There is also a closing bracket later, to close the function.

4. In between the curly brackets we write all our code for the function. In this
case, we use JavaScript's built in alert() function to pop up a message
for the user.

Calling the function:

1. We created an HTML form with an input field and submit button
2. We assigned a name ("yourName") to the input field
3. We added the onclick event handler to the button. This event handler is

called when the user clicks on the button (more about event handlers later).
This is where we call our JavaScript function from. We pass it the value
from the form's input field. We can reference this value by using
"form.yourName.value".

2.1.4 Control structures in JavaScript
The JavaScript loops and conditions are similar to those of the C language
but with greater flexibility and some extensions.
if else

The syntax is:

if(condition) { }

or

if(condition) { } else { };

The brackets are optional if there is a single instruction while parentheses are
always required.
When the evaluation of the condition returns "true", the instructions are executed
otherwise it is the else part when it is present.

Example:

if(a == 5)
{
 document.write("a is 5");
}

It would be possible as in C to assign a variable inside the condition, a practice
that should be avoided.

The for loop

The syntax is:

for(var = initializer; condition; increment)
{
 ...instructions...
}

Example:

for(var i = 0; i < 10; i++)
{
 document.write(i + "
");
}
For in

This structure allows parsing the contents of an object to return the list of its
properties. If it is an array, the properties are the indices of the array.
To get the contents of the object, the array must be indexed with the property to
retrieve its value.
Example:

arr = new Array("a", "b", "c");
for (x in arr)
{
 document.write(x + ") " + arr[x]);
}

This code displays:

0) a
1) b
2) c

For each in (pm)

For each gives directly the content of the object and works as the foreach PHP
control. This structure has been added to JavaScript 1.6 and Internet Explorer 7
recognizes only version 1.5, it will not work with this browser. Do not use on a
public site, so.
Example with the same array:

for each(x in arr)
{
 document.write(x);
}
While

Loop running as a given condition is true, implying that the conditional expression
contains a variable that is modified in the body of the loop.

while(condition) { }

Example:

var i = 0;
while(i < 3)
{
 document.write(arr[i]);
 i++;
}

a
b
c

It is easy to forget to increment the variable of the condition, which causes an
infinite loop and blocks the browser. Use therefore with cautious. The for loop of
the following example will have the same result and is therefore preferable, as is
for in:

for(i = 0; i < 3; i++)
{
 document.write(arr[i]);
}
Break and continue

The break instruction can exit the loop, while continue moves to the next iteration.
In the example, is created an endless loop with a condition "true" that will be
always true of course, and it relies on the break command to end the loop:

var arr = ["a", "b", "c", "d", "e"];
var x = 0;
while(true)
{
 if (x == 2) { x++; continue; }
 if (x == arr.length) break;
 document.write(arr[x]);
 x++;
}

The "c" string is not displayed because the loop continues when the index reaches
2.
The loop stops when the size of the table is reached, thanks to the break
instruction.

a
b
d
e

If a while control can easily turn into an infinite loop, things get even worse with
the use of the continues command as it can bypass the instruction to increment the
variable of the condition and also skip the break instruction.

The ability to associate a label still does not help us to avoid this problem because
the label must be declared prior to use continue.

label:
...instructions...
continue label;

What makes this option of little interest.
do while

do while is similar to the while structure with the condition postponed to end of the
loop.
The content of the loop will always be executed at least once.

do { } while(condition)

Example:

var i = 0;
do
{
 document.write(arr[i]);
 i++;
} while(i < 3);

a
b
c

In this case, there is no difference with while. The difference appears only if the
condition is never met. For example (i> 4) does nothing with while and displays
"a" with do while.
Switch case

Executes a processing depending on the value of a conditional expression.

Syntax:

switch(expression)
{
 case value:
 ... instructions ...
 break;
 case value:
 ...instructions...
 break;

}

The cases are compared in turn and the first value that corresponds to the
expression is retained, and the associated code is executed. The break instruction
marks the end of code for the case, so if break is omitted, the code of the
following case is executed in turn.

Conclusion

JavaScript inherits the unsafe syntax and structures of the C language, which
includes the aberration of the assignment within a condition, with effects amplified
in a client-server environment. We must be attentive to possible infinite loops and
prefer to use for and for .. in.

2.2 Using javascript to varity data in a form

2.2.1 Description

This article discusses how to use JavaScript to validate important types of form
data, including names, addresses, URLs, email addresses, phone numbers, zip
codes, expiration dates and credit card numbers (Visa, Master Card, Discover, and
American Express, in both Canadian and US formats, with either 13, 14, 15 or 16
digit account numbers). Each data validation function returns an array of valid
inputs that were detected, and has the ability to filter and reformat data to desired
appearances and standards. If no valid input is detected, then an error code is
returned. In addition to providing definitions for each error code number, the
JavaScript form validation script also provides associated human-readable error
messages which explain the error after it has occurred.

Also, a user input validation function is provided which stops falsified user
information from being submitted to business Web sites. This function is easy to
add to any Web form by creating a list of form objects, and registering the
function as the onsubmit event handler for the form. The programming logic
allows for relations to be expressed between associated form fields when
performing user input validation. For added flexibility, the validation process
allows the form creator to permit specific data entry fields to contain unverified or
unusual data at the time the form is successfully validated and submitted.

2.2.2 Introduction

This validation script offers a collection of validation functions, and an easy way
to use them in your form with JavaScript. Ideally, validation should be helpful to
users and make it easier for customers to fill out forms. Be aware that there are
some precautions to take note of, which are discussed later on.

Within a form there are fields for text, and/or selector menus. For some forms with
only a few values it's easy to offer options via a select menu. Here, data validation
isn't as important because the only options given are the ones allowed. For other
data fields, like zip codes, listing all variations is impossible, so the easiest way is
to use a text field. Be aware that a text field allows anything to be typed, so it's
often necessary to validate it by determining whether the value is reasonable. A
zip code, for instance, needs to be at least five digits, meaning that five spaces
could easily be recognized as an invalid zip code.

The script is written to make validation easy to use. While primarily intended for
text fields, it's also applicable to other fields which have pre-programmed values.
When working with text fields it's able to validate the field value itself, but when
working with other fields it's able to validate the entire field in combination with
other fields and functions.

The JavaScript validation programming interface consists of four components:

• Low-level processing functions for numerical values, text, and whitespace.
• Validation functions for each type of data
• Validation handler used for onsubmit , which supports generic form

validation using a list of form elements, or fine-tuned validation by using a
validation profile customized for your form

• Definitions of error codes and user-friendly error code messages

We display an example form along with its source code to show how the
validation program is used. Then we explain how to use the built-in validation
functions, how to add a customized validation function, how to add your own error
codes and error messages, and finally, how to register the validation function as
the onsubmit event handler for your form.

2.2.3 Data Validation Precautions

A serious concern with data validation is that a validation script sometimes is
unable to recognize acceptable values, or that it may be non-functional depending
on browser settings or other issues. If an error occurred when loading a script in a
page, a customer might not be able to submit the order. In addition, it tends to
make security managers forget that malicious users can intentionally disable
scripts. Nothing from a form should ever be blindly trusted if a critical area of
security might be compromised if an unexpected value was submitted.

For businesses there's another problem that is just as important as security.
Customers shouldn't be prevented from placing orders due to a validation script
which didn't consider all cases of valid input, or which commits some other logical
error.

An example is Frys.com, where improper form validation prevents many people
from submitting orders. Validation code tries to prevent duplicate order
submissions in the final step of ordering. Here, a JavaScript logic error results in
the form's being disabled before any order is submitted in many cases; on Opera,
this problem is repeatable every time, so it's actually impossible to order from
Frys.com with the Opera browser due to this bug.

So far as I know, this problem hasn't been corrected, and it's been present for more
than a year. From a business standpoint, this is just as serious as security errors.
Web sites should be lenient about permitting users to submit information which
may in fact be correct, even when the JavaScript validation code thinks it's wrong.
Business ordering systems should allow the user to submit the form after
confirming their data for the third time. The JavaScript error code can be
submitted in a hidden field.

Even though these validation functions have been refined over seven years and
they can be considered to be production grade, one should still take extra

precautions to make sure that people can submit their data. There will still be cases
when the validation script might be wrong or when there should still be a way
around it.

2.2.4 Available validation functions

Each validation function sets an error code if there's an error, and it has to return
an array of valid values (possibly with prettifications and reformatting) if there's
no error. These validation functions were written (for the most part) before this
validation script or article existed. They've been tested for years to make sure that
the validation script is of production quality.

Note that the actual return values of all of them are arrays; it's possible for some to
return more than one value in the array, such as with email() for email
addresses. Also note that the return value might not be an array if there has been
an error code set.

2.2.5 Using the Validation Functions

Let's show an example of what the email() function does. This code:

javascript:alert(email('hi@bye.com me@you.you'))

will result in the array

['hi@bye.com', 'me@you.you']

Now we explain how these are connected to a form.

Creating a Validation Variable
check_form_example = {};

Inside of this variable (which is an object literal) you place the validation macro
function with the name of the appropriate form field, like this:

1check_form_example = {
2zipcode: { verify: zip }
3};

This would correspond to a text field in your form such as <input
type="text" name="zipcode"> .

2.2.6 Specifying Custom Messages

You can specify a custom error message if the zip code is invalid, which better fits
the context of your form. (Maybe someone has a previous zip code and a new zip
code.)

zipcode: { verify: zip, message: 'Enter the zip code of your new home.' }

Note: This message will always be shown, even if there are different error codes.
For this reason you might not want to specify a custom error message directly, but
you might decide to add your own error codes with new error code messages.

Also, you may feel comfortable overriding the default error message texts, which
are within the reserved error code numbers 1-30.

2.2.7 Form Validation Command

In order to validate your form by this set of requirements, you execute the function
validate([form] , check_form_example), which performs all the
validation steps as specified. If the form fields within this variable,
check_form_example , are all validated, the function returns a value of true.
This allows it to be in the submission pre-check of a form directly:

<form onsubmit="return validate(this, check_form_example)">

In this context, "this " is the correct code which refers to the actual form
("this " refers to the element in which an event handler is placed; the element in
which the event handler is placed is the form itself).

As you may know already, JavaScript defines that if the onsubmit event handler
function returns a value of false , the form will not be submitted. If the
validate() function has returned false , the form isn't submitted, and the
user is able to correct the error of which they were alerted. If the validate function
returns true , the form is submitted as normal.

2.2.8 Creating Custom Validation Functions

What do you do if your Web site only accepts Visa, MasterCard and Discover?
The validation script will by default accept any type of credit card number, so you
need to write a custom validation function.

Here's what you can do, noticing that Visa account numbers begin with 4,
MasterCards begin with 5, and Discover cards begin with 6.

1// this code is copied from http://www.codelib.net/home/jkm/checksum.html
2
3function cardtypeOK(x) { // x is the number as text, like "123423..."
4 var a='456', i;
5 for (i=0; i<a.length; i++) if (x.charAt(0) == a.charAt(i)) break;
6 if (i == a.length) return false;
7 return true;
8}

In this example '456 ' are the beginning digits of credit cards your business can
accept (in this case Visa, MC, and Discover). Note that a faster way of checking
the digits is this:

if ('456'.indexOf(x.charAt(0)) != -1)

or even this

if (1 + '456'.indexOf(x.charAt(0)))

Then create a validation variable for the credit card information. This validation
variable could be used to validate the submission of credit card information in the

same way that the previous validation variable was used to validate the submission
of the form containing billing address information.

1 billing_info_check = {
2 card: { verify: function(s) {
3 s = cardno(s)
4 if (!err && !cardtypeOK(s[0]))
5 err = 32;
6 return [s];
7 } },
8 cardname: { verify: words,
9 message: 'Please enter the full name as it appears on the card.' },
10 expiry: { verify: expires }
11 }

You could also add the same attributes, card , cardname , message , expiry
to the existing validation variable if your card information was part of the same
form as the billing address.

2.2.9 Smart Validation Behavior

The validation script tries to avoid repeating the same error message twice. When
a certain error code has been recorded for a certain field, the validation function
won't show the same error message to the user. If the user changes the field but a
different error message results, the user will be prompted with the new error
message. You have the option of overriding this behavior by specifying the
attribute force to have a value of 1. Three of the fields in the example form
above have this behavior. Their validation parameters are specified like this:

1zip: { verify: zip, filter: 1, force: 1 },
2phone: { verify: tel, filter: 1, force:1 },
3email: { verify: email, filter: 1, force: 1 }

This was the idea of Greg Dietsche, because sometimes loops could result when
evaluating optional fields:

"When validating against a list such as this one which has two optional fields,
occasionally a loop can ensue if neither of the optional fields (in this case, email
and subject) are filled in by the user...

To solve that problem, I made the following changes to the validation script.
Basically the idea is that if the user has been shown a prompt for an *optional*
field once, then they will never see the prompt again."

This was a nice suggestion, so it was taken and added to. Now the error state is
maintained for each field, and optional fields bring up an alert message if they
have a possible error, and if the error number is different from the error that may
have been "detected" before.

Essentially, this lets a user leave the value of the field as they wish, if they want to
ignore the error message.

Notice also that there is a filter attribute. When this attribute is set, valid input
will be reformatted to have a standard appearance. The script does its best to
ensure that there is no data loss when reformatting input, so if part of a field is not
recognized, it is left unaltered.

You can extend the filtering behavior by using functions like
String.toUpperCase() . The value you return from a custom validation
function will be used to reformat the data.

2.2.10 Technical Specifications of the Validation Function

This section provides specifications for the validate() function used as the
onsubmit event handler.

The event handler is called with the following syntax

<form ... onsubmit="return validate(this, check)">

The varible check is the validation variable which has been described above.

Every element of the form with a name contained in check will be submitted to
the function contained in check[name].verify , if such a function is present.
The argument will be the value of the element if the element is text or textarea,
otherwise the element object itself.

If an error code is set by this function check[name].verify , and if one of the
following is true—the value of check[name].force is true, or the field has an
an error different from an error it may have had immediately prior to this
invocation of validation—then present_element is set to this element,
check[name].err and present_error are set to the error number, and any

error message is alerted, the element is focused, and false is returned from
validate() . The browser will then prevent form submission.

Otherwise, after the end of the form is reached, true is returned from validate, and
form submission is permitted.

Chapter 7
1. CGI

1.1 What is CGI?

This is an overview of what CGI is all about. It does not go into programming
details, but will fill you in on the ides behind it. In addition to the examples below
CGI can be used for forums, polls, rotating banners, etc. Pretty much anything you
want your system to do.

These days a lot of the programming that was done with CGI is now being done
with php, but there are still about 40 million cgi scripts out there and a few things
that only CGIs can do, so far. Just that legacy of those millions of old scripts
means that its not going anywhere soon.

Obviously, when running scripts your unix hosting service has to be capable of cgi
hosting otherwise you'll have problems. Most unix hosts will run cgi scripts so
you'll find that cgi hosting and unix hosting are usually the same thing. Check
your hosting service to make sure.

Article by Richard Lowe Jr.

Let's unlock a little bit of the mystery about something called CGI. If it helps any,
CGI means Common Gateway Interface. This is a method which is used to
exchange data between the server (the hardware and software that actually allows
you to get to your web site) and a web client (your browser). CGI is actually a set
of standards where a program or script (a series of commands) can send data back
to the web server where it can be processed.

Typically, you use standard HTML tags to get data from a person, then pass that
data to a CGI routine. The CGI routine then performs some action with the data.

Figure 1: CGI and other languages

some of the more common uses of CGI include:

• Guestbooks - The CGI routine is responsible for accepting the data,
ensuring it is valid, sending an email acknowledgement back to the writer,
perhaps sending an email to the webmaster, and creating the guestbook
entry itself.

• Email Forms - A simple CGI forms routine just formats the data into an
email and sends it back to the webmaster. More complicated routines can
maintain a database, send an acknowledgement and validate data.

• Mailing List Maintenance - These routines allow visitors to subscribe and
unsubscribe from a mailing list. In this case, the CGI routine maintains a
database of email addresses, and the better ones send acknowledgements
back to the visitor and webmaster.

A CGI routine can be anything which understands the CGI standard. A popular
CGI language is called PERL, which is simple to understand and use (well,
compared to other languages). PERL is a scripting language, which means each
time a PERL routine is executed the web server must examine the PERL
commands to determine what to do. In contrast, a compiled language such as C++
or Visual Basic can be directly executed, which is faster and more efficient.

Figure2: Simple diagram of CGI

1.2 How CGI works

1. You (the webmaster) specify a form tag which includes the name of the
CGI routine.

2. You create HTML tags which retrieves data from your visitors.
3. Each of the input tags includes a variable name. The data which is retrieved

from the visitor (or directly set if the tag includes the "hidden" qualifier) is
placed in the variable name.

4. When the visitor presses the "submit" button, the CGI routine which was
specified in the form tag is executed. At this time, the CGI routine "takes
control", meaning the browser essentially is waiting for it to complete.

5. This CGI routine can get data from variable names. It retrieves the data and
does whatever action is required.

6. When the CGI routine finishes, it returns control back to the web client (the
browser).

1.3 Example web using CGI langueges used for CGI

Example 1: Program that sends an HTML page tailored to the type of browser.

#include "cgi-lib.h"
#include "html-lib.h"
int main()
{
 if (accept_image())
 show_html_page("/index-img.html");
 else
 show_html_page("/index-txt.html");
}

Example 2: A sample form in HTML that uses the CGI program query results.

<form method=POST action="/cgi-bin/query-results">
<p>Name: <input type=text name="name">
<p>Age: <input type=text name="age">
<p>E-mail: <input type=text name="email">
<p><input type=submit>
</form>

Example 3

2. Form, GET and POST

There are two ways to send data from a web form to a CGI program: GET and
POST. These methods determine how the form data is sent to the server.

With the GET method, the input values from the form are sent as part of the URL
and saved in the QUERY_STRING environment variable. With the POST method,
data is sent as an input stream to the program. We'll cover POST in the next
chapter, but for now, let's look at GET.

You can set the QUERY_STRING value in a number of ways. For example, here
are a number of direct links to the env.cgi program:

Try opening each of these in your web browser. Notice that the value for
QUERY_STRING is set to whatever appears after the question mark in the URL
itself. In the above examples, it's set to "test1", "test2", and "test3" respectively.

You can also process simple forms using the GET method. Start a new HTML
document called envform.html, and enter this form:

Program 1: envform.html - Simple HTML Form Using GET

<html><head><title>Test Form</title></head>
<body>

<form action="env.cgi" method="GET">
Enter some text here:
<input type="text" name="sample_text" size=30>
<input type="submit"><p>
</form>

</body></html>

Working example: http://www.cgi101.com/book/ch3/envform.html

Save the form and upload it to your website. Remember you may need to change
the path to env.cgi depending on your server; if your CGI programs live in a "cgi-
bin" directory then you should use action="cgi-bin/env.cgi".

Bring up the form in your browser, then type something into the input field and hit
return. You'll notice that the value for QUERY_STRING now looks like this:

sample_text=whatever+you+typed

The string to the left of the equals sign is the name of the form field. The string to
the right is whatever you typed into the input box. Notice that any spaces in the
string you typed have been replaced with a +. Similarly, various punctuation and
other special non-alphanumeric characters have been replaced with a %-code. This
is called URL-encoding, and it happens with data submitted through either GET or
POST methods.

You can send multiple input data values with GET:

<form action="env.cgi" method="GET">
First Name: <input type="text" name="fname"
size=30><p>
Last Name: <input type="text" name="lname"
size=30><p>
<input type="submit">
</form>

This will be passed to the env.cgi program as follows:

$ENV{QUERY_STRING} = "fname=joe&lname=smith"

The two form values are separated by an ampersand (&). You can divide the query
string with Perl's split function:

my @values = split(/&/,$ENV{QUERY_STRING});

split lets you break up a string into a list of strings, splitting on a specific
character. In this case, we've split on the "&" character. This gives us an array
named @values containing two elements: ("fname=joe", "lname=smith"). We can
further split each string on the "=" character using a foreach loop:

foreach my $i (@values) {
 my($fieldname, $data) = split(/=/, $i);
 print "$fieldname = $data
\n";

}

This prints out the field names and the data entered into each field in the form. It
does not do URL-decoding, however. A better way to parse QUERY_STRING
variables is with CGI.pm.

3. PHP

3.1 PHP Introduction

PHP is a server-side scripting language.

What You Should Already Know

Before you continue you should have a basic understanding of the following:

• HTML/XHTML
• JavaScript

What is PHP?

• PHP stands for PHP: Hypertext Preprocessor
• PHP is a server-side scripting language, like ASP
• PHP scripts are executed on the server
• PHP supports many databases (MySQL, Informix, Oracle, Sybase, Solid,

PostgreSQL, Generic ODBC, etc.)
• PHP is an open source software
• PHP is free to download and use

What is a PHP File?

• PHP files can contain text, HTML tags and scripts
• PHP files are returned to the browser as plain HTML
• PHP files have a file extension of ".php", ".php3", or ".phtml"

What is MySQL?

• MySQL is a database server
• MySQL is ideal for both small and large applications
• MySQL supports standard SQL
• MySQL compiles on a number of platforms
• MySQL is free to download and use

PHP + MySQL

• PHP combined with MySQL are cross-platform (you can develop in
Windows and serve on a Unix platform)

Why PHP?

• PHP runs on different platforms (Windows, Linux, Unix, etc.)
• PHP is compatible with almost all servers used today (Apache, IIS, etc.)
• PHP is FREE to download from the official PHP resource: www.php.net
• PHP is easy to learn and runs efficiently on the server side

Where to Start?

To get access to a web server with PHP support, you can:

• Install Apache (or IIS) on your own server, install PHP, and MySQL
• Or find a web hosting plan with PHP and MySQL support

3.2 Php Syntax

PHP code is executed on the server, and the plain HTML result is sent to the
browser.

Basic PHP Syntax

A PHP scripting block always starts with <?php and ends with ?>. A PHP
scripting block can be placed anywhere in the document.

On servers with shorthand support enabled you can start a scripting block with <?
and end with ?>.

For maximum compatibility, we recommend that you use the standard form
(<?php) rather than the shorthand form.

<?php
?>

A PHP file normally contains HTML tags, just like an HTML file, and some PHP
scripting code.

Below, we have an example of a simple PHP script which sends the text "Hello
World" to the browser:

<html>
<body>

<?php
echo "Hello World";
?>

</body>
</html>

Each code line in PHP must end with a semicolon. The semicolon is a separator
and is used to distinguish one set of instructions from another.

There are two basic statements to output text with PHP: echo and print . In the
example above we have used the echo statement to output the text "Hello World".

Note: The file must have a .php extension. If the file has a .html extension, the
PHP code will not be executed.

Comments in PHP

In PHP, we use // to make a single-line comment or /* and */ to make a large
comment block.

<html>
<body>

<?php
//This is a comment

/*
This is
a comment
block
*/
?>

</body>
</html>

3.3 PHP MySQL Connect to a Database

The free MySQL database is very often used with PHP.

Create a Connection to a MySQL Database

Before you can access data in a database, you must create a connection to the
database.

In PHP, this is done with the mysql_connect() function.

Syntax
mysql_connect(servername,username,password);

Parameter Description
servername Optional. Specifies the server to connect to. Default value is

"localhost:3306"
username Optional. Specifies the username to log in with. Default value is

the name of the user that owns the server process
password Optional. Specifies the password to log in with. Default is ""

Note: There are more available parameters, but the ones listed above are the most
important. Visit our full PHP MySQL Reference for more details.

Example

In the following example we store the connection in a variable ($con) for later use
in the script. The "die" part will be executed if the connection fails:

<?php
$con = mysql_connect("localhost","peter","abc123");
if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }

// some code
?>

Closing a Connection

The connection will be closed automatically when the script ends. To close the
connection before, use the mysql_close() function:

<?php
$con = mysql_connect("localhost","peter","abc123");
if (!$con)
 {
 die('Could not connect: ' . mysql_error());
 }

// some code

mysql_close($con);
?>

Chapter 8.
1.SESSION MANAGEMENT
1.1.Stateless Nature of HTTP

• A protocol is set of rules, which gover the syntax, semantic, and

synchronisation of communication.

• When the configuration setting, transactions and information are not
tracked by a protocol, then its call stateless protocol. For such a protocol
connections last for only one transaction.

• HTTP is base on Client-Server Model. An HTTP Client such as a Web
Browser, open the connection and send request message to an HTTP server
asking for resources. The server response the message with request
resources. One the resource is deliver, the server close the connection. Thus
no connection information is stored, and hence HTTP refer to Stateless
protocol.

• Advantage. Host do not need to retain information about users between
requests. This simpify server design because it does not need to
dynamically allocate storage to manage conversation in progress or worry
about freeing it when a client connection dies in mid-transaction.

• Disadvantage. It may may be necessary to include more information in each
request this extra information will need to be interpreted by the server each
time. And another, no acknowledgement about information has reached the
client. Hence the loss of data, if any, is not known.

1.2.Need of Tracking Client Identity and State

• In online shop site, item are display in different pages base on classification

such as stationary, hardware, music, and books. When a customer does
online shopping, he may select items from various page and put it in
shopping cart.

• As HTTP is stateless protocol, when the customer click on the new page,
the information about the previously selected items is lost. As the result, it
need keep track a of successive requests made by the same user.

• The server should have a tracking mechanism that allow the customer
maintain the information with the server as long as the customer does not
log out from the website.

1.3.Session Concept
• Session is the time period between the start and the end of the user’s

interaction with an application.

• Session variables are used to store information about singer user
session.This session is available to all pages in the application. Generally,
the information stored in session variables is username, password, user’s
preferences and so on. Sesion variable are clear as soon as the user session
in the sites come to end.

• Session identifier used to identify session because it ‘s unique. When a
session state is enable, each request for the page in the application is
examined for the session ID value. If the session ID value is not supplied, a

new session is start. The session ID is then sent for that session to the
browser along with response.

1.4.Some of Session Tracking Techniques
1.4.1.URL Rewriting

• Url Rewriting technique add some extra data at the end of URL to identify

the session.

• The extra information can be in the form of extra path information or add
parameters. The user does not see extra information on the surface as such
but he/she clicks on the link, he/she not ask for resource but because of
information after the “?” in URL, he or she is actually sending data to the
program. Generally, the extra information appended is the unique session
ID. Tracking can be done by retriveving the session ID

1.4.2.Hidden Form Field

• The hidden form field method inserts the session identifier into the hidden

form field in html of each page. This browser includes hidden field when
the form is submited. The session can be extracted by application by
searching for these field.

• Hidden field present nothing on HTML page and the information in
invisible to the user. The hidden field can be hold any kind of data. Every
time the server reads, it should read all the parameter pass to it from the
previous form and all the value as new hidden field in any new form that is
generates. In the way, information is passed to another thereby maintain the
connection between two pages.

1.4.3.Cookies (See more on Chap2)
• Cookie is a small piece of information sent by server to the client web

browser that can be later read back by server. A cookie containt one or
more name-value pair, which exchange in request and response header.

Example Code 1. Session in PHP
<?php
 session_start();
 $session_id = session_id();
 echo 'Your session id is '.$session_id.'</br>';
 if (isset($_SESSION['visit']))

 {
 $_SESSION['visit']++;
 }
 else
 {
 $_SESSION['visit']=1;
 }
echo 'You have visited this page '.$_SESSION['visit'].' times';
?>

Example Code 2 Session in ASP.NET

void Session_Start(object sender, EventArgs e)
 {
 // Code that runs when a new session is started
 Session["visit"] = 0;
 Session.Timeout = 1500;
 Response.Write("Session ID is:" + Session.SessionID+"\n");
 }
protected void Page_Load(object sender, EventArgs e)
 {
 Session["visit"]=Convert.ToInt16(Session["visit"])+1;
 Response.Write("Hello, you come here"+Session["visit"]);
 }

Example Code 3 Session in JSP

public void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletExcept ion,
IOException
{
//If the user want to add item, remember it by
//adding a cookie

if (value!=null)
{
itemID=value[0];
Cookie getItem=new Cookie(“Buy”,itemID);
getItem.setComment(“User has indicated a desire”+
“to buy this book from book store”);
response.addCookie(getItem);
}

}

2.COOKIE
2.1.Cookie Overview

• In computing, a cookie (also browser cookie, computer cookie, tracking

cookie, web cookie, internet cookie, and HTTP cookie) is a small string of
text stored on a user's computer by a web browser. A cookie consists of one
or more name-value pairs containing bits of information such as user
preferences, shopping cart contents, the identifier for a server-based
session, or other data used by websites.

• It is sent as an HTTP header by a web server to a web client (usually a browser)
and then sent back unchanged by client each time it accesses that server. A
cookie can be used for authenticating, session tracking (state maintenance),
and maintaining specific information about users, such as site preferences
or the contents of their electronic shopping carts. The term "cookie" is derived
from "magic cookie", a well-known concept in UNIX computing which
inspired both the idea and the name of browser cookies. Some alternatives
to cookies exist, each has its own uses, advantages, and drawbacks.

2.2.Cookie function

• Normal cookies are used to remember the user who is visiting the website
in order to show the appropriate content. Without them, some websites
would cease to function. Cookies are also used to remember the "signed on"
status of users.

• HTTP cookies are used by Web servers to differentiate users and to
maintain data related to the user during navigation, possibly across multiple
visits. HTTP cookies were introduced to provide a way to implement a
"shopping cart" (or "shopping basket"), a virtual device into which a user
can store items they want to purchase as they navigate the site.

• Allowing users to log in to a website is another use of cookies. Users
typically log in by inserting their credentials into a login page; cookies

allow the server to know that the user is already authenticated, and
therefore is allowed to access services or perform operations that are
restricted to a user who is not logged in.

• Many websites also use cookies for personalization based on users'
preferences. Sites that require authentication often use this feature, although
it is also present on sites not requiring authentication. Personalization
includes presentation and functionality. For example, the Wikipedia website
allows authenticated users to choose the webpage skin they like best; the
Google search engine allows users (even non-registered ones) to decide how
many search results per page they want to see.

2.3.Type of Cookie
2.3.1.Session Cookies

• A session cookies is also referred to as a transient cookie.Session cookies
are store temporarily in the memory.Once the browser is closed, the session
cookie can not be retained. The next time, when the same visitor visit the
same site, he or she will be traded as a new visitor.

• Instead of collecting information from the user’s computer, session cookies
are generally used by those Web Applications in which user need to be
indentified as they move from page to page. For example, If you are a
member of online book library, once you have logged in, you can browse
through any number of books.

2.3.2.“Persistent” Cookies – Permenant Cookie- Stored Cookie
• Consider a login page of any popular e-mail service provider such as

Hotmail or Yahoo Mail.Once you have enter your username and password,
you are prompted to indicate if you want to your login details to be
remembered in the computer. If you say yes, then their details are stored in
the cookie. The next time you start login your details automatically appear
in their respective places. The Persistent Cookies use to track user’s
browsing habits.They have an expiry date, and store in hard disk until
expiry date or until they manually deleted by user.

Example code 4 “Persistent” Cookies in PHP
<?php
if ($_POST['ok']=='OK')
 {
 setcookie('user',$_POST['user'],time()+20);
 setcookie('age',$_POST['age'],time()+20);
 }
if (isset($_COOKIE['user']))

 {
 echo 'Welcome back,'.$_COOKIE['user'].'</br>';
 echo 'Your age is '.$_COOKIE['age'].'</br>';
 }
?>

3.SERVLET
3.1.Static Web vs Dynamic Web

Figure 3.1 Dynamic vs Static

• Static Web contents can be designed and maintained explicitly by the Web
Developers.It ‘s not feasible to maintainted the Static Web content from
User-End. Any subsequent change require to be done by the Web
Designers. Information such as username can not be retained by the
browser. Only general information is shown in the subsequent pages.

• Dynamic Web content can be maintained by Client-end and changes which
are implemented can be managed and modify by the client. Once Dynamic
Web is created it requires very less or no maintenance cost since there is no
requirement of approaching the web designer for making change. User
specific information can be retained by the browser and display to all the
subsequent pages.

3.2.CGI-Solution for dynamic content generation.

• CGI is set of standards followed to interface application form client-side to

the web server. The page viewed at the client-end is simple HTML page
containing the static content.

• A program that gives dynamic output thereby executing in real time is
written at server-side.To write programs in the server side using standard
CGI is used.

3.3.Shortcomings of CGI

• Number of process can be executed by a Web Server is limit to each server.

Each time is process is executed, different instance of same processes is
created in the server side there by resulting in overload of server and in
reducing efficiency of server.

• The widely accepted platform for writing CGI script is Perl. Each time the
server receive a request, the Perl interpreter need to be reloaded. This
reduce the efficiency of server.

3.4.Servlet- A Solution to CGI-Problem.

• Servlet are java codes which you to add dynamic content to Web Server.

The content generate after excution of servlet is basically HTML page.
Servlet gets auto on refresh on receiving a request each time. A servlet

initialisation code is used only for initialising the servlet for the first time,
there by proving advantageous over CGI.

• The multi threading property of servlets help in handing separate requests
by allocating resource to separate threads. This give boost to the
performance thereby increasing the efficiency of servlets

3.5.Merits and Demerits of Servlet.

3.6.Web container Concept

Figure 3.2 Web Container

The web container is the program that manage excution of servlet and JSP page.
The web container take request for Web Server and pass it to Servlet for
processing. It maintain the Servlet life cycle. The performance of a servlet upon
the efficiency of Web container.
3.7.Servlet’s Life Cycle

• The Servlet class is loaded by the container during start-up.
• The container calls the init() method. This method initializes the servlet and

must be called before the servlet can service any requests. In the entire life
of a servlet, the init() method is called only once.

• After initialization, the servlet can service client requests. Each request is
serviced in its own separate thread. The container calls the service() method
of the servlet for every request. The service() method determines the kind
of request being made and dispatches it to an appropriate method to handle

the request. The developer of the servlet must provide an implementation
for these methods. If a request for a method that is not implemented by the
servlet is made, the method of the parent class is called, typically resulting
in an error being returned to the requester.

• Finally, the container calls the destroy() method which takes the servlet out
of service. The destroy() method like init() is called only once in the
lifecycle of a Servlet.

3.8.HTTP Request Processing Life Cycle

• Receive: The servlet instance is receive.
• Include: The instance variable is set to the request object.
• Authenticate: The servlet is authenticate against the request object.
• Pre-process: Require pre-process is done with Servlet.
• Generate Response: Response is generate after pre-process.
• Post-process: Require post-process is done.
• Reuseability check: Servlet is check for reuseability and if required held

back.
• Replace: Servlet is replaced in the servlet manager.

3.9.Implement Servlet in Java

init(): Initialises the servlet.

service(): Call the container to
response the servlet request.

getInitParameter(): return the
string contain the value of
named initialisation parameter.

getServletContext(): return the
Servlet context in which this
servlet instance is running.

getServletConfig(): return the
servlet Configuration of
servlet instance.

getServletInfo(): return useful
servlet instance such as name
of creator, version,
copywright.

Extend GenericServlet, must
override atleast one of the
following object. DoGet(),
DoPost(), DoDelete(), init(),
destroy() and getServletInfo().

doGet(): Call by the server to
handle the get request made by
client.This method is call
through service().

doPost(): Call by the server to
handle the post request made
by client.

Example code of Servlet

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class HelloWorld extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 PrintWriter out = response.getWriter();
 out.println("<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n" +
 "<html>\n" +
 "<head><title>Hello WWW</title></head>\n" +
 "<body>\n" +
 "<h1>Hello WWW</h1>\n" +
 "</body></html>");
 }
}

4.JAVA SERVER PAGES
4.1.What is a JSP Page

Figure 4.1 JSP Page

• A JSP Page contain HTML tags, which is display the static content on the
Web Pages. Also contain tag which use to generate dynamic content. The
tag is categorised into standard tags and custom tags.

• The standard JSP tags are used for invoking the operation on JavaBean
component and processing requests.

• The custom JSP tags perform operations, such as processing forms,
accessing database and other Enterprise services, such as email and
direction.

• The information given in the tags in a JSP page is processed and will
generate the dynamic content on the Web Page.

4.2.Benefits of JSP

• JSP separate content generation from presentation logic in JSP page
and content logic on server in JavaBean.

• Emphasising reusable componet. JSP page use reusable components such
as JavaBean Program, which can be use by multiple programs. Java bean
enable to perform complex functions in JSP page. These beans can be
shared and exchanged among web programers.

• Simplified page development. Allow a Web programer with limited
knowledge in scripting language to design a page. Programer can also
generate dynamic content using standard tags provided by JSP.

• Access and Instantiate JavaBeans components. Support using JavaBeans
components with JSP. Can easily create and initalise beans and get/set
values of this.

4.3.Servlet and JSP

• JSP technology simplifies the process of creating page by seperating the
web presentation from web content. In most of applications, the response
send to client is a combination of template-data and dynamic generated
data. In this sittuation, it much easy to work with JSP pages than to do
every with Servlet.

• Servlet are well-suited for handling binary data dynamically, for example
for upload file or for creating dynamic image, since they need not contain
any display logic.

4.4.Architecture of JSP

Figure 4.2 Architecture of JSP

• Whenever the web browser sends a request for JSP page to Web Server
through the internet, the Web Server pass JSP file to JSP Servlet Engine.

• The JSP file is parsed and a servlet is generated from JSP file. This servlet
source code is compiled into class and is instantiated by the init() and
service() methods. The HTML output from the servlet is send through the
Internet and HTML results are displayed on the user’s Web Browser.

4.5.Translation Unit

• A JSP can include the content of other HTML pages or other JSP files. The
translation unit process this JSP page and convert it to Servlet class. The
translation unit consists of JSP source file as well as all of its static include
files.

4.6.JSP Life Cycle

• Translation is the first phase of JSP Life Cycle. In this phase a servlet code
to implement JSP tag is automatic generated, complied and load into servlet
container. There are three methods are used in this phase.

o jspInit() : This method is Invoked when the JSP page is initialise. A
JSP page can override this method by include a definition for it in
declaration elements. A JSP page should always redefine the init()
method from a servlet.

o _jspService(): this method conresponse to the body of JSP page.
This method is defined automatically by JSP container and never be
defined by JSP page.

o jspDestroy(): this method is invoked when JSP page is going to be
destroyed.

• Compliation, the servlet class require to compile the entire JSP is
generated. If any change are made in the code to generate dynamic content,
then the JSP page need to be complied and execute again.

• Execution of page is carried out with the help of directives. Page directives
controls various excution parameters and are used for buffering output and
handling errors.

4.7.JSP Scripting elements
4.7.1.Scriptlets

• A scriptlets use to embeded Java code within HTML code. The java code is
insert into Servlet. The sciptlets are executed when the request of client is
being processed. The scriptlets are used to add complex data to HTML
form.

Syntax: <% Java code fragment %>

Snippet:

<% int localStackBasedVariable = 1;

out.println(localStackBasedVariable); %>

4.7.2.Expression tag

• An expression tag places an expression to be evaluated inside the java
servlet class. Expressions should not be terminated with a semi-colon.

Syntax: <%= Java Expression %>

Snippet: <%= "expanded inline data " + 1 %>

4.7.3.Declaration tag

• A declaration tag places a variable definition inside the body of the java
servlet class. Static data members may be defined as well. Also inner
classes should be defined here.

Syntax: <%= Java Declartion code %>

Snippet:
<%! int serverInstanceVariable = 1; %>
<%!
 /**

 * Converts the Object into a string or if
 * the Object is null, it returns the empty string.
 */
 public String toStringOrBlank(Object obj){
 if(obj != null){
 return obj.toString();
 }
 return "";
 }
%>

4.7.4.Comments

• We can use the following tag to give comments in jsp.

Syntax: <%-- Give your comments here --%>
Snippet: <%-- My comment --%>

4.8.JSP Directives

• JSP Directives control the processing of entire page. The directives
identify the packages to be imported and the interface to be implemented.
However, these directives do not procedure any output. They inform the
JSP engine about the actions to be performed on the JSP page.

Syntax: <%@ directiveName attribute="value" %>

4.8.1.Page Directives

• The page directives used to define and manipulate a number of importance
attributes that affect the entire of JSP pages. A page directive is written at
the beginning of JSP pages.

• A JSP pages can contain any number of page directives. All directives in
the page is processed together during translation and result is applied
together to the JSP page.

• import : Results in a Java import statement being inserted into the resulting
file.

• contentType: specifies the content that is generated. This should be used if
HTML is not used or if the character set is not the default character set.

• errorPage: Indicates the page that will be shown if an exception occurs
while processing the HTTP request.

• isErrorPage: If set to true, it indicates that this is the error page. Default
value is false.

• isThreadSafe: Indicates if the resulting servlet is thread safe.

• autoFlush: To autoflush the contents. A value of true, the default, indicates
that the buffer should be flushed when it is full. A value of false, rarely
used, indicates that an exception should be thrown when the buffer
overflows. A value of false is illegal when also using buffer="none".

• session: To maintain session. A value of true (the default) indicates that the
predefined variable session (of type HttpSession) should be bound to the
existing session if one exists, otherwise a new session should be created
and bound to it. A value of false indicates that no sessions will be used, and
attempts to access the variable session will result in errors at the time the
JSP page is translated into a servlet.

• buffer :To set Buffer Size. The default is 8k and it is advisable that you
increase it.

• isELIgnored: Defines whether EL expressions are ignored when the JSP is
translated.

• language: Defines the scripting language used in scriptlets, expressions and
declarations. Right now, the only possible value is "java".

• extends: Defines the superclass of the class this JSP will become. You
won't use this unless you REALLY know what you're doing - it overrides
the class hierarchy provided by the Container.

• info: Defines a String that gets put into the translated page, just so that you
can get it using the generated servlet's inherited getServletInfo() method.

• pageEncoding: Defines the character encoding for the JSP. The default is
"ISO-8859-1"(unless the contentType attribute already defines a character
encoding, or the page uses XML document syntax).

Syntax: <%@ directive attribute="value" %>

Snippet:
<%@ page import="java.util.*" %> <%-- example import --%>
<%@ page contentType="text/html" %> <%-- example contentType --%>
<%@ page isErrorPage="false" %> <%-- example for non error page --%>
<%@ page isThreadSafe="true" %> <%-- example for a thread safe JSP --%>
<%@ page session="true" %> <%-- example for using session binding --%>
<%@ page autoFlush="true" %> <%-- example for setting autoFlush --%>
<%@ page buffer="20kb" %> <%-- example for setting Buffer Size --%>

4.8.2.Include Directives

• Used to insert content of another resource in JSP page at runtime. The
remote resource is a file in textbase format such as text, HTML, JSP. The

remote resouce should be given with the proper relative file path in the
include directive.

• At the translation phase the content of include file is parsed by JSP Engine
and content or output of that included file is inserted in the current web
document.

Syntax: <%@ include file="value" %>
Snippet: <%@ include file="somefile.jspf" %>

4.8.3.TagLib Directive

• The tablib allow JSP pages to create custom tags, which are defined by
user. Custom tags have access to all the object that are avaiable for JSP
page.

• A Tag Library is a group of custom tags that are extend the functionality of
a JSP page one after the other. The taglib directive specifies name of tag
library, which contains compiled Java code for the tag to be used. Using
this tag library, the JSP Engine determines what action is to be taken when
a particular tag appears in JSP page.

Syntax: <%@ taglib prefix="tagprefix" uri="taglibraryURI" %>
Snippet: <%@ taglib prefix="myprefix" uri="taglib/mytag.tld" %>

4.9.JSP Action

• JSP Actions allow the transfer of control between pages. You can dynamic
insert a file,reuse JavaBean component, forward the user to another page or
generate HTML for Java Plugin.

• <jsp:include> give you a choice to include either a static or dynamic file in
a JSP file at the time of page request.The result a different for each type of
inclusion.

• The content is included in the call JSP file if the file is static,otherwise it act
on request and send back a result that is included in the JSP page.

Syntax: <jsp:include page="weburl" flush=”true”/>

Snippet:

<html>
 <head></head>
 <body>
 <jsp:include page="mycommon.jsp" >
 <jsp:param name="extraparam" value="myvalue" />
 </jsp:include>
 name:<%=request.getParameter("extraparam")%>

 </body>
 </html>

• <jsp:forward> use to redirect the request object containing the client-
request from one JSP file to another file. The target file can be an HTML
file, a JSP file, or a servlet.

• In the source the code after <jsp:forward> element is not processed. To
pass parameter names and values to target file, we can use <jsp:param>.

Syntax: <jsp:forward page="url" />

Snippet:

<jsp:forward page="subpage.jsp" >
 <jsp:param name="forwardedFrom" value="this.jsp" />
 </jsp:forward>

• <jsp:param> allows you to pass one or more name value pairs as
parameter to an include or forward resources like JSP page, servlet or other
resource that can process parameter.

• <jsp:plugin> in the client Web Browser, the <jsp:plugin> play or displays
an object, using Java plugin, that are avaiable in the browser or downloaded
from a specified URL.

Syntax:
 <jsp:plugin type=”applet|bean” height="%" width="%"
 codebase="classFileDirectory"
 code="classFileName" />

Snippet:

<jsp:plugin type=applet height="100%" width="100%"
 archive="myjarfile.jar,myotherjar.jar"
 codebase="/applets"
 code="com.foo.MyApplet" >
 <jsp:params>
 <jsp:param name="enableDebug" value="true" />
 </jsp:params>
 <jsp:fallback>
 Your browser does not support applets.
 </jsp:fallback>
 </jsp:plugin>

• <jsp:fallback> this text message conveys the user that plug-in could not
start known as fall back. If the plugin starts, but the applet or bean does not,
the plugin usually display the popup window explain the error to user.

Chapter 9.
1.Public Key Infrastructure
1.1.What is PKI ?

• The Public Key Infrastructure (PKI) is a set of hardware, software,

people, policies, and procedures needed to create, manage, store, distribute,
and revoke digital certificates.

• PKI ensures a secure method for exchanging sensitive information over
unsecured networks. In addition, PKI provides authenticated, private and
non-reputable communications.

• PKI makes use of the technology known as public key cryptography. Public
key cryptography uses a pair of keys to scramble and decipher messages, a
public key and a private key. The public key is widely distributed, whereas
the private key is held secretly by an individual. Messages are protected
from malicious people by scrambling them with the public key of the
recipient. Only the recipient can decrypt the message by using his / her
private key, thus retaining the privacy of the message. The public key is
distributed with a digital certificate that contains information that uniquely
identifies an individual (for example name, email address, the date the
certificate was issued, and the name of the certificate authority which
issued it). Also, by using digital certificates we can digitally sign messages
to protect the integrity of the information itself and achieve non-repudiation
(digitally signing a transaction is legally binding and no party can deny his
/her participation).

1.2.Components of PKI

• Digital certificates are issued by organizations called Certification
Authorities (CAs) i.e. Verisign. The user identity must be unique for each
CA. The binding is established through the registration and issuance
process, which, depending on the level of assurance the binding has, may
be carried out by software at a CA, or under human supervision.

• Requests for certificates are usually processed by organizations called
Registration Authorities (RAs). An RA's responsibility is to evaluate each
request, investigate the profile of each applicant and inform the appropriate
CA about the trusting level of the client. After the trust verification of the
applicant, CA issues the certificate. I have to mention that it is common for
RA to be included within the CA environment as one component.

• The operation of CAs and RAs are governed by appropriate policies, the
Certificate Policy (CP) and the Certificate Practice Statement (CPS).
The first provides rules for naming certificate holders, the cryptographic
algorithms that will be used, the minimum allowable length of encryption
keys, etc. The latter details how the Certification Authority will implement
the Certificate Policy (CP) into its procedures.

• SomeCAs

•

1.3.Issuing a certificate

• A CA issues digital certificates that contain a public key and the identity of
the owner. The matching private key is not similarly made available
publicly, but kept secret by the end user who generated the key pair. The
certificate is also an attestation by the CA that the public key contained in
the certificate belongs to the person, organization, server or other entity
noted in the certificate. A CA's obligation in such schemes is to verify an
applicant's credentials, so that users and relying parties can trust the
information in the CA's certificates. CAs use a variety of standards and
tests to do so.

• If the user trusts the CA and can verify the CA's signature, then he can also
verify that a certain public key does indeed belong to whomever is
identified in the certificate.

1.4.CA architectures

In this section I will present the different types of CA architectures that are
generally considered when implementing a PKI. PKI may be constructed as a:

• Single architecture
• Hierarchical architecture
• Mesh architecture

Every architecture is distinct from the others in respect to the following:

• The numbers of CAs in the PKI system
• Where users place their trust (known as a user's trust point)
• Trust relationships between CAs within a multi-CA PKI

1.4.1.Single Architecture

• A single architecture is the most basic PKI model that contains only a
single (you wouldn't expect more, would you?) CA. All the users of the
PKI place their trust on this CA. The CA will be responsible in handling all
the users requesting a certificate. As there is only one CA, every
certification path will begin with its public key.

Figure 5.1 Single PKI Architecture

1.4.2.Hierarchical Architecture

• A hierarchical architecture is constructed with subordinate CA
relationships. In this configuration, all users trust a single "root" CA. The
root CA issues certificates to subordinate CAs only, whereas subordinate
CAs may issue certificates to users or other CAs. The trust relationship is
specified in only one direction. In this PKI architecture, every certification
path begins with the root CA's public key.

Figure 5.2 Hierarchical PKI Architecture

1.4.3.Mesh Architecture

• A mesh architecture does not include only one CA that is trusted by all
entities in the PKI system. CAs can be connected with cross certification
creating a "web of trust" where end entities may choose to trust any CA in
the PKI. If a CA wishes to impose constraints on certain trust relationships,
it must specify appropriate limitations in the certificates issued to its peers.

Figure 5.3 Mesh PKI Architecture

1.5.PKI Architecture Overview

The PKI Architecture components are grouped into the following broad functional
categories:

• System Security-enabling Services provide the functionality which allows
a user's or other principal's identity to be established and associated with
their actions in the system.

• Cryptographic Primitives and Services provide the cryptographic
functions on which public-key security is based (including secret-key
primitives, such as the Data Encryption Standard (DES)).

• Long-term Key Services permit users and other principals to manage their
own long-term keys and certificates and to retrieve and check the validity
of other principals' certificates.

• Protocol Security Services provide security functionality (data origin
authentication, data integrity protection, data privacy protection, non-
repudiation) suitable for use by implementors of security-aware
applications, such as secure protocols.

• Secure Protocols provide secure inter-application communications for
security-unaware and "mildly" security-aware applications.

• Security Policy Services provide the policy-related information which
must be carried in secure protocols to enable access control, and provide
access control checking facilities to security-aware applications which must
enforce policy.

• Supporting Services provide functionality which is required for secure
operation, but is not directly involved in security policy enforcement.

1.6.Digital Signature

1.6.1.Need of Digital Signature

• Digital signatures are used to digitally sign objects or message. Digital
signature are not only verify the content of message but also help to
identify the creator of message. It is impossible to forge a digital signature
or alter the content of signed message without invalidating the signature.
Hence the signature is use for two purposes.

• Ensure message content integrity. Some mathematic calculations are
performed repeatedly in message to generate a digital signature.The
signature is appened at the end of each message before transmission over a
network. If an encrypt message is tamperetd with, the digital signature
becomes invalid.

• Verifying the authenticity of message sender. A digital signature ensure
that an encrypt message can not be deciphered by unintended recipients.
Thus a sender can ensure about the authenticity of recipent. The sender
public and private keys are mathematically related. A recipent can also
ensure the authenticity of the sender by using the sender public key for
decryption.

1.6.2.What the digital signature made of ?

• Digital Signature is generated by Public Key Crytography, using public key
and private key to decrypt and encrypt message.

• Public key. Each sender has a unique public key which is accessible easily
to the recipents. A public key is used by recipient to decrypt message.
Hence maintaining the authenticity of public key is while transmitting the
message is very important.

• Private key. Sender encrypt message with his private key. If receiver can
decrypt with sender’s public key, the data must be from the sender.

1.6.3.Working of digital signature
Encryption

Figure 5.4 Encryption

• A hash or a message digest is prepared using the hash algorithm.
• The hash data or the message digest is encrypt using sender’s private key.
• The digital signature and the public key of sender is append at the end of

message.

Decryption

Figure 5.5 Decryption

• The receiver receives message and the digitally signed message digest.
• The receiver seperately calculates a message digest for received message.
• The receiver use sender’s public key to decypt the signed message digest

that was received and compare this to independently calculated message
digest.

• If the two digest not math, the data may has been tampered or data may not
be authentic or data not have been intended for the receiver.

1.6.4.Validating data integrity

• In data communication, data integrity is said to be maintain if there is no
different between data that is sent and received. The receiver check data
integrity by calculate new hash value on the received message. The receiver
also decrypts the signed hash using the sender’s public key to ensure the
authenticity of the message. The computed hash is compare to the hash
decrypted from the digital signature. If two hash is not math, the signature
has been created with private key not correspond to the public key present
by the message sender.

1.6.5.Drawback of digital signature

• Non-repudiation. Repudiation means disclaiming responsibilty for a sent
message. A digital signature make non-repudiation difficult but if the
sender claims to have lost its private key then the authenticity of all
messages having digital signatures using that key would have been
compromised.

• Time Stamping. Digital signature can contain any record of date and time
when particular document was signed. Hence, a reader can not be sure that
a signer has not misused the digital signature for an older message.

1.7.Digital Certificates

Impersonation using the false public key can be reduce with the used of digital
certificates. Digital certificate prevent impersonation by storing widely known and
distributed public key, information such as name, email address and other
application-specific data about the certificate owner. Thus the digital certificate is
an identity document issued by the certificate authority to authenticate a message
sender.

1.7.1.Standards and features of digital certificates

• A Digital certificate is a structure with digital signature. The data structure
also contains information like the public key, identity of key owner and the
name of certification authority who guarantees the authenticity of key
owner. A signature is viewed as trusted when it generated by the CA since
the digitally signed data can not be altered without detection. Certificate
Extensions can be used to customize certificates to satify end-user.

Commonly, two types of standards are used for issuing digital certificates.

• X.509 is created by the international telephone standards body and is issued
by Microsoft’s Authenticode, Netscape’s Object Signing, and Marimba’s
channel signing, to authenticate the originator of Internet Objects.

• PGP (Pretty good Privacy) is developed by Phil Zimmermann. PGP is used
for encrypting, compressing and authenticating email message and
attachments.

1.7.2.Verify the authenticity of the sender

• The first step involves validation of credential of the party applying for
digital certificates. A digital ID is used along with a public key encryption
system for credentials verification. The certification authority verify that
public key belongs to the specific individual or company. The verification
depth depends on the level of certificates and the CA itself.

• The second step is the creation of certificate. If the validation process is
completed successfully, the CA create an X.509 certificate. The CA then
sign the certificate by creating a digest (hash) of all the fields in the
certificate and encrypt the hash value with its private key. The encrypt
digest is placed into a X.509 certificate and the certificate is said to be
signed.

• The private key of CA is kept very secure, because false certificates can be
created if the key is misplace.

• A third step is verify the certificate. A recipient generally verify the signed
certificate using web browser. A web browser typically maintains the list of
popular CA and this public keys, the appropriate key is used to decypt the
signature back to the digest. The browser re-computes it owns digest from
the plain text in the certificate and verify it with the decrypted digest. If the
two digest math then the certificate is said to be valid and the public key in
the certificate is accepted as a valid public key of the subject.

• The fourth step is generate the content of digital certificate. The certificate
is combine with a signed message or signed excutable file. A public key is

used to verify the signatures. If a secure two-way communication session is
required the subject’s public key is used.

• A certificate generally contain
o Version number of certificate format.
o A Unique serial number.
o Certificate signature algorithm.
o Name of the CA
o Duration of Validity
o Name of subject certified
o Subject public key and algorithm
o Digital signature created with CA’s private key.

• The fifth step is sign and verify the digital certificate. The signed certificate
can now be used to verify the authenticity of the sender.

2.Secure Socket Layer
2.1.What is SSL?

• The Secure Sockets Layer (SSL) is a commonly-used protocol for
managing the security of a message transmission on the Internet. SSL has
recently been succeeded by Transport Layer Security (TLS), which is based
on SSL. SSL uses a program layer located between the Internet's Hypertext
Transfer Protocol (HTTP) and Transport Control Protocol (TCP) layers.

• The "sockets" part of the term refers to the sockets method of passing data
back and forth between a client and a server program in a network or
between program layers in the same computer.

• SSL uses the public-and-private key encryption system from RSA, which
also includes the use of a digital certificate.

• Several versions of the protocols are in wide-spread use in applications like
web browsing, electronic mail, Internet faxing, instant messaging and
voice-over-IP (VoIP).

2.2.SSL Feature

• SSL is supported by most Web Server and browser.
• Only trusted digital certificates are needed to protect Web Application

through SSL.
• In Client-Server operations, the SSL protocol use the third party – the CA

to indetify one-end or both end of communication.
• SSL encrypt data transmission and incorporates a mechanism to detect any

change in data transmission. This help prevent evavesdropping or
tampering with sensitive data during transmission.

2.3.SSL with client browser and server

Figure 6.1 Client and Server with SSL

 SSL user the public key and private key to encrypt. A public key is known to
every one, and the private key is known only to the recipient of message. A typical
have five steps.

• Step 1. Client contact the Web Browser.
• Step 2. The server send back the certificate, encrypted with a trusted third-

party private key.
• Step 3. The browser decypt the certificate with a trusted third-party public

key.
• Step 4. The browser use a trusted third-party public key to encrypt a session

ticket. The ticket is send back to the server.
• Step 5. The web server receive ticket and decrypt the session ticket with its

private key. The server and the web browser use the same session ticket for
furture encrypt in transmission.

Obtaining the SSL certificates

Consider a web application in which you want to implement SSL for login page.
To use SSL you need to obtain a certificate. To get an SSL certificate, a
certificates signning request has to be submitted. SCR is data file that holds details
of the request party to a CA.

2.4.Detail in SSL Handsake

Figure 6.2 Scenario SSL

2.4.1.Simple TLS/SSL handshake

A simple connection example, illustrating a handshake where the server is
authenticated by its certificate (but not the client), follows:

• Negotiation phase:
o A client sends a ClientHello message specifying the highest

TLS/SSL protocol version it supports, a random number, a list of
suggested cipher suites and compression methods.

o The server responds with a ServerHello message, containing the
chosen protocol version, a random number, cipher suite, and
compression method from the choices offered by the client. The
server may also send a session id as part of the message to perform a
resumed handshake.

o The server sends its Certificate message (depending on the selected
cipher suite, this may be omitted by the server).

o The server sends a ServerHelloDone message, indicating it is done
with handshake negotiation.

o The client responds with a ClientKeyExchange message, which
may contain a PreMasterSecret, public key, or nothing. (Again, this
depends on the selected cipher.)

o The client and server then use the random numbers and
PreMasterSecret to compute a common secret, called the "master
secret". All other key data for this connection is derived from this
master secret (and the client- and server-generated random values),
which is passed through a carefully designed "pseudorandom
function".

• The client now sends a ChangeCipherSpec record, essentially telling the
server, "Everything I tell you from now on will be authenticated (and
encrypted if encryption parameters were present in the server certificate)."
The ChangeCipherSpec is itself a record-level protocol with content type of
20.

o Finally, the client sends an authenticated and encrypted Finished
message, containing a hash and MAC over the previous handshake
messages.

o The server will attempt to decrypt the client's Finished message, and
verify the hash and MAC. If the decryption or verification fails, the
handshake is considered to have failed and the connection should be
torn down.

• Finally, the server sends a ChangeCipherSpec, telling the client,
"Everything I tell you from now on will be authenticated (and encrypted
with the server private key associated to the public key in the server
certificate, if encryption was negotiated)."

o The server sends its authenticated and encrypted Finished message.
o The client performs the same decryption and verification.

• Application phase: at this point, the "handshake" is complete and the
application protocol is enabled, with content type of 23. Application
messages exchanged between client and server will also be authenticated
and optionally encrypted exactly like in their Finished message.

2.4.2.Client-authenticated TLS/SSL handshake

The following full example shows a client being authenticated (in addition to the
server like above) via TLS using certificates exchanged between both peers.

• Negotiation phase:
o A client sends a ClientHello message specifying the highest

TLS/SSL protocol version it supports, a random number, a list of
suggested cipher suites and compression methods.

o The server responds with a ServerHello message, containing the
chosen protocol version, a random number, cipher suite, and
compression method from the choices offered by the client. The
server may also send a session id as part of the message to perform a
resumed handshake.

o The server sends its Certificate message (depending on the selected
cipher suite, this may be omitted by the server).

o The server requests a certificate from the client, so that the
connection can be mutually authenticated, using a
CertificateRequest message.

o The server sends a ServerHelloDone message, indicating it is done
with handshake negotiation.

o The client responds with a Certificate message, which contains the
client's certificate.

o The client sends a ClientKeyExchange message, which may contain
a PreMasterSecret, public key, or nothing. (Again, this depends on
the selected cipher.) This PreMasterSecret is encrypted using the
public key of the server certificate.

o The client sends a CertificateVerify message, which is a signature
over the previous handshake messages using the client's certificate's
private key. This signature can be verified by using the client's
certificate's public key. This lets the server know that the client has
access to the private key of the certificate and thus owns the
certificate.

o The client and server then use the random numbers and
PreMasterSecret to compute a common secret, called the "master
secret". All other key data for this connection is derived from this
master secret (and the client- and server-generated random values),
which is passed through a carefully designed "pseudorandom
function".

• The client now sends a ChangeCipherSpec record, essentially telling the
server, "Everything I tell you from now on will be authenticated (and
encrypted if encryption was negotiated)." The ChangeCipherSpec is itself a
record-level protocol, and has type 20, and not 22.

o Finally, the client sends an encrypted Finished message, containing
a hash and MAC over the previous handshake messages.

o The server will attempt to decrypt the client's Finished message, and
verify the hash and MAC. If the decryption or verification fails, the
handshake is considered to have failed and the connection should be
torn down.

• Finally, the server sends a ChangeCipherSpec,telling the client,
"Everything I tell you from now on will be authenticated (and encrypted if
encryption was negotiated)."

o The server sends its own encrypted Finished message.
o The client performs the same decryption and verification.

• Application phase: at this point, the "handshake" is complete and the
application protocol is enabled, with content type of 23. Application
messages exchanged between client and server will also be encrypted
exactly like in their Finished message.

2.4.3.Resumed TLS/SSL handshake by Session ID

Public key operations (e.g., RSA) are relatively expensive in terms of
computational power. TLS provides a secure shortcut in the handshake mechanism
to avoid these operations. In an ordinary full handshake, the server sends a session
id as part of the ServerHello message. The client associates this session id with
the server's IP address and TCP port, so that when the client connects again to that
server, it can use the session id to shortcut the handshake. In the server, the session
id maps to the cryptographic parameters previously negotiated, specifically the
"master secret". Both sides must have the same "master secret" or the resumed
handshake will fail (this prevents an eavesdropper from using a session id). The
random data in the ClientHello and ServerHello messages virtually guarantee that
the generated connection keys will be different than in the previous connection. In
the RFCs, this type of handshake is called an abbreviated handshake. It is also
described in the literature as a restart handshake.

1. Negotiation phase:
o A client sends a ClientHello message specifying the highest TLS

protocol version it supports, a random number, a list of suggested
cipher suites and compression methods. Included in the message is
the session id from the previous TLS connection.

o The server responds with a ServerHello message, containing the
chosen protocol version, a random number, cipher suite, and
compression method from the choices offered by the client. If the
server recognizes the session id sent by the client, it responds with
the same session id. The client uses this to recognize that a resumed
handshake is being performed. If the server does not recognize the
session id sent by the client, it sends a different value for its session

id. This tells the client that a resumed handshake will not be
performed. At this point, both the client and server have the "master
secret" and random data to generate the key data to be used for this
connection.

2. The client now sends a ChangeCipherSpec record, essentially telling the
server, "Everything I tell you from now on will be encrypted." The
ChangeCipherSpec is itself a record-level protocol, and has type 20, and
not 22.

o Finally, the client sends an encrypted Finished message, containing
a hash and MAC over the previous handshake messages.

o The server will attempt to decrypt the client's Finished message, and
verify the hash and MAC. If the decryption or verification fails, the
handshake is considered to have failed and the connection should be
torn down.

3. Finally, the server sends a ChangeCipherSpec,telling the server,
"Everything I tell you from now on will be encrypted."

o The server sends its own encrypted Finished message.
o The client performs the same decryption and verification.

4. Application phase: at this point, the "handshake" is complete and the
application protocol is enabled, with content type of 23. Application
messages exchanged between client and server will also be encrypted
exactly like in their Finished message.

Apart from the performance benefit, resumed sessions can also be used for single
sign-on as it is guaranteed that both the original session as well as any resumed
session originate from the same client. This is of particular importance for the FTP
over TLS/SSL protocol which would otherwise suffer from a man in the middle
attack in which an attacker could intercept the contents of the secondary data
connections.

2.5.TSL/SSL record protocol

This is the general format of all TLS records.

+ Byte +0 Byte +1 Byte +2 Byte +3
Byte
0

Content type

Version Length Bytes
1..4 (Major) (Minor) (bits 15..8) (bits 7..0)
Bytes
5..(m-
1)

Protocol message(s)

Bytes
m..(p-
1)

MAC (optional)

Bytes
p..(q-1)

Padding (block ciphers only)

Content type. This field identifies the Record Layer Protocol Type contained in
this Record.

Content types
Hex Dec Type
0x14 20 ChangeCipherSpec
0x15 21 Alert
0x16 22 Handshake
0x17 23 Application

Version. This field identifies the major and minor version of TLS for the
contained message. For a ClientHello message, this need not be the highest
version supported by the client.

Versions
Major
Version

Minor
Version

Version
Type

3 0 SSLv3
3 1 TLS 1.0
3 2 TLS 1.1
3 3 TLS 1.2

Length. The length of Protocol message(s), not to exceed 214 bytes (16 KiB).
Protocol message(s). One or more messages identified by the Protocol field. Note
that this field may be encrypted depending on the state of the connection.
MAC and Padding. A message authentication code computed over the Protocol
message, with additional key material included. Note that this field may be
encrypted, or not included entirely, depending on the state of the connection.
No MAC or Padding can be present at end of TLS records before all cipher
algorithms and parameters have been negotiated and handshaked, and then
confirmed by sending a CipherStateChange record (see below) for signaling that
these parameters will take effect in all further records sent by the same peer.

2.6.Handshake protocol
Most messages exchanged during the setup of the TLS session are based on this
record, unless an error or warning occurs and needs to be signaled by an Alert
protocol record (see below), or the encryption mode of the session is modified by
another record (see ChangeCipherSpec protocol below).
+ Byte +0 Byte +1 Byte +2 Byte +3
Byte
0

22

Version Length Bytes
1..4 (Major) (Minor) (bits 15..8) (bits 7..0)

Handshake message data length Bytes
5..8

Message type
(bits 23..16) (bits 15..8) (bits 7..0)

Bytes
9..(n-1)

Handshake message data

Handshake message data length Bytes
n..(n+3)

Message type
(bits 23..16) (bits 15..8) (bits 7..0)

Bytes
(n+4)..

Handshake message data

Message type. This field identifies the Handshake message type.

Message Types
Code Description
0 HelloRequest
1 ClientHello
2 ServerHello
11 Certificate
12 ServerKeyExchange
13 CertificateRequest
14 ServerHelloDone
15 CertificateVerify
16 ClientKeyExchange
20 Finished

Handshake message data length. This is a 3-byte field indicating the length of
the handshake data, not including the header.

Note that multiple Handshake messages may be combined within one record.

2.7.Alert protocol

This record should normally not be sent during normal handshaking or application
exchanges. However, this message can be sent at any time during the handshake
and up to the closure of the session. If this is used to signal a fatal error, the
session will be closed immediately after sending this record, so this record is used

to give a reason for this closure. If the alert level is flagged as a warning, the
remote can decide to close the session if it decides that the session is not reliable
enough for its needs (before doing so, the remote may also send its own signal).

+ Byte +0 Byte +1 Byte +2 Byte +3
Byte
0

21

Version Length Bytes
1..4 (Major) (Minor) 0 2
Bytes
5..6

Level Description

Bytes
7..(p-1)

MAC (optional)

Bytes
p..(q-1)

Padding (block ciphers only)

Level. This field identifies the level of alert. If the level is fatal, the sender should
close the session immediately. Otherwise, the recipient may decide to terminate
the session itself, by sending its own fatal alert and closing the session itself
immediately after sending it. The use of Alert records is optional, however if it is
missing before the session closure, the session may be resumed automatically
(with its handshakes).
Normal closure of a session after termination of the transported application should
preferably be alerted with at least the Close notify Alert type (with a simple
warning level) to prevent such automatic resume of a new session. Signaling
explicitly the normal closure of a secure session before effectively closing its
transport layer is useful to prevent or detect attacks (like attempts to truncate the
securely transported data, if it intrinsicly does not have a predetermined length or
duration that the recipient of the secured data may expect).
Alert level types

Code
Level
type Connection state

1 warning Connection or security may be unstable.

2 fatal
Connection or security may be compromised, or an
unrecoverable error has occurred.

Description. This field identifies which type of alert is being sent.

Alert description types
Code Description Level types Note
0 Close notify warning or fatal
10 Unexpected message fatal
20 Bad record MAC fatal
21 Decryption failed fatal TLS only, reserved
22 Record overflow fatal TLS only

30 Decompression failure fatal
40 Handshake failure fatal
41 No certificate warning or fatal SSL v3 only,

reserved
42 Bad certificate warning or fatal
43 Unsupported certificate warning or fatal
44 Certificate revoked warning or fatal
45 Certificate expired warning or fatal
46 Certificate unknown warning or fatal
47 Illegal parameter fatal
48 Unknown CA fatal TLS only
49 Access denied fatal TLS only
50 Decode error fatal TLS only
51 Decrypt error warning or fatal TLS only
60 Export restriction fatal TLS only, reserved
70 Protocol version fatal TLS only
71 Insufficient security fatal TLS only
80 Internal error fatal TLS only
90 User cancelled fatal TLS only
100 No renegotiation warning TLS only
110 Unsupported extension warning TLS only

2.8.ChangeCipherSpec protocol
+ Byte +0 Byte +1 Byte +2 Byte +3
Byte
0

20

Version Length Bytes
1..4 (Major) (Minor) 0 1
Byte
5

CCS protocol
type

CCS protocol type. Currently only 1.
2.9.Application protocol
+ Byte +0 Byte +1 Byte +2 Byte +3
Byte
0

23

Version Length Bytes
1..4 (Major) (Minor) (bits 15..8) (bits 7..0)
Bytes
5..(m-
1)

Application data

Bytes
m..(p-
1)

MAC (optional)

Bytes
p..(q-1)

Padding (block ciphers only)

Length. Length of Application data (excluding the protocol header, and the MAC
and padding trailers).
MAC. 20 bytes for the SHA-1-based HMAC, 16 bytes for the MD5-based
HMAC.
Padding. Variable length ; last byte contains the padding length.
2.10.Example of Certificate

Figure 6.4 SSL Cerificate for Client

Figure 6.5 SSL Certificate for Server

Figure 6.6 Subject’s Public Key

3.HTTPS
3.1.Overview of HTTPS

• Hypertext Transfer Protocol Secure (HTTPS) is a combination of the
Hypertext Transfer Protocol and a cryptographic protocol. HTTPS
connections are often used for payment transactions on the World Wide
Web and for sensitive transactions in corporate information systems.

• HTTP operates at the highest layer of the TCP/IP model, the Application
layer; but the security protocol operates at a lower sublayer, encrypting an
HTTP message prior to transmission and decrypting a message upon
arrival.

• As opposed to HTTP URLs which begin with "http://" and use port 80 by
default, HTTPS URLs begin with "https://" and use port 443 by default.

3.2.HTTPS Function

• Strictly speaking, HTTPS is not a separate protocol, but refers to use of
ordinary HTTP over an encrypted Secure Sockets Layer (SSL) or Transport
Layer Security (TLS) connection. This ensures reasonable protection from
eavesdroppers and man-in-the-middle attacks, provided that adequate
cipher suites are used and that the server certificate is verified and trusted.

• To prepare a web server to accept HTTPS connections, the administrator
must create a public key certificate for the web server. This certificate must
be signed by a trusted certificate authority for the web browser to accept it.
The authority certifies that the certificate holder is indeed the entity it
claims to be. Web browsers are generally distributed with the signing
certificates of major certificate authorities so that they can verify
certificates signed by them.

• A certificate may be revoked before it expires, for example because the
secrecy of the private key has been compromised. Newer browsers such as
Firefox, Opera, and Internet Explorer on Windows Vista implement the
Online Certificate Status Protocol (OCSP) to verify that this is not the case.
The browser sends the certificate's serial number to the certificate authority
or its delegate via OCSP and the authority responds, telling the browser
whether or not the certificate is still valid.

• The system can also be used for client authentication in order to limit
access to a web server to authorized users. To do this, the site administrator
typically creates a certificate for each user, a certificate that is loaded into
his/her browser. Normally, that contains the name and e-mail address of the
authorized user and is automatically checked by the server on each
reconnect to verify the user's identity, potentially without even entering a
password.

3.3.Browser integration

• When connecting to a site with an invalid certificate, older browsers would
present the user with a dialog box asking if they wanted to continue. Newer
browsers display a warning across the entire window. Newer browsers also
prominently display the site's security information in the address bar.

• Extended validation certificates turn the address bar green in newer
browsers. Most browsers also pop up a warning to the user when visiting a
site that contains a mixture of encrypted and unencrypted content.

3.4.Application of HTTPS
3.4.1.Online payment and Online Shopping

E-commerce payment system

• An e-commerce payment system facilitates the acceptance of electronic
payment for online transactions. Also known as Electronic Data
Interchange (EDI), e-commerce payment systems have become
increasingly popular due to the widespread use of the internet-based
shopping and banking.

• In the early years of B2C transactions, many consumers were apprehensive
of using their credit and debit cards over the internet because of the
perceived increased risk of fraud. Recent research shows that 30% of
people in the United Kingdom still do not shop online because they do not
trust online payment systems. However, 54% do believe that it is safe to
shop online which is an increase from 26% in 2006.

• There are numerous different payments systems available for online
merchants. These include the traditional credit, debit and charge card but
also new technologies such as digital-wallets, e-cash, mobile payment and

e-checks. Another form of payment system is allowing a 3rd party to
complete the online transaction for you. These companies are called
Payment Service Providers (PSP), a good example is Paypal or WorldPay.
(Note Paypal also offers its own payment system).

• A payment system is a system (including physical or electronic
infrastructure and associated procedures and protocols) used to settle
financial transactions in bond markets, currency markets, and futures,
derivatives or options markets, or to transfer funds between financial
institutions. Due to the backing of modern fiat currencies with government
bonds, payment systems are a core part of modern monetary systems.

• Electronic money (also known as e-money, electronic cash, electronic
currency, digital money, digital cash or digital currency) refers to
money or scrip which is exchanged only electronically. Typically, this
involves use of computer networks, the internet and digital stored value
systems. Electronic Funds Transfer (EFT) and direct deposit are examples
of electronic money. Also, it is a collective term for financial cryptography
and technologies enabling it.

Online shopping

• Online shopping is the process consumers go through to purchase products
or services over the Internet. An online shop, eshop, e-store, internet shop,
webshop, webstore, online store, or virtual store evokes the physical
analogy of buying products or services at a bricks-and-mortar retailer or in
a shopping mall.

• The metaphor of an online catalog is also used, by analogy with mail order
catalogs. All types of stores have retail web sites, including those that do
and do not also have physical storefronts and paper catalogs. Online
shopping is a type of electronic commerce used for business-to-business
(B2B) and business-to-consumer (B2C) transactions.

Credit Cards and Smart Cards

• Over the years, credit cards have become one of the most common forms of
payment for e-commerce transactions. In North America almost 90% of
online B2C transactions were made with this payment type. Turban et al.
goes on to explain that it would be difficult for an online retailer to operate
without supporting credit and debit cards due to its widespread use.
Increased security measures such as the use of the card verification number
(CVN) which detects fraud by comparing the verification number on the
printed on the signature strip on the back of the card with the information
on file with the cardholder's issuing bank.

• Also online merchants have to comply with stringent rules stipulated by the
credit and debit card issuers (Visa and Mastercard) this means that
merchants must have seurity protocol and procedures in place to ensure

transactions are more secure. This can also include having a certificate from
an authorised certification authority (CA) who provides PKI infrastructure
for securing credit and debit card transactions.

• Despite this widespread use in North America, there are still a number of
countries such as China, India and Pakistan that have some problems to
overcome in regard to credit card security. In the meantime, the use of
smartcards has become extremely popular. A Smartcard is similar to a
credit card; however it contains an embedded 8-bit microprocessor and uses
electronic cash which transfers from the consumers’ card to the sellers’
device. A popular smartcard initiative is the VISA Smartcard. Using the
VISA Smartcard you can transfer electronic cash to your card from your
bank account, and you can then use your card at various retailers and on the
internet.

Payment service provider (PSP)

• A payment service provider (PSP) offers merchants online services for
accepting electronic payments by a variety of payment methods including
credit card, bank-based payments such as direct debit, bank transfer, and
real-time bank transfer based on online banking. Some PSPs provide
unique services to process other next generation methods (Payment
systems) including cash payments, wallets such as PayPal, prepaid cards or
vouchers, and even paper or e-check processing.

• Typically, a PSP can connect to multiple acquiring banks, card, and
payment networks. In many cases the PSP will fully manage these technical
connections, relationships with the external network, and bank accounts.
This makes the merchant less dependent on financial institutions and free
from the task of establishing these connections directly - especially when
operating internationally.

• Furthermore, a full service PSP can offer risk management services for card
and bank based payments, transaction payment matching, reporting, fund
remittance and fraud protection in addition to multi-currency functionality
and services.

• PSP fees are typically levied in one of two ways: As a percentage of each
transaction or a low fixed cost per transaction.

3.4.2.Internet Banking

Online banking (or Internet banking) allows customers to conduct financial
transactions on a secure website operated by their retail or virtual bank, credit
union or building society.

The common features fall broadly into several categories

• Transactional (e.g., performing a financial transaction such as an account to
account transfer, paying a bill, wire transfer... and applications... apply for a
loan, new account, etc.)

o Electronic bill presentment and payment - EBPP
o Funds transfer between a customer's own checking and savings

accounts, or to another customer's account
o Investment purchase or sale
o Loan applications and transactions, such as repayments

• Non-transactional (e.g., online statements, check links, cobrowsing, chat)
o Bank statements

• Financial Institution Administration - features allowing the financial
institution to manage the online experience of their end users

• ASP/Hosting Administration - features allowing the hosting company to
administer the solution across financial institutions

Features commonly unique to business banking include

• Support of multiple users having varying levels of authority
• Transaction approval process
• Wire transfer

Features commonly unique to Internet banking include

• Personal financial management support, such as importing data into
personal accounting software. Some online banking platforms support
account aggregation to allow the customers to monitor all of their accounts
in one place whether they are with their main bank or with other
institutions.

3.4.3.Manage Certificate

VeriSign is the trusted provider of Internet infrastructure services for the
networked world. The ability to know and trust the parties with which you do
business and communicate has become critical in the networked world.

• VeriSign facilitates as many as 50 billion authoritative Domain Name
System (DNS) queries a day, and has been providing this service since
1998 with 100% availability.

• VeriSign plans to increase capacity of the .com and .net DNS by 10 times
by 2010 to provide the security and stability required for global Internet-
based transactions.

• VeriSign is the SSL Certificate provider of choice for over 95% of the
Fortune 500 and the world’s 40 largest banks.

• The VeriSign Secured® Seal, the most recognized symbol of trust on the
Internet (TNS Study, 2006), is served over 150 million times a day.

• VeriSign has issued over 1.4 million VeriSign® Identity Protection (VIP)
credentials to consumers for strong authentication on a network of leading
Web sites.

Chapter 10.
1.Clustering
1.1.Cluster

A computer cluster is a group of linked computers, working together closely so
that in many respects they form a single computer. The components of a cluster
are commonly, but not always, connected to each other through fast local area
networks. Clusters are usually deployed to improve performance and/or
availability over that provided by a single computer, while typically being much
more cost-effective than single computers of comparable speed or availability.

1.2.Cluster categorizations
 1.2.1.High-availability (HA) clusters

• High-availability clusters (also known as Failover Clusters) are
implemented primarily for the purpose of improving the availability of
services which the cluster provides. They operate by having redundant
nodes, which are then used to provide service when system components
fail. The most common size for an HA cluster is two nodes, which is the
minimum requirement to provide redundancy. HA cluster implementations
attempt to use redundancy of cluster components to eliminate single points
of failure.

• There are many commercial implementations of High-Availability clusters
for many operating systems. The Linux-HA project is one commonly used
free software HA package for the Linux OSs.

1.2.2.Load-balancing clusters

• Load-balancing when multiple computers are linked together to share
computational workload or function as a single virtual computer. Logically,
from the user side, they are multiple machines, but function as a single
virtual machine. Requests initiated from the user are managed by, and
distributed among, all the standalone computers to form a cluster. This
results in balanced computational work among different machines,
improving the performance of the cluster system.

1.2.3.Compute clusters

• Often clusters are used for primarily computational purposes, rather than
handling IO-oriented operations such as web service or databases. For
instance, a cluster might support computational simulations of weather or
vehicle crashes. The primary distinction within compute clusters is how
tightly-coupled the individual nodes are. For instance, a single compute job
may require frequent communication among nodes - this implies that the
cluster shares a dedicated network, is densely located, and probably has
homogenous nodes. This cluster design is usually referred to as Beowulf
Cluster. The other extreme is where a compute job uses one or few nodes,
and needs little or no inter-node communication. This latter category is
sometimes called "Grid" computing. Tightly-coupled compute clusters are
designed for work that might traditionally have been called
"supercomputing". Middleware such as MPI (Message Passing Interface) or
PVM (Parallel Virtual Machine) permits compute clustering programs to be
portable to a wide variety of clusters.

1.2.4.Grid computing

• Grids are usually computer clusters, but more focused on throughput like a
computing utility rather than running fewer, tightly-coupled jobs. Often,
grids will incorporate heterogeneous collections of computers, possibly
distributed geographically, sometimes administered by unrelated
organizations.

• Grid computing is optimized for workloads which consist of many
independent jobs or packets of work, which do not have to share data
between the jobs during the computation process. Grids serve to manage
the allocation of jobs to computers which will perform the work
independently of the rest of the grid cluster. Resources such as storage may

be shared by all the nodes, but intermediate results of one job do not affect
other jobs in progress on other nodes of the grid.

• An example of a very large grid is the Folding@home project. It is
analyzing data that is used by researchers to find cures for diseases such as
Alzheimer's and cancer. Another large project is the SETI@home project,
which may be the largest distributed grid in existence. It uses
approximately three million home computers all over the world to analyze
data from the Arecibo Observatory radiotelescope, searching for evidence
of extraterrestrial intelligence. In both of these cases, there is no inter-node
communication or shared storage. Individual nodes connect to a main,
central location to retrieve a small processing job. They then perform the
computation and return the result to the central server. In the case of the
@home projects, the software is generally run when the computer is
otherwise idle. The grid setup means that the nodes can take however many
jobs they are able in one session.

1.3.Technologies

• MPI is a widely-available communications library that enables parallel
programs to be written in C, Fortran, Python, OCaml, and many other
programming languages.

• The GNU/Linux world supports various cluster software; for application
clustering, there is Beowulf, distcc, and MPICH. Linux Virtual Server,
Linux-HA - director-based clusters that allow incoming requests for
services to be distributed across multiple cluster nodes. MOSIX,
openMosix, Kerrighed, OpenSSI are full-blown clusters integrated into the
kernel that provide for automatic process migration among homogeneous
nodes. OpenSSI, openMosix and Kerrighed are single-system image
implementations.

• Microsoft Windows Compute Cluster Server 2003 based on the Windows
Server platform provides pieces for High Performance Computing like the
Job Scheduler, MSMPI library and management tools. NCSA's recently
installed Lincoln is a cluster of 450 Dell PowerEdge 1855 blade servers
running Windows Compute Cluster Server 2003. This cluster debuted at
#130 on the Top500 list in June 2006.

• gridMathematica provides distributed computations over clusters
including data analysis, computer algebra and 3D visualization. It can make
use of other technologies such as Altair PBS Professional, Microsoft
Windows Compute Cluster Server, Platform LSF and Sun Grid Engine.

• gLite is a set of middleware technologies created by the Enabling Grids for
E-sciencE (EGEE) project.

1.4.Example of clustered web server system
System Name BlueGene/L

Site DOE/NNSA/LLNL
System Family IBM BlueGene
System Model BlueGene/L
Computer eServer Blue Gene Solution
Vendor IBM
URL http://www.llnl.gov/asc/comput...
Application area Not Specified
Main Memory 73728 GB
Installation Year 2007

Operating System CNK/SLES 9
Memory 73728 GB
Interconnect Proprietary
Processor PowerPC 440 700 MHz (2.8

GFlops)

• Housed in Lawrence Livermore National Laboratory’s Terascale
Simulation Facility, BlueGene/L (BGL) clocked 478.2 trillion floating
operations per second (teraFLOPS) on LINPACK, the industry standard of
measure for high-performance computing. Built by IBM, BGL is a
workhorse supercomputer used to make possible science simulation of
unprecedented detail for NNSA’s tri-lab Advanced Simulation and
Computing (ASC) Program, which leverages the computing expertise and
resources of Sandia, Los Alamos and Lawrence Livermore national
laboratories.

• Computer simulations are a cornerstone of NNSA’s program to ensure the
safety, security and reliability of the nation’s nuclear deterrent without
underground testing – stockpile stewardship.

• Recently expanded to accommodate growing demand for high-performance
systems able to run the most complex nuclear weapons science
calculations, BGL now has a peak speed of 596 teraFLOPS. In partnership
with IBM, the machine was scaled up from 65,536 to 106,496 nodes in five
rows of racks; the 40,960 new nodes have double the memory of those
installed in the original machine.

• The upgrading of BGL, notably through the addition of nodes with twice
the memory, allows scientists from the three nuclear weapons labs to
develop and explore a broader set of applications than the single package
weapons science oriented work that has been the mainstay of the machine
in the past. For example, BGL had been used widely for materials science
calculations such as assessing materials at extreme temperatures and
pressures. Now it will be much easier to run more complex applications

related to modeling integrated systems as opposed to focused exploration of
one area of physics or chemistry.

Site Name ECMWF
URL http://www.ecmwf.int/
Segment Research
City Reading
State N/A
Country United Kingdom

• The European Centre for Medium-Range Weather Forecasts (ECMWF, the
Centre) is an international organisation supported by 28 European States,
based in Reading, west of London, in the United Kingdom.

• ECMWF provides state-of-the-art weather forecast data and products to its
Member States as well as managing a super-computer facility which
provides resources for weather forecasting research and computer
modelling of the global weather atmosphere and ocean.

• ECMWF Member States are allocated a proportion of ECMWF's
supercomputing resources and have access to its data archives.

2.Load balancing
2.1.What ‘s Load balancing

• In computer networking, load balancing is a technique to spread work
between two or more computers, network links, CPUs, hard drives, or other
resources, in order to get optimal resource utilization, maximize
throughput, and minimize response time. Using multiple components with
load balancing, instead of a single component, may increase reliability
through redundancy. The balancing service is usually provided by a
dedicated program or hardware device (such as a multilayer switch).

• It is commonly used to mediate internal communications in computer
clusters, especially high-availability clusters.

2.2.For Internet Service

• One of the most common applications of load balancing is to provide a
single Internet service from multiple servers, sometimes known as a server
farm. Commonly load-balanced systems include popular web sites, large
Internet Relay Chat networks, high-bandwidth File Transfer Protocol sites,
NNTP servers and DNS servers.

• For Internet services, the load balancer is usually a software program which
is listening on the port where external clients connect to access services.
The load balancer forwards requests to one of the "backend" servers, which
usually replies to the load balancer. This allows the load balancer to reply
to the client without the client ever knowing about the internal separation of
functions. It also prevents clients from contacting backend servers directly,
which may have security benefits by hiding the structure of the internal
network and preventing attacks on the kernel's network stack or unrelated
services running on other ports.

• Some load balancers provide a mechanism for doing something special in
the event that all backend servers are unavailable. This might include
forwarding to a backup load balancer, or displaying a message regarding
the outage.

• An alternate method of load balancing which does not necessarily require a
dedicated software or hardware node, is called round robin DNS. In this
technique, multiple IP addresses are associated with a single domain name
(i.e. www.example.org); clients themselves are expected to choose which
server to connect. Unlike the use of a dedicated load balancer, this
technique is not "opaque" to clients, because it exposes the existence of
multiple backend servers. The technique has other advantages and
disadvantages, depending on the degree of control over the DNS server and
the granularity of load balancing which is desired.

• A variety of scheduling algorithms are used by load balancers to determine
which backend server to send a request to. Simple algorithms include
random choice or round robin. More sophisticated load balancers may take
into account additional factors, such as a server's reported load, recent
response times, up/down status (determined by a monitoring poll of some
kind), number of active connections, geographic location, capabilities, or
how much traffic it has recently been assigned. High-performance systems
may use multiple layers of load balancing.

• In addition to using dedicated hardware load balancers, software-only
solutions are available, including open source options. Examples of the
latter include the Apache web server's mod_proxy_balancer extension and
the Pound reverse proxy and load balancer.

2.3.Persistence

• An important issue when operating a load-balanced service is how to
handle information that must be kept across the multiple requests in a
user's session. If this information is stored locally on one back end server,
then subsequent requests going to different back end servers would not be
able to find it. This might be cached information that can be recomputed, in
which case load-balancing a request to a different back end server just
introduces a performance issue.

• One solution to the session data issue is to send all requests in a user
session consistently to the same back end server. This is known as
"persistence" or "stickiness". A large downside to this technique is its lack
of automatic failover: if a backend server goes down, its per-session
information becomes inaccessible, and sessions depending on it are lost.
Interestingly enough, the very same problem is usually relevant to central
database servers, even if web servers are "stateless" and not "sticky",
central database is (see below).

• Assignment to a particular server might be based on a username, client IP
address, or random assignment. Due to DHCP, Network Address
Translation, and web proxies, the client's IP address may change across
requests, and so this method can be somewhat unreliable. Random
assignments must be remembered by the load balancer, which creates a
storage burden. If the load balancer is replaced or fails, this information can
be lost, and assignments may need to be deleted after a timeout period or
during periods of high load, to avoid exceeding the space available for the
assignment table. The random assignment method also requires that clients
maintain some state, which can be a problem, for example when a web
browser has disabled storage of cookies. Sophisticated load balancers use
multiple persistence techniques to avoid some of the shortcomings of any
one method.

• Another solution is to keep the per-session data in a database. Generally
this is bad for performance since it increases the load on the database: the
database is best used to store information less transient than per-session
data. (Interestingly, to prevent a database from becoming a single point of
failure, and to improve scalability, the database is often replicated across
multiple machines, and load balancing is used to spread the query load
across those replicas.)

• Fortunately there are more efficient approaches. In the very common case
where the client is a web browser, per-session data can be stored in the
browser itself. One technique is to use a browser cookie, suitably time-
stamped and encrypted. Another is URL rewriting. Storing session data on
the client is generally the preferred solution: then the load balancer is free
to pick any backend server to handle a request. However, this method of
state-data handling is not really suitable for some complex business logic
scenarios, where session state payload is very big or recomputing it with
every request on a server is not feasible.

2.4.Load balancer features

Hardware and software load balancers can come with a variety of special features.

1. Asymmetric load: A ratio can be manually assigned to cause some
backend servers to get a greater share of the workload than others. This is
sometimes used as a crude way to account for some servers being faster
than others.

2. Priority activation: When the number of available servers drops below a
certain number, or load gets too high, standby servers can be brought online

3. SSL Offload and Acceleration: SSL applications can be a heavy burden
on the resources of a Web Server, especially on the CPU and the end users
may see a slow response (or at the very least the servers are spending a lot
of cycles doing things they weren't designed to do). To resolve these kinds
of issues, a Load Balancer capable of handling SSL Offloading in
specialized hardware may be used. When Load Balancers are taking the
SSL connections, the burden on the Web Servers is reduced and
performance will not degrade for the end users.

4. Distributed Denial of Service (DDoS) attack protection: load balancers
can provide features such as SYN cookies and delayed-binding (the back-
end servers don't see the client until it finishes its TCP handshake) to
mitigate SYN flood attacks and generally offload work from the servers to
a more efficient platform.

5. HTTP compression: reduces amount of data to be transferred for HTTP
objects by utilizing gzip compression available in all modern web browsers

6. TCP offload: different vendors use different terms for this, but the idea is
that normally each HTTP request from each client is a different TCP

connection. This feature utilizes HTTP/1.1 to consolidate multiple HTTP
requests from multiple clients into a single TCP socket to the back-end
servers.

7. TCP buffering: the load balancer can buffer responses from the server and
spoon-feed the data out to slow clients, allowing the server to move on to
other tasks.

8. Direct Server Return: an option for asymmetrical load distribution, where
request and reply have different network paths.

9. Health checking: the balancer will poll servers for application layer health
and remove failed servers from the pool.

10. HTTP caching: the load balancer can store static content so that some
requests can be handled without contacting the web servers.

11. Content Filtering: some load balancers can arbitrarily modify traffic on
the way through.

12. HTTP security: some load balancers can hide HTTP error pages, remove
server identification headers from HTTP responses, and encrypt cookies so
end users can't manipulate them.

13. Priority queuing : also known as rate shaping, the ability to give different
priority to different traffic.

14. Content aware switching: most load balancers can send requests to
different servers based on the URL being requested.

15. Client authentication: authenticate users against a variety of
authentication sources before allowing them access to a website.

16. Programmatic traffic manipulation: at least one load balancer allows the
use of a scripting language to allow custom load balancing methods,
arbitrary traffic manipulations, and more.

17. Firewall : Direct connections to backend servers are prevented, for network
security reasons.

2.5.Implement Load balancing
2.5.1.Local DNS Caching

Once the local DNS receives the reply, it will cache that information for a
specified time, known as time to live (TTL). TTL is specified by the authoritative
DNS as part of its reply. That means, the local DNS will simply reply to all
subsequent requests with the information it has from the earlier DNS reply until
the TTL expires. Once the TTL expires, the next request to the local DNS will
trigger a request to the authoritative DNS again. Caching helps ensure faster
response time for the same name to address resolution queries from subsequent
clients. At the same time, TTL helps ensure that the local DNS captures any
updates or changes from the authoritative DNS. Changing the TTL to a lower
value causes the local DNS to query the authoritative DNS more often. Changing
the TTL to a higher value puts the local DNS at the risk of having stale
information for increased durations.

If the local DNS receives multiple IP addresses as part of the DNS reply, it
may give one IP address to each of its clients in a round−robin manner.
In addition to the local DNS caching the DNS responses, the client browser also
caches the DNS response.

Unfortunately, popular client browsers currently ignore the TTL set by the
authoritative DNS. Versions 3.x of Microsoft Internet Explorer, for example,
cache the DNS response for 24 hours. Unless the browser application is terminated
and restarted, it does not query the DNS again for 24 hours for a given domain.

Versions 4.x and later cache the DNS response for 30 minutes. Microsoft
provides a note on the support section of its Web site on how to change the cache
time−out value for Internet Explorer by modifying certain entries in the registry.
(Search for keywords ie cache dns timeout in the support section of Microsoft’s
Website).

2.5.2.Using Standard DNS for load balancing

DNS can be used for load balancing across multiple servers using the standard
round−robin mechanism available in the DNS servers. Each IP address configured
for the domain name may actually be a VIP on a load balancer that’s bound to
several servers connected to the load balancer. DNS can be used for some
rudimentary load balancing across the various individual servers or multiple load
balancers at different sites where each load balancer performs server load
balancing.

But the DNS has no knowledge of which of the different IP addresses is
actually working or how much load is on each one of those sites. A site may be
completely inaccessible, but the DNS may continue to provide that IP address as
part of its reply. We can’t view this as a shortcoming of the DNS architecture
because DNS was never designed for GSLB. It was devised as a way to provide
the name−to−address translation.

2.5.3.HTTP Redirect

One approach that can be used with no changes to the existing DNS system or
configuration is a method called HTTP redirect. The protocol definition for HTTP
includes a way for a Web server to reply with an HTTP response that contains a
redirect error code and the redirected URL. This informs the browser that it must
go to the new URL in order to get the information it’s looking for. Figure 5.5
shows how HTTP redirect works. When a user types http://www.foo.com/ the local
DNS resolves the name http://www.foo.com/ to the IP address of a Web server in
New York. When the browser makes the HTTP request, the Web server in New
York redirects the browser to http://www1.foo.com/ The browser goes to the local
DNS again to resolve the name www1.foo.com to an IP address that is in San Jose.
Finally, the browser makes the HTTP request to the server in San Jose and
retrieves the Web page content. The server in New York can decide whether and
where to redirect the user, based on different parameters or policies.

The advantages of the HTTP redirect method.

• There is no change to any of the existing DNS setup or configuration.
• When the server in New York gets the HTTP request, it knows the client’s

IP address, which can be helpful.
The disadvantages of the HTTP redirect method.
As the name indicates, this method works only for HTTP applications and not for
any others.
The initial response time now increases as it includes an additional DNS lookup
for www1.foo.com, establishing a TCP connection with www1.foo.com and
sending the HTTP request again.
Since all users must first go to http://www.foo.com/ this may become a
performance or reliability bottleneck, although this can be alleviated a bit by using
standard DNS−based round−robin load balancing.

2.6.Some Alogrithm for Load balancing
2.6.1.Random

• This load balancing method randomly distributes load across the servers
available, picking one via random number generation and sending the
current connection to it. While it is available on many load balancing
products, its usefulness is questionable except where uptime is concerned –
and then only if you detect down machines.

• Plain Programmer Description: The system builds an array of Servers
being load balanced, and uses the random number generator to determine
who gets the next connection… Far from an elegant solution, and most
often found in large software packages that have thrown load balancing in
as a feature.

2.6.2.Round Robin

• Round Robin passes each new connection request to the next server in line,
eventually distributing connections evenly across the array of machines
being load balanced. Round Robin works well in most configurations, but
could be better if the equipment that you are load balancing is not roughly
equal in processing speed, connection speed, and/or memory.

• Plain Programmer Description: The system builds a standard circular
queue and walks through it, sending one request to each machine before
getting to the start of the queue and doing it again. While I’ve never seen
the code (or actual load balancer code for any of these for that matter),
we’ve all written this queue with the modulus function before. In school if
nowhere else.

2.6.3.Weighted Round Robin (called Ratio on the BIG-IP)

• With this method, the number of connections that each machine receives
over time is proportionate to a ratio weight you define for each machine.
This is an improvement over Round Robin because you can say “Machine 3
can handle 2x the load of machines 1 and 2”, and the load balancer will
send two requests to machine #3 for each request to the others.

• Plain Programmer Description: The simplest way to explain for this one is
that the system makes multiple entries in the Round Robin circular queue
for servers with larger ratios. So if you set ratios at 3:2:1:1 for your four
servers, that’s what the queue would look like – 3 entries for the first
server, two for the second, one each for the third and fourth. In this version,
the weights are set when the load balancing is configured for your
application and never change, so the system will just keep looping through
that circular queue. Different vendors use different weighting systems –
whole numbers, decimals that must total 1.0 (100%), etc. but this is an

implementation detail, they all end up in a circular queue style layout with
more entries for larger ratings.

2.6.4.Dynamic Round Robin (Called Dynamic Ratio on the BIG-IP)

• This is similar to Weighted Round Robin, however, weights are based on
continuous monitoring of the servers and are therefore continually
changing. This is a dynamic load balancing method, distributing
connections based on various aspects of real-time server performance
analysis, such as the current number of connections per node or the fastest
node response time. This Application Delivery Controller method is rarely
available in a simple load balancer.

• Plain Programmer Description: If you think of Weighted Round Robin
where the circular queue is rebuilt with new (dynamic) weights whenever it
has been fully traversed, you’ll be dead-on.

2.6.5.Fastest

• The Fastest method passes a new connection based on the fastest response
time of all servers. This method may be particularly useful in environments
where servers are distributed across different logical networks. On the BIG-
IP, only servers that are active will be selected.

• Plain Programmer Description: The load balancer looks at the response
time of each attached server and chooses the one with the best response
time. This is pretty straight-forward, but can lead to congestion because
response time right now won’t necessarily be response time in 1 second or
two seconds. Since connections are generally going through the load
balancer, this algorithm is a lot easier to implement than you might think,
as long as the numbers are kept up to date whenever a response comes
through.

2.6.6.Least Connections

• With this method, the system passes a new connection to the server that has
the least number of current connections. Least Connections methods work
best in environments where the servers or other equipment you are load
balancing have similar capabilities. This is a dynamic load balancing
method, distributing connections based on various aspects of real-time
server performance analysis, such as the current number of connections per
node or the fastest node response time. This Application Delivery
Controller method is rarely available in a simple load balancer.

• Plain Programmer Description: This algorithm just keeps track of the
number of connections attached to each server, and selects the one with the
smallest number to receive the connection. Like fastest, this can cause

congestion when the connections are all of different durations – like if one
is loading a plain HTML page and another is running a JSP with a ton of
database lookups. Connection counting just doesn’t account for that
scenario very well.

2.6.7.Observed

• The Observed method uses a combination of the logic used in the Least
Connections and Fastest algorithms to load balance connections to servers
being load-balanced. With this method, servers are ranked based on a
combination of the number of current connections and the response time.
Servers that have a better balance of fewest connections and fastest
response time receive a greater proportion of the connections. This
Application Delivery Controller method is rarely available in a simple load
balancer.

• Plain Programmer Description: This algorithm tries to merge Fastest and
Least Connections, which does make it more appealing than either one of
the above than alone. In this case, an array is built with the information
indicated (how weighting is done will vary, and I don’t know even for F5,
let alone our competitors), and the element with the highest value is chosen
to receive the connection. This somewhat counters the weaknesses of both
of the original algorithms, but does not account for when a server is about
to be overloaded – like when three requests to that query-heavy JSP have
just been submitted, but not yet hit the heavy work.

2.6.8.Predictive

• The Predictive method uses the ranking method used by the Observed
method, however, with the Predictive method, the system analyzes the
trend of the ranking over time, determining whether a servers performance
is currently improving or declining. The servers in the specified pool with
better performance rankings that are currently improving, rather than
declining, receive a higher proportion of the connections. The Predictive
methods work well in any environment. This Application Delivery
Controller method is rarely available in a simple load balancer.

• Plain Programmer Description: This method attempts to fix the one
problem with Observed by watching what is happening with the server. If
its response time has started going down, it is less likely to receive the
packet. Again, no idea what the weightings are, but an array is built and the
most desirable is chosen.

2.6.9.Locality Aware Request Distribution

• With content based request distribution the front end takes into account
both the service content requested and the current load on the backend
nodes when deciding which backend node should serve a given request.好

• The potential advantages of content based request distribution are increased
performance due to improved hit rates in the backend’s main memory
caches increased secondary storage scalability due to the ability to partition
the server’s database over the dierent backend nodes and the ability to
employ backend nodes that are specialized for certain types of requests eg
audio and video.

• The locality aware request distribution好LARD strategy presented in this
paper is a form of content based request distribution focusing on obtaining
the first of the advantages cited above namely improved cache hit rates in
the backends.

• Figure illustrates the principle of LARD in a simple server with two back

ends and three targets (A.B.C) in the incoming request stream. The front
end directs all requests for A to back end 1 and all requests for B and C to
back end 2. By doing so there is an increased like lihood that the request
好finds the requested target in the cache at the back end. In contrast with a
round robin distribution of incoming requests requests of all three targets
will arrive at both backends.This increases the likelihood of a cache miss if
the sum of the sizes of the three targets or more generally if the size of the
working set exceeds the size of the main memory cache at an individual
backend node.

2.6.10.Genetic Based GDE Approach in Load Balancing

The aim of this method is to compare and equalize each neighbor server workload
in an arbitrary web cluster topology until the workload distribution reaches the
balance stage. The first step of GDE approach is using edge-coloring method to
determine the dimension indices. The dimension is defined as edges with the
same color while the iterative process for all dimensions in the corresponding
system topology is defined as a sweep. Based on the predefined dimension,
neighbor server workload exchanged is equalized along the order dimension. The
exchange parameter of the GDE method will govern the workload amount for each
server. Optimal sets of exchange parameters have been selected using genetic

algorithm to accelerate the system to achieve the stable stage. The structure of the
process flow is illustrated in.

3.Round robin DNS
3.1.What ‘s round robin DNS

• Round robin DNS is a technique of load distribution, load balancing, or
fault-tolerance provisioning multiple, redundant Internet Protocol service
hosts, e.g., Web servers, FTP servers, by managing the Domain Name
System's (DNS) responses to address requests from client computers
according to an appropriate statistical model.

• In its simplest implementation Round-robin DNS works by responding to
DNS requests not only with a single IP address, but a list of IP addresses of
several servers that host identical services. The order in which IP addresses
from the list are returned is the basis for the term round robin. With each
DNS response, the IP address sequence in the list is permuted. Usually,
basic IP clients attempt connections with the first address returned from a
DNS query so that on different connection attempts clients would receive
service from different providers, thus distributing the overall load among
servers.

• There is no standard procedure for deciding which address will be used by
the requesting application - a few resolvers attempt to re-order the list to
give priority to numerically "closer" networks. Some desktop clients do try
alternate addresses after a connection timeout of 30-45 seconds.

• Round robin DNS is often used for balancing the load of geographically-
distributed Web servers. For example, a company has one domain name
and three identical web sites residing on three servers with three different
IP addresses. When one user accesses the home page it will be sent to the
first IP address. The second user who accesses the home page will be sent
to the next IP address, and the third user will be sent to the third IP address.
In each case, once the IP address is given out, it goes to the end of the list.
The fourth user, therefore, will be sent to the first IP address, and so forth.

• Many IRC networks use round robin DNS to distribute users among the
servers on their networks. Indeed, virtually all large and established
networks have round robin DNS implementations for each continent or
country in which they have servers - so users can use a 'random' server but
not necessarily one local to them.

3.2.Implement Round Robin DNS
3.2.1.DNS load balancing implementation (Multiple CNAMES)

• This approach works for BIND 4 name servers, where multiple CNAMES
are not considered as a configuration error. Assuming there are 4 web
servers in the cluster configured with IP addresses 123.45.67.[1-4], add all
of them to the DNS with Address records (A Names) as below. The srv[1-

4] can be set to any name you want, such as foo[1-4], but should match the
next step.

srv1 IN A 123.45.67.1
srv2 IN A 123.45.67.2
srv3 IN A 123.45.67.3
srv4 IN A 123.45.67.4

• Add the following canonical names to resolve www.domain.com to one of
these servers.

www IN CNAME srv1.domain.tld.
IN CNAME srv2.domain.tld.
IN CNAME srv3.domain.tld.
IN CNAME srv4.domain.tld.

• The DNS server will resolve the www.domain.com to one of the listed
servers in a rotated manner. That will spread the requests over the group of
servers.

Note: The requests sent to http://domain.com (without 'www') should be
forwarded to http://www.domain.com in this case to work. For BIND 8 name
servers, the above approach will throw an error for multiple CNAMES. This can
be avoided by an explicit multiple CNAME configuration option as shown below.

options {
multiple-cnames yes;
};

3.2.2.DNS load balancing implementation (Multiple A Records)

This above approach with multiple CNAMES for one domain name is not a valid
DNS server configuration for BIND 9 and above. In this case, multiple A records
are used.
www.domain.tld. 60 IN A 123.45.67.1
www.domain.tld. 60 IN A 123.45.67.2
www.domain.tld. 60 IN A 123.45.67.3
www.domain.tld. 60 IN A 123.45.67.4

The TTL value should be kept to a low value, so that the DNS cache is
refreshed faster.
3.3.Performance

• While the performance of fast zones isn't exactly stellar, it is not much
more than the normal CPU loads induced by BIND. Testing was
performed on a Sun Sparc-2 being used as a normal workstation, but no

resolvers were using the name server - essentially the nameserver was idle.
For a configuration with no fast subzones, BIND accrued 11 CPU seconds
in 24 hours. For a configuration with one fast zone, six address records,
and being refreshed every 300 seconds (5 minutes), BIND accrued 1 minute
4 seconds CPU time. For the same previous configuration, but being
refreshed every sixty seconds, BIND accrued 5 minutes and 38 seconds of
CPU time.

• As is no great surprise, the CPU load on the serving machine was linear to
the frequency of the refresh time. The sixty second refresh configuration
used approximately five times as much CPU time as did the 300 second
refresh configuration. One can easily extrapolate that the overall CPU
utilization would be linear to the number of zones and the frequency of the
refresh period. All of this is based on a shell script that always indicated
that a zone update was necessary, a more intelligent program should realize
when the reordering of the RRs was unnecessary and avoid such periodic
zone reloads.

3.4.Drawbacks

• Although easy to implement, round robin DNS has problematic drawbacks,
such as those arising from record caching in the DNS hierarchy itself, as
well as client-side address caching and reuse, the combination of which can
be difficult to manage. Round robin DNS should not solely be relied upon
for service availability. If a service at one of the addresses in the list fails,
the DNS will continue to hand out that address and clients will still attempt
to reach the inoperable service.

• Also, it may not be the best choice for load balancing on its own since it
merely alternates the order of the address records each time a name server
is queried. There is no consideration for matching the user IP address and
its geographical location, transaction time, server load, network congestion,
etc. Round robin DNS load balancing works best for services with a large
number of uniformly distributed connections to servers of equivalent
capacity. Otherwise it just does load distribution.

• Methods exist to overcome such limitations. For example, modified DNS
servers (such as lbnamed[1]) can routinely poll mirrored servers for
availability and load factor. If a server does not reply as required, the server
can be temporarily removed from the DNS pool, until it reports that it is
once again operating within specifications.

Chapter 11.
1.Web Services
1.1. Concept of WebServices

• A Web Service (also Web Service, Webservice) is defined by the W3C as
"a software system designed to support interoperable machine-to-machine
interaction over a network".[1] Web services are frequently just Internet
application programming interfaces (API) that can be accessed over a
network, such as the Internet, and executed on a remote system hosting the
requested services. Other approaches with nearly the same functionality as
web services are Object Management Group's (OMG) Common Object
Request Broker Architecture (CORBA), Microsoft's Distributed
Component Object Model (DCOM) or SUN's Java/Remote Method
Invocation (RMI).

• The W3C Web service definition encompasses many different systems, but
in common usage the term refers to clients and servers that communicate
over the HTTP protocol used on the Web. Such services tend to fall into
one of two camps: Big Web Services and RESTful Web Services.

1.2.Generic Architecture of WebServices

Figure 11.1 Architecture of WebServices

• Web Services is independent modular components, which do not have a
user interface and provide services on LAN, WAN, MAN, and internet.
They designed to provide 100 percent interoperability over dissimilar
networks as they use TCP/IP, HTTP, and XML for communication.

• Web Serivces use Simple Object Access Protocol (SOAP) to communicate
with heterogeneous system by exchanging message, SOAP is a platform-
independent protocol that use XML to exchange information. A Web
Service is the ideal solution to all the problems tranditional distributed
computing.

• The architecture of a Web Service helps in understanding the working of
the Web Services. There is five layers in generic architecture of Web
Services.

• Data layer stores the information needed by Web Service.
• Data Access layer maintains data integrity by separating the data sources

from the manipulation done to the bussiness logic.
• Web Service Logic layer consist web server logic.
• Web Service Façade layer provide interface corresponding to functions

provided by the Web Service.
• Listen Layer interacts with the client applications, accepts the request, and

parses it. It then passes the message parameters to the appropriate methods
in the bussiness façade. This is the only layer, which is aware that it is a
part of Web Serivce.

1.3.Life Cycle of a Web Service

Figure 11.2 Life Cycle of a Web Service

Web Services provide the service interface instead of a user interface. The service
interface is an XML document that is used to call the Web Service. Therefore, this
interface plays a major role in the lifecycle of a Web Service. The life cycle of a
Web Service defines the scope of the Web Service and the activities involved to
use it. The tasks involved in the life cycle of a Web Service are

o Design a Web Service.
o Clearly define the service interface and Web Service methods.
o Once the Web Service is created, it should be registered on some

central network node to help the Web clients in finding and using the
service.

o Now, the Web clients should locate the Web Services on the Web to
use them.

o The Web Service should be called.

1.4.XML Web Services
1.4.1.Concept of XML Web Services

Figure 11.3 XML Web Services

• An XML Web Service is an independent component that communicates
with other applications using standard Web protocols such as HTTP, XML,
SOAP, and TCP/IP. This allows XML Web Services to communicate with
applications written in different languages, operating on different platforms,
and communicating with different protocols. Web Services created using
ASP.Net are called XML Web Services as they communicate on the
network by exchanging messages in XML format.

• Apart from the feature of interoperability, Web Services provides some
more features. These features include

o Stateless architecture
o Asynchronous architecture
o Platform and language-independent communication.

1.4.2.XML Web Services Infrastructure

Figure 11.4 XML Web Services Infrastructure

• XML Web Services register themselves on a central network node to make
the services available to users. The node is also known as Universal
Description, Discovery, and Intergration (UDDI) registry. After
registration, Web clients locate XML Web Services by using an XML
documents called the Web Services Description Language(WSDL), and
the Discovery (DISCO) specification. The WSDL document provides the
description about the Web Services, whereas the DISCO specification
provides algorithms to locate the Web Service. All these operations are
conducted using the XML Web Services infrastructure.

• The infrastructure consists of four different componets to fullfill the
operations over the Web. These components are

o XML Web Services Directories allow registering Web Services and
searching for the registered Web Services using UDDI. Web clients
are UDDI to search for the required Web Services.

o XML Web Service Discovery is a process that allows Web clients to
discover documents describing an XML Web Service. It is
performed using the WSDL document and the DISCO specification.
When the Web client searches uses UDDI to locate a Web Service,
the WSDL document is returned as response.

o XML Web Service Description provides the description related to a
particulat XML Web Service. The description helps in providing the
information on how to interact with a particular XML Web Service.

o XML Web Service Wire Formats. XML Web Services communicate
using open wire formats. These are platform-independent protocols,
which can be interpreted by systems supporting the common Web
standards such as HTTP and XML. SOAP is main protocol used
extensively used for communicating with XML Web Servies.

1.4.3.Client and XML Web Service Communication

Figure 11.5.Client and XML Web Service Communication

The Web client must perform a few steps to call a Web Service. These steps
include

• The client creates an object of the XML Web Service proxy class. The
proxy class is an object on the client computer acting as a representative of
the service.

• The client calls the method on the proxy class.
• The arguments of the XML Web Sevice method are serialized into a SOAP

message by the XML Web Service infrastructure on t he client computer.
• The arguments are sent to the XML Web Service over the network.
• The Web server receives the SOAP message and deserializes it.
• The infrastructure on the server invokes the method by creating an object of

class implementing the service and passes the arguments.

• The method is exectued and the value returned to the client using the same
process of sending the request message.

1.5 Advantages and Disadvantages compared to the CORBA &
RMI
1.5.1.Advantages

• Allowing cross business integration by providing access to third-party
softwares and legacy applications irrespective of their platform and
programming language.

• Providing increased efficiency, scalability, and maintainability as
applications are split into independent smaller components.

• Reducing complexity by providing encapsulation, which frees the clients
from knowing the Web Service architecture.

• Ensuring interoperability by using common Web standards.
• Providing on-demand intergration of distributed components.

1.5.2.Disadvantages

• No track of activities as HTTP is a stateless protocol.
• Fear of security risks as even critical services such as credit card

validations are explored on Web.
• Mandatory XML support without which the Web Services cannot function.
• High cost for deploying Web Services.

1.6.SDL (Service Description Language)

Figure 11.6 SDL

1.6.1The need of SDL

• Consider a scenario where a traveling agency is planning to create a Web
Service for their customers for registering the air tickets online. The
customers can book tickets with any airlines across the globe. Therefore,
the Web Service must interact with the Web Services of the airline
companies to identify the availability of flights and seats on the required
date and time.

• It is possible that these Web Services might operate on different operating
systems and use different communication protocols. To ensure
communctation amongst Web Services, each Web Service must define
interoperatable interfaces and must know about the functionalities provided
by each other.

• This can be accomplished by using Service Description Language. SDL is
an interoperable language used to describge the Web methods along with
the input and output parameters.

1.6.2.Definition of SDL

Figure 11.7 SDL in working

• SDL is an XML document used to describe Web Services. It allows other
Web Services or applications to acquire information includes method name,
data types of parameters , return values, and so on. For example, using SDL
in a distributed environment, an application can identify that specific Web
Service accepts two interger, multiplies them, and returns the product as an
interger.

• It is similar to Interface Definition Language (IDL) used in CORBA. IDL is
a language used to define an application’s interface and the common
behavior for interacting with the interface. The behavior is defined by
specifying methods of the interface, parameters to these methods, their data
types, and return type. The only difference between IDL and SDL is that
SDL is platform independent as it uses XML.

1.7.WSDL (Web Service Description Language)
1.7.1.Concept of WSDL

Figure 11.8 WSDL

• WSDL is an IDL used to define the Web Service and Web Service contract.
It is an XML document, which contain custom tags used to define the
elements and attributes of the service. WSDL also defines a standard
manner in which a Web Service can be accessed.

• When the Web Service consumer queries the Web Service broker to
discover a Web Service, the consumer retrieves the WSDL document of the
requested Web Service. The document behaves as a contract between the
consumer and the Web Service.

• WSDL is a subset of two files, namely Network Accessible Service
Specification Language (NASSL) and Well Defined Service document
(WDS). NASSL is an IDL, which uses XML to describe operational dta of
network-based services. This data includes the service interface and
implementation details. WDS document defines non-operational data of a
service such as the expiry date and company name.

1.7.2.Element of a WSDL File

• WSDL defines services as a set of network endpoints. Therefore, a WSDL
file consists of service definitions. It uses XML tags to define services,
message, methods, protocols, and endpoints. An endpoint is a port, which is
a set of network addresses used to enable network communication.

• A WSDL file refers to a method as an operation. The supported operations
of a Web Service together are called port types. Each port type specifies a
network protocol and a data format for exchanging information. This binds
the messages and operations to a protocol and data format, which is referred
to as binding. This is how a WSDL file defines a public interface used to
access a Web Service.

There are six basix elements

• definitions is the root element and contains the default namespaces for the
WSDL document. The default namespace of the WSDL document is
specified as http://tempuri.org. You must change the default namespace
before the making of Web Service public.

• types defines the data types to be used in the Web Service.
• message describles the data to be exchanged on the network.
• portType specifies operations for a port. The port address are assigned

dynamically, which makes them reusable.
• binding describes the communication protocol and data format for

portType. Binding refers to a way for the operations to access the service
using a certain protocol.

• service refers to a collection of related endpoints or ports. A web service is
a set of resuable ports.

1.8.SOAP (Simple Object Access Protocol)
1.8.1.Overview SOAP

Figure 11.9 SOAP

• SOAP stands for Simple Object Access Protocol. It is a lightweight and
XML-base protocol for exchanging information in a distributed
enviroment. The goal of SOAP is to provide a well-defined XML packet
that can be safely transmitted over any network through through standard
protocols such as HTTP, SMTP. SOAP specifies how to invoke remote
objects in a sercured manner and is widely used in invoking Web Services.

The SOAP specification is divided into three parts, which are

• SOAP Envelope: Defines the message and identifies who should handle it.
• SOAP Encodeing Rules: Defines a mechanism for converting plain-text

messages in a secret code that is not reable.
• SOAP RPC Representation: Defines priciples used to handle RPC.

1.8.2.SOAP Specifications

• SOAP Envelope is an important element of XML Document that represents
a SOAP message. The SOAP Envelope comprises of an optional header
and a mandatory body. The body part of the SOAP Envelope is persistently
designed to contain the actual SOAP message intended for the final
message recipient. On other hand, the header entries contain the header
information that is specific to the application. In addition, the SOAP
Envelope tag contains many namespace definitions.

• SOAP Encoding Rules define a set of rules used for exchanging the
instances of the datatypes defined by the XML application. SOAP is
encoded in very basic style, which illustrates a data type that is independent
of the programming language that is used.

• SOAP RPC Representation represents the remote procedure calls and
response.

1.8.3.Working of SOAP

Figure 11.10 Working of SOAP

There are three components involved in communication are the SOAP client,
SOAP Server and services. Invoking a service using SOAP and HTTP consists a
few steps.

1. The client procedures the SOAP request document that define the
parameters of the Web Method.

2. The document is sent as HTTP packet via the network.
3. The Service manager recieves the SOAP packet.
4. The SM searches for the requested service in the developed services list,

validates the parameters, and passes the request to the XML Transator.
5. The XML translator passes the parameters to the method by converting

them in a programming language implemented for the method. The method
is excuted and the return value is sent to the translator.

6. The translator passes the result to the manager, who wraps it as the SOAP
response document.

7. The document is sent to the clients as HTTP packet.

1.8.4.SOAP Message Architecture

• A SOAP Message contains an Envelope, an optional Header, and the SOAP
Body. The SOAP Envelope is wrapped in any transport protocol such as
HTTP. A SOAP Envevlope is the mandatory root element of the XML
messages. Within the SOAP envelope, there are two elements namely, the
SOAP Header and the SOAP Body.

• The SOAP Header is the optional element in a SOAP message. It exists as
the immediate child element of the SOAP Envelope. It might contain
header entries, which can include information such as authentication
details. These entries must be the immediate child elements of the SOAP
Header, and must be namespace qualified.

• The SOAP Body consists of the request parameters if it is a SOAP request
message. In the SOAP response message, the SOAP body contains the
return values of the excuted method.

1.8.5.SOAP request message and SOAP response message

• The SOAP envelope element appears in both request and response
mesasge. It must be compulsorily encoded using XML. Its attributes and
elements are uniquely identified using the mandatory namespace.
http://www.w3c.org/2003/05/soap-envelope. The SOAP payload must be
enclosed in a SOAP Envelope to invoke a remote method.

• The encodingStyle attribute of the SOAP Envelope is used to identify the
data types be used in the document. It can appear with any of SOAP
elements and the it is applied to the element’s data along with its child
elements.

• In the SOAP request message, the SOAP body sets the data type of the
method parameters using place holders. Placeholders are variables whose
values will be given by the client. The values will be the assigned to these
variables. Similarly, in the SOAP response message, placeholders in the
SOAP Body represent the data type of the return value of the Web method,
if any.

11.8.6.SOAP Data Types

• The availability of particular data type relies upon the protocol which is
currently being used by the Web Service. For instance, HTTP-GET and
HTTP-POST protocols used only name/value pairs. SOAP utilizes XML in
a better manner to encode complex data. SOAP supports transmitting
paramter using the pass-by-value and pass-by-reference techniques.
However, the HTTP GET and HTTP POST protocols support only pass-by-
value technique.

1.9.UDDI
1.9.1.Overview of UDDI

Figure 11.11 UDDI

• UDDI is Web Service Discovery mechanism, It acts as a centralized
directory service that allows you to publish and discover Web Services.
UDDI consists of a list of published Web Services. It allows the providers
to register Web Services, and consumers to locate Web Services.

1.9.2.Purpose

• It provides an easy and efficient way for registering services. This allows
the other uses to discover the services. UDDI is platform-independent as it
uses XML to store the Web Service details. This means, it provides a
standard way for registering. In addition, UDDI determines the security and
transport protocols that are supported by the Web Services.

• UDDI contains only information about the Web Service. It does not contain
the actual Web Service. The main purpose of UDDI is to enable ther
service providers to publish information about their Web Service. This
information helps the consumer to determine the location of the Web
Service and invoke it.

1.9.3.Registry Type

Figure 11.12 Registry Type

• UDDI consists of registries, which contains information about Web
Services. The registries are of different types namely, public, private, and
restricted. These registry types determine the way the registries are
accessible to various clients.

• The public registry is accessible to all clients through Internet. The private
registry exists behind the firewall, which exist between the client and the
UDDI. The private registry allows you to search Web Services within the
Intranet. The restricted registry provides access to only clients, who have
permissions to access the request Web Service.

1.9.4.UDDI Architecture

• UDDI is composed of a set data,nodes and registries. The data in the UDDI
server represents information, which assists users in obtaining all the
required information for using a Web Service. The data exists in XML
format to make it accessible by any system on the network and is managed
by UDDI nodes. A UDDI node is a server, which performs several
operations on UDDI data by accessing and manipulating it. Its
functionalities are defined in the UDDI specification.

• To manage data about different Web Services, multiple UDDI nodes are
implemented. This collection of the UDDI nodes exists in the UDDI
registry. Each node in the registry manages a related set of UDDI data.

1.9.5.Working of UDDI

Figure 11.13 Working of UDDI

• UDDI enables the Web Service providers to publish their Web Services.
This allow other software clients to locate the Web Service and use it.

• When the client sends a request for accessing the Web Service by providing
a URL, the specified Web Service URL is sent to the UDDI server. The
UDDI server checks the existence of the Web Service and returns the
information about the Web Service. The client then interacts with the Web
Service provider for invoking the Web Service.

1.9.6.Data Structures

The data in UDDI is managed using various data structures. These data structures
are also called entities, which are represented in an XML format. The table lists
the data structures in UDDI.

1.10.XML (See more in next chapter).

• XML is also a text-based markup language that allows the developer to
define custom tags. Therefore, other applications can easily interpret the
data encoded using XML. It follows the rules and specifications of the
Universal Character Set (UCS), which is recognized by the ISO/IEC 10646
specifications.

• For UCS, the encoding schemes supported by XML are Universal character
set Transformation Format UTF-8 and UTF-16. These encoding schemes
are acceptable by most software and hardware platforms. This enables the

XML data encoded in UTF-8 or UTF-16 to be decoded and interpreted on
any platform. Thus XML provides a global platform for network
communication amongst heterogeneous applications.

• The fundamental difference between HTML and XML is that XML is used
to describe data, and HTML is used to display data. The other difference is
that unlike HTML, XML allows you to define your own tags and validates
them.

2.XML
2.1.Evolution of XML

• In order to address the issues raised by earlier markup languages, the
Extensible Markup Language was created. XML is a W3C
recommendation.

• XML is a set of rules for defining semantic tags that break a document into
parts and identify the different parts of the document.

• XML was developed over HTML because of the basic differences between
them given in the table below.

2.2.Features of XML

1. XML stands for Extensible Markup Language
2. XML is a markup language much like HTML
3. XML was designed to describe data
4. XML tags are not predefined. You must define your own tags
5. XML uses a Document Type Definition (DTD) or an XML Schema to

describe the data
6. XML with a DTD or XML Schema is designed to be self-descriptive.

2.3.XML Markup

• XML markup defines the physical and logical layout of the document.
• Markup is important because a program will find it difficult to distigusish a

piece of text from any othe piece, if the document has no labels or
boundaries.

• XML’s markup divides a document into separete information containers
called elements. A document consists of one outermost element, called root
element that contains all the other elements, plus some optional
administrative information at the top, khonw as XML declareation.

• XML can be used to create other languages like WAP and WML.

2.4.Benefits of XML

• Data Independence is essential charcteristic of XML. It separates the
content from its presentation. Since an XML document describes data, it
can be processed by any application.

• Easier to parse. The absence of formatting instructions make it easy to
parse. This makes XML an ideal framwork for data exchange.

• Reducing Server Load. Because XML’s sematic and structural
information enables it to be manipulated by any application, much of the
processing that was once earlier limited to servers can now be performed by
clients. This reduces server load and networkd traffic, resulting in a faster,
more efficient Web.

• Easier to create. It is text-based, so it is easy to create an XML document,
with even the most primitive text processing tools. However, XML also can
describle images, vector graphics, animation or any other data type to
which it is extended.

• Web Site Content. The W3C uses XML to write its specifications and
tranforms it to a number of other presentation formats. Some Web Site also
use XML for their content and get it tranformed to HTML using XSLT and
CSS and display the content directly in browsers.

• Remote Procedure Calls. RPC is a protocol that allows objects on one
computer to call objects on another computer to do work, allowing
distributed computing.

• e-Commerce. XML can be used as an exchange format in order to send
data form one company to another.

2.5.XML Document Structure

Figure 12.1 XML Document

• XML documents are commonly stored in text fiels with extension .xml
• The two sections of an XML document are Document Prolog and Root

Element.
• Document Prolog. XML parser get information about the content in the

document with the help of document prolog. Document prolog contains
metadata and consists of two parts- XML Declaration and Document Type
Declaration. XML Declaration specifies the version of XML being used.
Document Type Declaration defines entities or attributes values and check
grammar and vocabulary of markup.

• Root Element also Document Element. It must contain all the other
elements and content in the document. An XML element has a start Tag
and end Tag.

2.6.XML Document Life Cycle

Figure 12.2 XML Document Life Cycle

• An XML editor refers to the DTD and creates an XML document. After the
document is created the document is scanned for elements and attributes in
it. This stage is known as Scanning. The XML parser builds a complete
data structure after parsing.

• The data is then extracted from elements and attributes of the document.
This stage is known as Access.

• It is then converted into the application program. The document structure
can also be modified during the process by inserting or deleting elements or
by changing textual content of element or attribute. This stage is known as
Modification .

• The data is then serialized to a textual form and is passeed to a browser or
any other application that can display it. This stage is known as
Serialization.

2.7.Well-formed XML document

Well-formed ness refers to the standars that are to be followed by the XML
documents. Well-formedness makes XML processors and browsers read XML
documents. A document is well formed, it is fulfills the following rules.

• Minimum of one element is required.
• XML tags are case sensitive.
• Every start tag should end with end tag.
• XML tags should be nested properly
• XML tags should be valid.
• Length of markup names.
• XML attributes should be valid
• XML documents should be verified.

2.8.Classification of character data

An XML document is divided into markup and character data

• Character data describes the document’s actual content with the white
space. The text in character data is not processed by the parser and thus not
treated as a regular text. The character data can be classified into CDATA
va PCDATA

• PCDATA the data that is parsed by the parser is called as parsed character
data (PCDATA). The PCDATA specifies that the element has parsed
character data. It is used in the element declaration.Escape character like
“<” when used in the XML document will make the parser interpret it as a
new element.

• CDATA The text inside a CDATA section is not parsed by XML parser. A
text is considered in a CDATA section if it contains ‘<’ or ‘<&>’
characters. The CDATA part begins with a “<![CDATA[” and ends with
“]]>”. The CDATA sections cannot be nested. It aslo does not accept line
breaks or spaces inside the “]]>” string. Comment are also not recognized.

3.XHTML
3.1.What is XHTML

• The Extensible Hypertext Markup Language, or XHTML , is a markup
language that has the same depth of expression as HTML, but also
conforms to XML syntax.

• While HTML prior to HTML 5 was defined as an application of Standard
Generalized Markup Language (SGML), a very flexible markup language,
XHTML is an application of XML , a more restrictive subset of SGML.
Because they need to be well-formed, true XHTML documents allow for
automated processing to be performed using standard XML tools—unlike
HTML, which requires a relatively complex, lenient, and generally custom
parser.

• XHTML can be thought of as the intersection of HTML and XML in many
respects, since it is a reformulation of HTML in XML. XHTML 1.0
became a World Wide Web Consortium (W3C) Recommendation on
January 26, 2000. XHTML 1.1 became a W3C Recommendation on May
31, 2001.

3.2. Why the need for XHTML?

• Document developers and user agent designers are constantly discovering
new ways to express their ideas through new markup. In XML, it is
relatively easy to introduce new elements or additional element attributes.
The XHTML family is designed to accommodate these extensions through
XHTML modules and techniques for developing new XHTML-conforming
modules (described in the XHTML Modularization specification). These
modules will permit the combination of existing and new feature sets when
developing content and when designing new user agents.

• Alternate ways of accessing the Internet are constantly being introduced.
The XHTML family is designed with general user agent interoperability in
mind. Through a new user agent and document profiling mechanism,
servers, proxies, and user agents will be able to perform best effort content
transformation. Ultimately, it will be possible to develop XHTML-
conforming content that is usable by any XHTML-conforming user agent.

3.3. Valid XHTML documents

An XHTML document that conforms to an XHTML specification is said to be
valid. Validity assures consistency in document code, which in turn eases
processing, but does not necessarily ensure consistent rendering by browsers. A

document can be checked for validity with the W3C Markup Validation Service.
In practice, many web development programs provide code validation based on
the W3C standards.

3.3.1.Root element

• The root element of an XHTML document must be html , and must
contain an xmlns attribute to associate it with the XHTML namespace.
The namespace URI for XHTML is
http://www.w3.org/1999/xhtml . For XHTML 1.1 and later there
should also ideally be a version attribute to clearly identify the version
of XHTML being used. The example tag below additionally features an
xml:lang attribute to identify the document with a natural language.

<html xmlns="http://www.w3.org/1999/xhtml" version="XHTML 1.2"
xml:lang="en">

• For XHTML 1.1 and 2.0 an optional schemaLocation attribute can be
added, to associate the namespace with an XML Schema. The example
below is for XHTML 2.0.

<html xmlns="http://www.w3.org/2002/06/xhtml2/" version="XHTML 2.0"
xml:lang="en" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/1999/xhtml
 http://www.w3.org/MarkUp/SCHEMA/xhtml2.xsd">

• This example also demonstrates the use of multiple namespaces within a
document. The xmlns:xsi declaration indicates that any elements or
attributes prefixed with xsi: fall within the XML Schema instance
namespace rather than the XHTML namespace. This mechanism of
prefixes allows elements and attributes from different XML vocabularies to
be mixed together in the same document, without the potential for naming
clashes.

3.3.2. DOCTYPEs

• In order to validate an XHTML document, a Document Type Declaration,
or DOCTYPE, may be used. A DOCTYPE declares to the browser that
Document Type Definition (DTD) the document conforms to. A Document
Type Declaration should be placed before the root element.

• The system identifier part of the DOCTYPE, which in these examples is the
URL that begins with http://, need only point to a copy of the DTD to use,
if the validator cannot locate one based on the public identifier (the other

quoted string). It does not need to be the specific URL that is in these
examples.

• In fact, authors are encouraged to use local copies of the DTD files when
possible. The public identifier, however, must be character-for-character the
same as in the examples.

3.3.3. XML declaration

• A character encoding may be specified at the beginning of an XHTML
document in the XML declaration when the document is served using the
application/xhtml+xml MIME type. (If an XML document lacks
encoding specification, an XML parser assumes that the encoding is UTF-8
or UTF-16, unless the encoding has already been determined by a higher
protocol.)

<?xml version="1.0" encoding="UTF-8"?>

• The declaration may be optionally omitted because it declares as its
encoding the default encoding. However, if the document instead makes
use of XML 1.1 or another character encoding, a declaration is necessary.
Internet Explorer prior to version 7 enters quirks mode, if it encounters an
XML declaration in a document served as text/html .

3.3.4.Using XHTML with other namespaces

• The XHTML namespace may be used with other XML namespaces as per
[XMLNS], although such documents are not strictly conforming XHTML
1.0 documents as defined above. Work by W3C is addressing ways to
specify conformance for documents involving multiple namespaces. For an
example, see [XHTML+MathML].

• The following example shows the way in which XHTML 1.0 could be used
in conjunction with the MathML Recommendation:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>A Math Example</title>
 </head>
 <body>
 <p>The following is MathML markup:</p>
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply> <log/>
 <logbase>
 <cn> 3 </cn>
 </logbase>

 <ci> x </ci>
 </apply>
 </math>
 </body>
</html>

• The following example shows the way in which XHTML 1.0 markup could
be incorporated into another XML namespace.

<?xml version="1.0" encoding="UTF-8"?>
<!-- initially, the default namespace is "books" -->
<book xmlns='urn:loc.gov:books'
 xmlns:isbn='urn:ISBN:0-395-36341-6' xml:lang="en" lang="en">
 <title>Cheaper by the Dozen</title>
 <isbn:number>1568491379</isbn:number>
 <notes>
 <!-- make HTML the default namespace for a hypertext commentary -->
 <p xmlns='http://www.w3.org/1999/xhtml'>
 This is also available online.
 </p>
 </notes>
</book>

3.4.Differences with HTML.
3.4.1.Documents must be well-formed

• Well-formedness is a new concept introduced by [XML]. Essentially this
means that all elements must either have closing tags or be written in a
special form (as described below), and that all the elements must nest
properly.

• Although overlapping is illegal in SGML, it is widely tolerated in existing
browsers.

CORRECT: nested elements.

<p>here is an emphasized paragraph.</p>

INCORRECT: overlapping elements

<p>here is an emphasized paragraph.</p>

3.4.2. Element and attribute names must be in lower case

• XHTML documents must use lower case for all HTML element and
attribute names. This difference is necessary because XML is case-sensitive
e.g. and are different tags.

3.4.3. For non-empty elements, end tags are required

• In SGML-based HTML 4 certain elements were permitted to omit the end
tag; with the elements that followed implying closure. XML does not allow
end tags to be omitted. All elements other than those declared in the DTD
as EMPTY must have an end tag. Elements that are declared in the DTD as
EMPTY can have an end tag or can use empty element shorthand.

CORRECT: terminated elements

<p>here is a paragraph.</p><p>here is another paragraph.</p>

INCORRECT: unterminated elements

<p>here is a paragraph.<p>here is another paragraph.

3.4.4. Attribute values must always be quoted

• All attribute values must be quoted, even those which appear to be numeric.

CORRECT: quoted attribute values

<td rowspan="3">

INCORRECT: unquoted attribute values

<td rowspan=3>

3.4.5. Attribute Minimization

• XML does not support attribute minimization. Attribute-value pairs must be
written in full. Attribute names such as compact and checked cannot
occur in elements without their value being specified.

CORRECT: unminimized attributes

<dl compact="compact">

INCORRECT: minimized attributes

<dl compact>

3.4.6. Empty Elements

• Empty elements must either have an end tag or the start tag must end with
/> . For instance,
 or <hr></hr> .

CORRECT: terminated empty elements

<hr/>

INCORRECT: unterminated empty elements

<hr>

3.4.7. White Space handling in attribute values

• Strip leading and trailing white space.
• Map sequences of one or more white space characters (including line

breaks) to a single inter-word space.

3.4.8. Script and Style elements

• In XHTML, the script and style elements are declared as having #PCDATA
content. As a result, < and & will be treated as the start of markup, and
entities such as < and & will be recognized as entity references
by the XML processor to < and & respectively. Wrapping the content of the
script or style element within a CDATA marked section avoids the
expansion of these entities.

<script type="text/javascript">
<![CDATA[
... unescaped script content ...
]]>
</script>

• CDATA sections are recognized by the XML processor and appear as nodes
in the Document Object Model.

An alternative is to use external script and style documents.

Chapter 12

1 Web 2.0

1.1 definition

"Web 2.0" refers to a second generation of web development and design,
that facilitates communication, secure information sharing, interoperability, and
collaboration on the World Wide Web. Web 2.0 concepts have led to the
development and evolution of web-based communities, hosted services, and
applications such as social-networking sites, video-sharing sites, wikis, blogs,
mashup and folksonomies.

“Web 2.0” is a revolution in computer industry. It occurred when people
no longer use computers but Internet as a foundation and make affort to succeed
on that new foundation. The main rule is: to build up applications that can take
advantages of “network effects” to make better value and thus, there are more
users. (In another word, it means to take advantages of “collective wisdom”)

1.2 Characteristics

First, it is necessary to confirm that: web 2.0 is affirmed by many people
and media as a performance tendency/method of websites rather than technology
and programming techniques. However, web 2.0 also has page layout, display,
techonology that are different from Web 1.0. Let us try comparing some points of
web 1.0 with web 2.0.

For Web 1.0

With Web 1.0, a company of groups of individuals create a web page, and
its development focus on the parents who birth father is this, they will update the
information, decision sites have something on that site and how development
depends on the efforts of the few individuals involved in the operation and
management business from the site it

Web 1.0 users in the very passive, meaning that they can visit, can send
little information on to contact, comment on the compatibility between the user
and the user is most likely be omitted or very limited

Web 1.0 information resources are concentrated on one and limited.
Website seems to be only used for organization units specified available as a
company, write a report, state agencies, governments, ...
For Web 2.0

Web 2.0 is a trend of industry World Wide Web (WWW), web design, in
the second community-based web services and hosted (stored & server on the
network) as a social network, blog, wiki, the mark/ open web directory purpose is
to create the easy way to create and share information, collaborate with each other
among the users. This is how many people see as a new era of WWW. The term
Web 2.0 applications, note that the first workshop on Web 2.0 by O'Reilly Media
Web 2.0 in 2004. Although the term is mentioned as a new version of the WWW,
but it does not imply on the updated technical particular, it focuses on how the
software development and web user interaction.

We can distinguish by the following signals:

web 1.0 – collective

web 2.0 – dispersed in many places

web 1.0 – for individuals
web 2.0 – for society, collective wisdom

web 1.0 – provide content
web 2.0 – provide services and APIs

web 1.0 – readable
web 2.0 – writable

web 1.0 – communication between systems
web 2.0 – synchronization between systems

web 1.0 – the system includes structure, the content generated is pre-
calculated
web 2.0 – auto-generate and auto-suggest

web1.0 – static
web2.0 – connected, portable

web1.0 – solid, inflexible
web2.0 – loose and flexible relation

Example describing the difference between 1.0 & 2.0
Web 1.0 --> Web 2.0
DoubleClick --> Google AdSense
Ofoto --> Flickr
Akamai --> BitTorrent
mp3.com --> Napster
Britannica Online --> Wikipedia
personal websites --> blogging
evite --> upcoming.org and EVDB
domain name speculation --> search engine optimization
page views --> cost per click
screen scraping --> web services
publishing --> participation
content management systems --> wikis
directories (taxonomy) --> tagging ("folksonomy")
stickiness --> syndication

Web 1.0: for an organization to pre-specified. Example Electronic Press
Vietnamnet, Dantri.

the Web 2.0 : to anyone, the number of participants is unlimited, is social.
Value of the Web site was created by the emerging contributions of participants in
the network society. Example: Y! 360, Cyvee, Cyworld, ...

Border between Web 2.0 and Web 1.0 in some cases is quite fragile. For
example, Bangkok is the web 1.0, report new (old version) is a Web 1.0, new
version is assigned to Web 2.0

1.3 Examples
-Google Maps

Company search services giant makes up a large part in the "cake pieces"
when the Web 2.0 software launch map activities relatively excellent. Based on
AJAX, Google Maps support people see more models of the city or a region is on
the world. They can zoom in, zoom out to observe each child in the street photos
taken from satellites . Programming interface applications (Application Program

Interface - API) Google Maps also help experts develop
promote maximum creativity when building software map.

All that users need to enter the address position and they want to keyword search,
Google will do the end .For example, if they are in Kansas and want to have an
area to sell Thai food, Google Maps immediately provide a list of shops to the left
of the page, while a Google Map maps will appear at the right, mark the
restaurants near address their best. Google Local is a "companion" great for all of
their city.
-Flickr

Flickr is an online photo management and sharing application. Its primary
goals are to help people make photos available to those who matter to them, and to
enable new ways of organizing pictures. You can join Flicker for free and begin
sharing images immediately. Pro accounts are available for those who want to add
and display high volumes of photos.

Flickr

2.DOM

2.1 Introduction

The Document Object Model (DOM) is an application programming
interface (API) for HTML and XML documents. It defines the logical structure of
documents and the way a document is accessed and manipulated. In the DOM
specification, the term "document" is used in the broad sense - increasingly, XML
is being used as a way of representing many different kinds of information that
may be stored in diverse systems, and much of this would traditionally be seen as
data rather than as documents. Nevertheless, XML presents this data as
documents, and the DOM may be used to manage this data.

With the Document Object Model, programmers can build documents,
navigate their structure, and add, modify, or delete elements and content. Anything
found in an HTML or XML document can be accessed, changed, deleted, or added
using the Document Object Model, with a few exceptions - in particular, the DOM
interfaces for the XML internal and external subsets have not yet been specified.

As a W3C specification, one important objective for the Document Object
Model is to provide a standard programming interface that can be used in a wide

variety of environments and applications. The DOM is designed to be used with
any programming language. In order to provide a precise, language-independent
specification of the DOM interfaces, we have chosen to define the specifications
in OMG IDL, as defined in the CORBA 2.2 specification. In addition to the OMG
IDL specification, we provide language bindings for Java and ECMAScript (an
industry-standard scripting language based on JavaScript and JScript). Note: OMG
IDL is used only as a language-independent and implementation-neutral way to
specify interfaces. Various other IDLs could have been used. In general, IDLs are
designed for specific computing environments. The Document Object Model can
be implemented in any computing environment, and does not require the object
binding runtimes generally associated with such IDLs.

What the Document Object Model is

The DOM is a programming API for documents. It closely resembles the
structure of the documents it models. For instance, consider this table, taken from
an HTML document:

 <TABLE>
 <TBODY>
 <TR>
 <TD>Shady Grove</TD>
 <TD>Aeolian</TD>
 </TR>
 <TR>
 <TD>Over the River, Charlie</TD>
 <TD>Dorian</TD>
 </TR>
 </TBODY>
 </TABLE>

The DOM represents this table like this:

DOM representation of the example table

In the DOM, documents have a logical structure which is very much like a
tree; to be more precise, it is like a "forest" or "grove", which can contain more
than one tree. However, the DOM does not specify that documents must be
implemented as a tree or a grove, nor does it specify how the relationships among
objects be implemented. The DOM is a logical model that may be implemented in
any convenient manner. In this specification, we use the term structure model to
describe the tree-like representation of a document; we specifically avoid terms
like "tree" or "grove" in order to avoid implying a particular implementation. One
important property of DOM structure models is structural isomorphism: if any two
Document Object Model implementations are used to create a representation of
the same document, they will create the same structure model, with precisely the
same objects and relationships.

The name "Document Object Model" was chosen because it is an "object
model" in the traditional object oriented design sense: documents are modeled
using objects, and the model encompasses not only the structure of a document,
but also the behavior of a document and the objects of which it is composed. In
other words, the nodes in the above diagram do not represent a data structure, they
represent objects, which have functions and identity. As an object model, the
DOM identifies:

• the interfaces and objects used to represent and manipulate a document
• the semantics of these interfaces and objects - including both behavior and

attributes
• the relationships and collaborations among these interfaces and objects

The structure of SGML documents has traditionally been represented by an
abstract data model, not by an object model. In an abstract data model, the model
is centered around the data. In object oriented programming languages, the data

itself is encapsulated in objects that hide the data, protecting it from direct external
manipulation. The functions associated with these objects determine how the
objects may be manipulated, and they are part of the object model.

The Document Object Model currently consists of two parts, DOM Core
and DOM HTML. The DOM Core represents the functionality used for XML
documents, and also serves as the basis for DOM HTML. A compliant
implementation of the DOM must implement all of the fundamental interfaces in
the Core chapter with the semantics as defined. Further, it must implement at least
one of the HTML DOM and the extended (XML) interfaces with the semantics as
defined.

What the Document Object Model is not

This section is designed to give a more precise understanding of the DOM
by distinguishing it from other systems that may seem to be like it.

• Although the Document Object Model was strongly influenced by
"Dynamic HTML", in Level 1, it does not implement all of "Dynamic
HTML". In particular, events have not yet been defined. Level 1 is
designed to lay a firm foundation for this kind of functionality by providing
a robust, flexible model of the document itself.

• The Document Object Model is not a binary specification. DOM programs
written in the same language will be source code compatible across
platforms, but the DOM does not define any form of binary
interoperability.

• The Document Object Model is not a way of persisting objects to XML or
HTML. Instead of specifying how objects may be represented in XML, the
DOM specifies how XML and HTML documents are represented as
objects, so that they may be used in object oriented programs.

• The Document Object Model is not a set of data structures, it is an object
model that specifies interfaces. Although this document contains diagrams
showing parent/child relationships, these are logical relationships defined
by the programming interfaces, not representations of any particular
internal data structures.

• The Document Object Model does not define "the true inner semantics" of
XML or HTML. The semantics of those languages are defined by W3C
Recommendations for these languages. The DOM is a programming model
designed to respect these semantics. The DOM does not have any
ramifications for the way you write XML and HTML documents; any
document that can be written in these languages can be represented in the
DOM.

• The Document Object Model, despite its name, is not a competitor to the
Component Object Model (COM). COM, like CORBA, is a language
independent way to specify interfaces and objects; the DOM is a set of
interfaces and objects designed for managing HTML and XML documents.
The DOM may be implemented using language-independent systems like
COM or CORBA; it may also be implemented using language-specific
bindings like the Java or ECMAScript bindings specified in this document.

Where the Document Object Model came from

The DOM originated as a specification to allow JavaScript scripts and Java
programs to be portable among Web browsers. "Dynamic HTML" was the
immediate ancestor of the Document Object Model, and it was originally thought
of largely in terms of browsers. However, when the DOM Working Group was
formed at W3C, it was also joined by vendors in other domains, including HTML
or XML editors and document repositories. Several of these vendors had worked
with SGML before XML was developed; as a result, the DOM has been
influenced by SGML Groves and the HyTime standard. Some of these vendors
had also developed their own object models for documents in order to provide an
API for SGML/XML editors or document repositories, and these object models
have also influenced the DOM.

DOM Interfaces and DOM Implementations

The DOM specifies interfaces which may be used to manage XML or
HTML documents. It is important to realize that these interfaces are an abstraction
- much like "abstract base classes" in C++, they are a means of specifying a way to
access and manipulate an application's internal representation of a document.
Interfaces do not imply a particular concrete implementation. Each DOM
application is free to maintain documents in any convenient representation, as long
as the interfaces shown in this specification are supported. Some DOM
implementations will be existing programs that use the DOM interfaces to access
software written long before the DOM specification existed. Therefore, the DOM
is designed to avoid implementation dependencies; in particular,

1. Attributes defined in the IDL do not imply concrete objects which must
have specific data members - in the language bindings, they are translated
to a pair of get()/set() functions, not to a data member. (Read-only functions
have only a get() function in the language bindings).

2. DOM applications may provide additional interfaces and objects not found
in this specification and still be considered DOM compliant.

3. Because we specify interfaces and not the actual objects that are to be
created, the DOM can not know what constructors to call for an
implementation. In general, DOM users call the createXXX() methods on
the Document class to create document structures, and DOM

implementations create their own internal representations of these
structures in their implementations of the createXXX() functions.

HTML DOM Window Object

Window Object

The Window object is the top level object in the JavaScript hierarchy.

The Window object represents a browser window.

A Window object is created automatically with every instance of a <body>
or <frameset> tag.

IE: Internet Explorer, F: Firefox, O: Opera.

Window Object Collections
Collection Description IE F O
frames[] Returns all named frames in the window 4 1 9
Window Object Properties
Property Description IE F O
closed Returns whether or not a window has been closed 4 1 9
defaultStatus Sets or returns the default text in the statusbar of the

window
4 No 9

document See Document object 4 1 9
history See History object 4 1 9
length Sets or returns the number of frames in the window 4 1 9
location See Location object 4 1 9
name Sets or returns the name of the window 4 1 9
opener Returns a reference to the window that created the

window
4 1 9

outerHeight Sets or returns the outer height of a window No 1 No
outerWidth Sets or returns the outer width of a window No 1 No
pageXOffset Sets or returns the X position of the current page in

relation to the upper left corner of a window's
display area

No No No

pageYOffset Sets or returns the Y position of the current page in
relation to the upper left corner of a window's
display area

No No No

parent Returns the parent window 4 1 9
personalbar Sets whether or not the browser's personal bar (or

directories bar) should be visible

scrollbars Sets whether or not the scrollbars should be visible

self Returns a reference to the current window 4 1 9
status Sets the text in the statusbar of a window 4 No 9
statusbar Sets whether or not the browser's statusbar should be

visible

toolbar Sets whether or not the browser's tool bar is visible
or not (can only be set before the window is opened
and you must have UniversalBrowserWrite
privilege)

top Returns the topmost ancestor window 4 1 9
Window Object Methods
Method Description IE F O
alert() Displays an alert box with a message and an OK

button
4 1 9

blur() Removes focus from the current window 4 1 9
clearInterval() Cancels a timeout set with setInterval() 4 1 9
clearTimeout() Cancels a timeout set with setTimeout() 4 1 9
close() Closes the current window 4 1 9
confirm() Displays a dialog box with a message and an OK and

a Cancel button
4 1 9

createPopup() Creates a pop-up window 4 No No
focus() Sets focus to the current window 4 1 9
moveBy() Moves a window relative to its current position 4 1 9
moveTo() Moves a window to the specified position 4 1 9
open() Opens a new browser window 4 1 9
print() Prints the contents of the current window 5 1 9
prompt() Displays a dialog box that prompts the user for input 4 1 9
resizeBy() Resizes a window by the specified pixels 4 1 9
resizeTo() Resizes a window to the specified width and height 4 1.5 9
scrollBy() Scrolls the content by the specified number of pixels 4 1 9
scrollTo() Scrolls the content to the specified coordinates 4 1 9
setInterval() Evaluates an expression at specified intervals 4 1 9
setTimeout() Evaluates an expression after a specified number of

milliseconds
4 1 9

HTML DOM Button Object

Button Object

The Button object represents a push button.
For each instance of a <button> tag in an HTML document, a Button object

is created.

IE: Internet Explorer, F: Firefox, O: Opera, W3C: World Wide Web Consortium
(Internet Standard).
Button Object Properties
Property Description IE F O W3C
accessKey Sets or returns the keyboard key to access a

button
6 1 9 Yes

disabled Sets or returns whether a button should be
disabled

6 1 9 Yes

form Returns a reference to the form that contains the
button

6 1 9 Yes

id Sets or returns the id of a button 6 1 9 Yes
name Sets or returns the name of a button 6 1 9 Yes
tabIndex Sets or returns the tab order for a button 6 1 9 Yes
type Returns the type of form element a button is 6 1 9 Yes
value Sets or returns the text that is displayed on a

button
6 1 9 Yes

Frame Object

The Frame object represents an HTML frame.
For each instance of a <frame> tag in an HTML document, a Frame object

is created.
IE: Internet Explorer, F: Firefox, O: Opera, W3C: World Wide Web

Consortium (Internet Standard).
Frame Object Properties
Property Description IE F O W3C
contentDocument Returns the frame's document as an HTML

object
No 1 9 Yes

frameBorder Sets or returns whether or not to display
borders around a frame

5 1 9 Yes

id Sets or returns the id of a frame 4 1 9 Yes
longDesc Sets or returns a URL to a document

containing a description of the frame
contents

6 1 9 Yes

marginHeight Sets or returns the top and bottom margins of
a frame

5 1 9 Yes

marginWidth Sets or returns the left and right margins of a
frame

5 1 9 Yes

name Sets or returns the name of a frame 5 1 9 Yes
noResize Sets or returns whether or not a frame can be

resized
5 1 9 Yes

scrolling Sets or returns whether or not a frame should
have scrollbars

No 1 No Yes

src Sets or returns the URL of the document that
should be loaded into a frame

5 1 9 Yes

A simple DOM example

The following Java program uses DOM to read the recipe collection and cut
it down to the first recipe:

import java.io.*;
import org.apache.xerces.parsers.DOMParser;
import org.w3c.dom.*;

public class FirstRecipeDOM {

 public static void main(String[] args) {
 try {
 DOMParser p = new DOMParser();
 p.parse(args[0]);
 Document doc = p.getDocument();
 Node n = doc.getDocumentElement().getFirstChild();
 while (n!=null && !n.getNodeName().equals("recipe"))
 n = n.getNextSibling();
 PrintStream out = System.out;
 out.println("<?xml version=\"1.0\"?>");
 out.println("<collection>");
 if (n!=null)
 print(n, out);
 out.println("</collection>");
 } catch (Exception e) {e.printStackTrace();}
 }

 static void print(Node node, PrintStream out) {
 int type = node.getNodeType();
 switch (type) {
 case Node.ELEMENT_NODE:
 out.print("<" + node.getNodeName());
 NamedNodeMap attrs = node.getAttributes();
 int len = attrs.getLength();
 for (int i=0; i<len; i++) {

 Attr attr = (Attr)attrs.item(i);
 out.print(" " + attr.getNodeName() + "=\"" +
 escapeXML(attr.getNodeValue()) + "\"");
 }
 out.print('>');
 NodeList children = node.getChildNodes();
 len = children.getLength();
 for (int i=0; i<len; i++)
 print(children.item(i), out);
 out.print("</" + node.getNodeName() + ">");
 break;
 case Node.ENTITY_REFERENCE_NODE:
 out.print("&" + node.getNodeName() + ";");
 break;
 case Node.CDATA_SECTION_NODE:
 out.print("<![CDATA[" + node.getNodeValue() + "]]>");
 break;
 case Node.TEXT_NODE:
 out.print(escapeXML(node.getNodeValue()));
 break;
 case Node.PROCESSING_INSTRUCTION_NODE:
 out.print("<?" + node.getNodeName());
 String data = node.getNodeValue();
 if (data!=null && data.length()>0)
 out.print(" " + data);
 out.println("?>");
 break;
 }
 }

 static String escapeXML(String s) {
 StringBuffer str = new StringBuffer();
 int len = (s != null) ? s.length() : 0;
 for (int i=0; i<len; i++) {
 char ch = s.charAt(i);
 switch (ch) {
 case '<': str.append("<"); break;
 case '>': str.append(">"); break;
 case '&': str.append("&"); break;
 case '"': str.append("""); break;
 case '\'': str.append("'"); break;
 default: str.append(ch);
 }
 }

 return str.toString();
 }
}

Change text, URL, and target attribute of a link

<html>
<head>
<script type="text/javascript">
function changeLink()
{
document.getElementById('myAnchor').innerHTML="Visit W3Schools";
document.getElementById('myAnchor').href="http://www.w3schools.com";
document.getElementById('myAnchor').target="_blank";
}
</script>
</head>

<body>
Visit Microsoft
<input type="button" onclick="changeLink()" value="Change link">
<p>In this example we change the text and the URL of a hyperlink. We also
change the target attribute.
The target attribute is by default set to "_self", which means that the link will open
in the same window.
By setting the target attribute to "_blank", the link will open in a new
window.</p>
</body>

</html>

3 AJAX
3.1 What is AJAX?

AJAX, short for Asynchronous JavaScript and from XML (JavaScript and
XML is not sync), is a set of tools to allow speed up web applications by cutting a
small data and display only what you need, instead of loading the load the entire
site. AJAX is not a single technology but a combination of a group of technologies
together. The HTML and CSS as display data, DOM model presented the

information, XMLHttpRequest object to exchange data is not synchronized with
the web server, and XML format is primarily for data transmission.

Most stories about the origin of AJAX is beginning to develop the
Microsoft Remote Scripting technology in 1998. However, the method is not of
the content on a web page appear in the IFRAME's Internet Explorer 3 (1996) and
the layer of Netscape 4.0 in 1997. When introduced Internet Explorer 4.0,
Microsoft has used the object model document DOM differences. To 2000,
Netscape completely lose the browser market into the hands of manufacturers
software Bill Gates and the layer is no longer the specialist web development
attention.

Must be a few years later, the new AJAX engaging the interest of the
technology and tools to become innovative user interfaces for web applications.
This term appears only 1 year ago (2 / 2005) in the famous article by Jesse James
Garrett on adaptive Path. Since then, AJAX has become the center of all stories
related to the Web 2.0.

3.2 How does it work?

Web Applications traditional (left) and AJAX applications. (Adaptive Path)

people imagine a computer application will then be stored and run
completely on the web instead of chain located in hard drive. Whatever the
scenario that has not happen due to web applications is limited by the principle
that all actions must be done through HTTP (HyperText Transfer Protocol -
Protocol transmitted through hyperlink) The activities of users on the site will
generate a request to the HTTP server. Servers perform a business process such as
retrieve the data, calculation and check the valid information, modify memory,
then send a complete HTML page to the client. Of techniques, this approach
seems reasonable, but quite inconvenient and time consuming, because the server
is implementing its role, the user will do? Of course waiting.

To overcome the limitations, experts developed referral forms
intermediaries- the process AJAX - between client and server. This is like raising a
middle class for the application to reduce the "travel" of information and reduce
response time. Instead reload (refresh) a whole page, it only load the information

changes, and keep other parts. Instead reload (refresh) a whole page, it only load
the information changes, and keep other parts. Therefore, when a browser supports
AJAX, the user will never see a white window (blank) and the icon of sand - signs
that the server is performed tasks. For example, in a photo website, with traditional
applications, the entire page containing the photo will be open from the beginning
if a change is on page. When applied AJAX, DHTML replace only the title and
just edit, so make the transaction smooth, quick.

Interaction of web applications in traditional (on) and walk in AJAX applications.
(Adaptive Path)

"Any action by the user will send commands to JavaScript AJAX
processor, instead of creating an HTTP request (HTTP request) and to query the
server," Jesse James Garrett stated in the article first defines of this term. "If you
need anything from the server, such as download additional code or get the new
data, will transmit AJAX request to a server is not synchronized, usually using
XML, but not to interrupt the interaction of users with Web applications ".
3.3 AJAX - applications popular

Google Suggest displays the term suggests almost immediately when the
user has not finished typing your keywords. And with Google Maps, people can
track changes, and serial, drag-drop on the map as desktop environment. Google
Suggest and Google Maps are two prominent examples of methods applied the
new web. the search services leading world have invested heavily on the
development of AJAX. Almost every program they introduced last year, from
Orkut, Gmail version to test Google Groups, are all AJAX applications.

Many other companies also got connected this trend sharing site like Flickr
photos (Yahoo does belong) or search Amazon's A9.com. Yahoo plans a few
weeks I will launch the Yahoo Mail Beta 1 using the AJAX world (in limited
testing). Email will be equipped with more features as belonging to Web 2.0 RSS,
see the previous message (preview) ... Microsoft is also implementing the program
Windows Live Mail and Windows Live Messenger support AJAX.

The project found that the AJAX is not a technology too far away that are
present in the real world, since the model is very simple like Google Suggest to
sophisticated and complex as Google Maps.

Biggest challenges when creating AJAX applications is not in phases by the
technical part of it has been long, stable operation and is known. Problem here is
only the "experts design should forget the limits of the web, start thinking wider,
more in-depth about the capabilities of technology and creativity it's own way each
person, Alexei White, Director of production company's eBusiness (U.S.),
comment. "Ajax will gradually lose influence by Microsoft in the market. While
not completely át times, it will feature the alternative for most products as part of
Office."

3.4 THE weakness of AJAX
 AJAX can contribute to creating a new generation for web applications (or
as colr.org backpackit.com). However, it is also a technology "dangerous" when
caused many problems on the user interface. For example, the "Back" (return to
the previous page) are valued in the standard website. Unfortunate, this feature
does not work with Javascript gearing and people can not find the content before
the press Back. Therefore, only a small profile of the data on the changes has been
difficult and can be restored. This is one of the main reasons people do not make
many applications support Javascript.

Besides, people can not save the web address to the Favorite (Bookmark) to
review later. By class applied to mediate the transaction, AJAX applications do
not have a fixed address for each content. Mistakes as AJAX for easy "points lost"
in the human eye does.

The browser supports AJAX is Microsoft Internet Explorer 5.0 and above;
Gecko-based browser such as Mozilla, Firefox, SeaMonkey, Epiphany, Galeon
and Netscape 7.1; browser contains KHTML API 3.2 and above as Konqueror,
Apple Safari ...

- CSS - file type to the floor (Cascading Style Sheets) - is used to describe
how the presentation of documents written in HTML, XHTML, XML,
SVG, XUL ... The specifications of the CSS organization World Wide Web
Consortium (W3C) management.

- DOM - the object model document (Document Object Model) - is an
interface application programming (API). Usually form a DOM tree
structure data and is used to access the HTML documents and XML. DOM

model activities independent of the operating system and based on the
technical programming targeted to describe documents.

- DHTML, or dynamic HTML, a site created by a combination of
components: markup language static HTML, the language the client
commands (eg JavaScript) and language format CSS and DOM. Due to the
rich possibilities, DHTML is used as a tool to build simple games on the
browser.

4 RIA

4.1 Concept of RIA

- Rich Internet applications (RIA s) are web applications that have some of
the characteristics of desktop applications, typically delivered by way of a
proprietary web browser plug-ins or independently via sandboxes or virtual
machines[1]. Examples of RIA frameworks include Curl (programming language),
Adobe Flash/Adobe Flex/AIR, Java/JavaFX, uniPaaS and Microsoft Silverlight.

The term was introduced in the 1990s by vendors like Macromedia who
were addressing limitations at the time in the "richness of the application
interfaces, media and content, and the overall sophistication of the solutions" by
introducing proprietary extensions.

As web standards (such as Ajax and HTML 5) have developed and web
browsers' compliance has improved there is less need for such extensions, and
Javascript compilers with their associated desktop-like widget sets reduce the need
for browser extensions even further.HTML 5 delivers a full-fledged application
platform; "a level playing field where video, sound, images, animations, and full
interactivity with your computer are all standardized".

It is now possible to build RIA-like Web applications that run in all modern
browsers without the need of special run-times or plug-ins. This means that if one
could run a modern Ajax-based Web application outside of a web browser (e.g.
using Mozilla Prism or Fluid) it would essentially be an RIA, though there is some
contention as to whether this is actually the case.

4.2 Examples of RIA frameworks

- Adobe Flex is a software development kit released by Adobe Systems for the
development and deployment of cross-platform rich Internet applications based on

the Adobe Flash platform. Flex applications can be written using Adobe Flex
Builder or by using the freely available Flex compiler from Adobe.

Figure 1. Platform technology by Adobe RIA

Until now, Adobe Systems is the "hand game" the biggest and most mature
in the field of RIA. Macromedia bought over 3 years (in 4 / 2005), Adobe is the
inheritance to go from production to Shockwave Flash, Flex and AIR (original
name is Apollo)

Flash is a technology show is famous for the ability to handle vector
graphics and video, allowing content multimedia interact with users through
actionscript. Flex-based Flash using language report based on XML (MXML)
associated with actionscript, provides isolation between the user interface and
logistics applications clearly than Flash. Flex applications are compiled into the
file. Swf and run the Flash player - runs on any system which supports Flash, can
run on both mobile devices (with Flash Lite) (Figure 1).
- Adobe Integrated Runtime (AIR) is a cross-platformruntime environment
for building rich Internet applications using Adobe Flash, Adobe Flex, HTML, or
Ajax, that can be deployed as a desktop application.

AIR is intended to be a versatile runtime environment, as it allows existing
Flash, Actionscript or HTML and JavaScript code to be used to construct a more
traditional desktop-like program. Adobe positions it as a browser-less runtime for
rich Internet applications that can be deployed onto the desktop, rather than a
fully-fledged application framework. The differences between each deployment
paradigm provides both advantages and disadvantages. For example, a rich
internet application deployed in a browser does not require installation, while one
deployed with AIR requires the application be packaged, digitally signed, and
installed to the user's local file system. However, this provides access to local
storage and file systems, while browser-deployed applications are more limited in
where and how data are accessed and stored. In most cases, rich internet
applications store users' data on their own servers, but the ability to consume and
work with data on a user's local file system allows for greater flexibility.

Adobe AIR 1.1 was released on June 16, 2008, and provides support for building
internationalized applications. Runtime installation dialogs were localized to
Brazilian Portuguese, Chinese (Traditional and Simplified), French, German,
Italian, Japanese, Korean, Russian and Spanish. In addition, version 1.1 includes
support for Microsoft Windows XP Tablet PC Edition and 64-bit editions of
Windows Vista Home Premium, Business, Ultimate, or Enterprise.

Applications Flash / Flex can run on your desktop with the library implementation
AIR. AIR (Adobe Integrated Runtime) technology is deployed to run applications
Flash / Flex and Ajax without the browser, similar to Microsoft's ClickOnce -
technology developed applications based on Windows, but the AIR run on
Windows and Mac (version running on Linux is in the process of testing).

Java is a programming language originally developed by James Gosling at
Sun Microsystems and released in 1995 as a core component of Sun
Microsystems' Java platform. The language derives much of its syntax from C and
C++ but has a simpler object model and fewer low-level facilities. Java
applications are typically compiled to bytecode (class file) that can run on any
Java virtual machine (JVM) regardless of computer architecture.

The original and reference implementation Java compilers, virtual
machines, and class libraries were developed by Sun from 1995. As of May 2007,
in compliance with the specifications of the Java Community Process, Sun made
available most of their Java technologies as free software under the GNU General
Public License. Others have also developed alternative implementations of these
Sun technologies, such as the GNU Compiler for Java and GNU Classpath.
Examples
 Hello world

The traditional Hello world program can be written in Java as:

/*
 * Outputs "Hello, world!" and then exits
 */

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello, world!");
 }
}

A more comprehensive example
// OddEven.java
import javax.swing.JOptionPane;

public class OddEven {
 // "input" is the number that the user gives to the computer

 private int input; // a whole number("int" means integer)

 /*
 * This is the constructor method. It gets called when an object of the OddEven
type
 * is being created.
 */
 public OddEven() {
 //Code not shown
 }

 // This is the main method. It gets called when this class is run through a Java
interpreter.
 public static void main(String[] args) {
 /*
 * This line of code creates a new instance of this class called "number" (also
known as an
 * Object) and initializes it by calling the constructor. The next line of code
calls
 * the "showDialog()" method, which brings up a prompt to ask you for a
number
 */
 OddEven number = new OddEven();
 number.showDialog();
 }

 public void showDialog() {
 /*
 * "try" makes sure nothing goes wrong. If something does,
 * the interpreter skips to "catch" to see what it should do.
 */
 try {
 /*
 * The code below brings up a JOptionPane, which is a dialog box
 * The String returned by the "showInputDialog()" method is converted
into
 * an integer, making the program treat it as a number instead of a word.
 * After that, this method calls a second method, calculate() that will
 * display either "Even" or "Odd."
 */
 input = new Integer(JOptionPane.showInputDialog("Please Enter A
Number"));
 calculate();
 } catch (NumberFormatException e) {

 /*
 * Getting in the catch block means that there was a problem with the
format of
 * the number. Probably some letters were typed in instead of a number.
 */
 System.err.println("ERROR: Invalid input. Please type in a numerical
value.");
 }
 }

 /*
 * When this gets called, it sends a message to the interpreter.
 * The interpreter usually shows it on the command prompt (For Windows
users)
 * or the terminal (For Linux users).(Assuming it's open)
 */
 private void calculate() {
 if (input % 2 == 0) {
 System.out.println("Even");
 } else {
 System.out.println("Odd");
 }
 }
}

JavaFX is a software platform for creating and delivering rich Internet
applications that can run across wide variety of connected devices. The current
release (JavaFX 1.2, June 2009) enables building applications for desktop,
browser and mobile phones. TV set-top boxes, gaming consoles, Blu-ray players
and other platforms are planned.

Figure 2. Overview of JavaFX.

JavaFX (F3 code name) was built based Java technology, consists of 2
parts: JavaFX Script and Java Mobile. JavaFX Script is the language declared not
based on XML to help store the burden to build the user interface of capital
previously required a lot code command Swing. JavaFX Script must be compiled

into Java byte code to run on Java virtual machine (JVM). JavaFX Mobile is the
operating system for mobile devices are designed to deploy RIA applications on
the devices (Figure 2)

Microsoft Silverlight is a programmable web browser plugin that enables
features such as animation, vector graphics and audio-video playback which
characterize rich Internet applications. Version 2.0, released in October 2008,
brought additional interactivity features and support for .NET languages and
development tools. Microsoft made the beta of Silverlight 3.0 available on March
18, 2009. The final version is expected to arrive on July 10, 2009

Figure 3

Silverlight (2.0) may be the child of Windows Presentation Foundation
(WPF), also using XAML (eXxtensible Application Markup Language) - language
report based on XML to define the user interface (including vector graphics,
effects and interactive data interface). The task processing complex is separated
from the defined user interface and can write code with the "managed" (managed
code) use the language. NET or JavaScript, and Python / Ruby (Figure 3).

Silverlight install required additional library browser to implement the
client. Existing Silverlight applications can run with Internet Explorer and Firefox
on Windows, Firefox and Safari on Mac OS X; not support any browsers on Linux
(but has the project open source Moonlight enabled applications Silverlight on
Linux). Support for mobile devices, Microsoft has Silverlight for Mobile to run on
the operating system Nokia S60 and Windows Mobile 6.

Chapter 13
1 Web 3.0

If you think the Web 2.0 is really not perfect, and World Wide Web is still

a cloud filled with information of the image, then that is what the Web 3.0 corrects
the - delete layer clouds that in certain order.

1.1 The breakthrough of new media channels

This is also the hot topic that most science computers now tracking the day,
which is typical Google or Yahoo and the new company set up the depth is Garlik
, Metaweb Technologies, Powerset, ZoomInfo, Radar Networks ... with many
large corporations in the world such as Citigroup, Eli Lilly, Kodak and Oracle

1.2 definition

Web 3.0 is defined as the creation of high-quality content and services
produced by gifted individuals using Web 2.0 technology as an enabling platform.

1.3 Characteristics

Web 3.0 also known to the name of Semantic Web (Web sense) and will be
equipped with features high argued. Said another way, sources of information in
the directory under the new web will be converted into sources of data that
computers can read and estimates. Only in this way, the web will become smarter
in the reception of the work that today we still operate with manual, chosen such
that the nearest restaurant, booking the best flights or buy a CD with the lowest
prices.

The term Semantic Web was born in 2001 by Berners-Lee and two co-
author of the book is Scientific American James Hendler and Ora Lassila. For
Semantic Web can be operated, sources of information online must be read by
devices digital.

Services on the network like Google can do good work to filter information
from many sites, but we still want more when viewing search results. Bersyon new
Berners-Lee's conduct as a string of serial data together with information in a
concentrated form was built before

Inside the structure, they added the system to sense the computer can
understand. For example, if you use Google tools to search for someone in the
Web 3.0, people that will be described with sufficient information plentiful, from
the date of birth, title of work, address home, hobbies to in order must

Users Semantic Web will have the clear connection with the work,
relatives, work history and preferences of each other. Suppose want to arrange a
banquet following a meeting, you will first browse window address book email
and see who can join the conference, then sent invitations to more parties. Then all
the guests home with party together talk about time and place via email regale

In Semantic Web, software assistant will know what will be involved in
arranging the banquet instead of you to send dozens of emails, it will filter chat
object of the conference and on the guest list parties. Even it can also book
through your address book to see who lives where and when party organization is
the appropriate

Once the guest list has been approved, the software assistant will review the
location of the parties, final instructions will be sent to everyone. Even with GPS,
it also helps you know how long it is a guests will have to face delays. Ability to
connect to sources with individual ways tangible and invisible is what makes the
reputation of Web 3.0.

The main differences between Web 1.0, Web 2.0 and Web 3.0.

Web 1.0 - That Geocities & Hotmail era was all about read-only content and static
HTML

websites. People preferred navigating the web through link directories of Yahoo!
and dmoz.

Web 2.0 - This is about user-generated content and the read-write web. People are
consuming as well as contributing information through blogs or sites like Flickr,
YouTube, Digg, etc. The line dividing a consumer and content publisher is
increasingly getting blurred in the Web 2.0 era.

Web 3.0 - This will be about semantic web (or the meaning of data),
personalization (e.g. iGoogle), intelligent search and behavioral advertising among
other things.

2 Metadata

2.1 Definitions

Metadata (meta data, or sometimes metainformation) is "data about other

data", of any sort in any media. An item of metadata may describe an individual
datum, or content item, or a collection of data including multiple content items and
hierarchical levels, for example a database schema. In data processing, metadata
provides information about, or documentation of, other data managed within an

application or environment. This commonly defines the structure or schema of the
primary data. The term should be used with caution as all data is about something,
and is therefore "metadata" in a sense, and vice versa.

For example, metadata would document data about data elements or
attributes, (name, size, data type, etc) and data about records or data structures
(length, fields, columns, etc) and data about data (where it is located, how it is
associated, ownership, etc.). Metadata may include descriptive information about
the context, quality and condition, or characteristics of the data. It may be recorded
with high or low granularity.

The term was introduced intuitively, without a formal definition. Because
of that, today there are various definitions. The most common one is the literal
translation:

Meta is a classical Greek preposition (µετ’ αλλων εταιρων) and prefix
(µεταβασις) conveying the following senses in English, depending upon the case
of the associated noun: among; along with; with; by means of; in the midst of;
after; behind.In epistemology, the word means "about (its own category)"; thus
metadata is "data about the data".

"Data about data are referred to as metadata."

As for most people the difference between data and information is merely a
philosophical one of no relevance in practical use, other definitions are:

• Metadata is information about data.
• Metadata is information about information.
• Metadata contains information about that data or other data

There are more sophisticated definitions, such as:

Metadata is structured, encoded data that describe characteristics of information-
bearing entities to aid in the identification, discovery, assessment, and
management of the described entities."

[Metadata is a set of] optional structured descriptions that are publicly available to
explicitly assist in locating objects."

Fundamentally, then, metadata is "the data that describe the structure and
workings of an organization's use of information, and which describe the systems
it uses to manage that information". To do a model of metadata is to do an
"Enterprise model" of the information technology industry itself.

2.2 Purpose

Metadata provides context for data.

Metadata is used to facilitate the understanding, characteristics, and management
usage of data. The metadata required for effective data management varies with
the type of data and context of use. In a library, where the data is the content of the
titles stocked, metadata about a title would typically include a description of the
content, the author, the publication date and the physical location.

2.3 Examples of metadata

Book

Examples of metadata regarding a book would be the title, author, date of
publication, subject, a unique identifier (such an International Standard Book
Number), its dimensions, number of pages, and the language of the text.

Photograph

Metadata for a photograph would typically include the date and time at
which it was taken and details of the camera settings (such as focal length,
aperture, exposure). Many digital cameras record metadata in exchangeable image
file format (EXIF).

Audio

Audio recordings may also be labelled with metadata. When audio formats
moved from analogue to digital, it became possible to embed this metadata within
the digital content itself.

Metadata can be used to name, describe, catalogue and indicate ownership
or copyright for a digital audio file, and its presence makes it much easier to locate
a specific audio file within a group - through use of a search engine that accesses
the metadata. As different digital audio formats were developed, it was agreed that
a standardized and specific location would be set aside within the digital files
where this information could be stored.

As a result, almost all digital audio formats, including mp3, broadcast wav
and AIFF files, have similar standardized locations that can be populated with
metadata. This "information about information" has become one of the great
advantages of working with digital audio files - since the catalogue and descriptive
information that makes up the metadata is built right into the audio file itself,
ready for easy access and use.

Web page

The HTML used to mark-up web pages allows for the inclusion of a variety
of types of meta data, from simple descriptive text, dates and keywords to highly-
granular information such as the Dublin Core and e-GMS standards. Pages can be
geotagged with coordinates. Metadata may be included in the page's header or in a
separate file. Microformats allow on-page data to be marked up as meta data. The
Hypertext Transfer Protocol used to link web pages also includes metadata.

2.4 Use

Metadata has many different applications; this section lists some of the
most common.

Metadata is used to speed up and enrich searching for resources. In general,
search queries using metadata can save users from performing more complex filter
operations manually. It is now common for web browsers (with the notable
exception of Mozilla Firefox), P2P applications and media management software
to automatically download and locally cache metadata, to improve the speed at
which files can be accessed and searched

Metadata may also be associated to files manually. This is often the case
with documents which are scanned into a document storage repository such as
FileNet or Documentum. Once the documents have been converted into an
electronic format a user brings the image up in a viewer application, manually
reads the document and keys values into an online application to be stored in a
metadata repository.Metadata provide additional information to users of the data it
describes.This information may be descriptiveor algorithmic

Metadata helps to bridge the semantic gap. By telling a computer how data
items are related and how these relations can be evaluated automatically, it
becomes possible to process even more complex filter and search operations

Certain metadata is designed to optimize lossy compression.

Some metadata is intended to enable variable content presentation..

Other descriptive metadata can be used to automate workflows

Metadata is becoming an increasingly important part of electronic
discovery. [2] Application and file system metadata derived from electronic
documents and files can be important evidence

Metadata has become important on the World Wide Web because of the
need to find useful information from the mass of information available. Manually-
created metadata adds value because it ensures consistency. If a web page about a
certain topic contains a word or phrase, then all web pages about that topic should
contain that same word or phrase. Metadata also ensures variety, so that if a topic
goes by two names each will be used

2.5 Types of metadata

Metadata can be classified by:

• Content. Metadata can either describe the resource itself (for example,
name and size of a file) or the content of the resource (for example, "This
video shows a boy playing football").

• Mutability. With respect to the whole resource, metadata can be either
immutable (for example, the "Title" of a video does not change as the video
itself is being played) or mutable (the "Scene description" does change).

• Logical function. There are three layers of logical function: at the bottom
the subsymbolic layer that contains the raw data itself, then the symbolic
layer with metadata describing the raw data, and on the top the logical layer
containing metadata that allows logical reasoning using the symbolic layer

types of metadata are;

1. descriptive metadata.
2. administrative metadata.
3. structural metadata.
4. technical metadata.
5. use metadata

To successfully develop and use metadata, several important issues should be
treated with care:

Metadata risks

Microsoft Office files include metadata beyond their printable content, such
as the original author's name, the creation date of the document, and the amount of
time spent editing it. Unintentional disclosure can be awkward or even, in
professional practices requiring confidentiality, raise malpractice concerns. Some
of Microsoft Office document's metadata can be seen by clicking File then
Properties from the program's menu. Other metadata is not visible except through
external analysis of a file, such as is done in forensics

Metadata lifecycle

Even in the early phases of planning and designing it is necessary to keep
track of all metadata created. It is not economical to start attaching metadata only
after the production process has been completed. For example, if metadata created
by a digital camera at recording time is not stored immediately, it may have to be
restored afterwards manually with great effort. Therefore, it is necessary for
different groups of resource producers to cooperate using compatible methods and
standards.

• Manipulation. Metadata must adapt if the resource it describes changes. It
should be merged when two resources are merged. These operations are
seldom performed by today's software; for example, image editing
programs usually do not keep track of the Exif metadata created by digital
cameras.

• Destruction. It can be useful to keep metadata even after the resource it
describes has been destroyed, for example in change histories within a text
document or to archive file deletions due to digital rights management.
None of today's metadata standards consider this phase.

Storage

Metadata can be stored either internally, in the same file as the data, or
externally, in a separate file. Metadata that are embedded with content is called
embedded metadata. A data repository typically stores the metadata detached from
the data

3 RDF

3.1 Introduction to RDF

The Resource Description Framework (RDF) is a W3C standard for
describing Web resources, such as the title, author, modification date, content, and
copyright information of a Web page.

3.1.1 Definitions

• RDF stands for Resource Description Framework
• RDF is a framework for describing resources on the web
• RDF is designed to be read and understood by computers
• RDF is not designed for being displayed to people
• RDF is written in XML
• RDF is a part of the W3C's Semantic Web Activity
• RDF is a W3C Recommendation

3.1.2 RDF - Examples of Use

• Describing properties for shopping items, such as price and availability
• Describing time schedules for web events
• Describing information about web pages (content, author, created and

modified date)
• Describing content and rating for web pictures
• Describing content for search engines
• Describing electronic libraries

RDF is Designed to be Read by Computers

RDF was designed to provide a common way to describe information so it
can be read and understood by computer applications.

RDF descriptions are not designed to be displayed on the web.

RDF and "The Semantic Web"

The RDF language is a part of the W3C's Semantic Web Activity. W3C's
"Semantic Web Vision" is a future where:

• Web information has exact meaning
• Web information can be understood and processed by computers
• Computers can integrate information from the web

RDF Rules

RDF uses Web identifiers (URIs) to identify resources.

RDF describes resources with properties and property values.

Explanation of Resource, Property, and Property value:

• A Resource is anything that can have a URI, such as
"http://www.w3schools.com/rdf"

• A Property is a Resource that has a name, such as "author" or "homepage"
• A Property value is the value of a Property, such as "Jan Egil Refsnes" or

"http://www.w3schools.com" (note that a property value can be another
resource)

The following RDF document could describe the resource
"http://www.w3schools.com/rdf":

<?xml version="1.0"?>

<RDF>
 <Description about="http://www.w3schools.com/rdf">
 <author>Jan Egil Refsnes</author>
 <homepage>http://www.w3schools.com</homepage>
 </Description>
</RDF>

RDF Statements

The combination of a Resource, a Property, and a Property value forms a
Statement (known as the subject, predicate and object of a Statement).

Let's look at some example statements to get a better understanding:

Statement: "The author of http://www.w3schools.com/rdf is Jan Egil Refsnes".

• The subject of the statement above is: http://www.w3schools.com/rdf
• The predicate is: author
• The object is: Jan Egil Refsnes

Statement: "The homepage of http://www.w3schools.com/rdf is
http://www.w3schools.com".

• The subject of the statement above is: http://www.w3schools.com/rdf
• The predicate is: homepage
• The object is: http://www.w3schools.com

 RDF Example

Here are two records from a CD-list:

Title Artist Country Company Price Year
Empire Burlesque Bob Dylan USA Columbia 10.90 1985
Hide your heart Bonnie Tyler UK CBS Records 9.90 1988

Below is a few lines from an RDF document:

<?xml version="1.0"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:cd="http://www.recshop.fake/cd#">

<rdf:Description
rdf:about="http://www.recshop.fake/cd/Empire Burlesque">
 <cd:artist>Bob Dylan</cd:artist>
 <cd:country>USA</cd:country>
 <cd:company>Columbia</cd:company>
 <cd:price>10.90</cd:price>
 <cd:year>1985</cd:year>
</rdf:Description>

<rdf:Description
rdf:about="http://www.recshop.fake/cd/Hide your heart">
 <cd:artist>Bonnie Tyler</cd:artist>
 <cd:country>UK</cd:country>
 <cd:company>CBS Records</cd:company>
 <cd:price>9.90</cd:price>
 <cd:year>1988</cd:year>
</rdf:Description>
.
.
.
</rdf:RDF>

The first line of the RDF document is the XML declaration. The XML
declaration is followed by the root element of RDF documents: <rdf:RDF> .

The xmlns:rdf namespace, specifies that elements with the rdf prefix are
from the namespace "http://www.w3.org/1999/02/22-rdf-syntax-ns#".

The xmlns:cd namespace, specifies that elements with the cd prefix are
from the namespace "http://www.recshop.fake/cd#".

The <rdf:Description> element contains the description of the resource
identified by the rdf:about attribute.

The elements: <cd:artist>, <cd:country>, <cd:company>, etc. are properties of
the resource.

RDF Main Elements
The <rdf:RDF> Element

<rdf:RDF> is the root element of an RDF document. It defines the XML
document to be an RDF document. It also contains a reference to the RDF
namespace:

<?xml version="1.0"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 ...Description goes here...
</rdf:RDF>
The <rdf:Description> Element

The <rdf:Description> element identifies a resource with the about
attribute.

The <rdf:Description> element contains elements that describe the
resource:

<?xml version="1.0"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:cd="http://www.recshop.fake/cd#">

<rdf:Description
rdf:about="http://www.recshop.fake/cd/Empire Burlesque">
 <cd:artist>Bob Dylan</cd:artist>
 <cd:country>USA</cd:country>
 <cd:company>Columbia</cd:company>
 <cd:price>10.90</cd:price>
 <cd:year>1985</cd:year>
</rdf:Description>

</rdf:RDF>

The elements, artist, country, company, price, and year, are defined in the
http://www.recshop.fake/cd# namespace. This namespace is outside RDF (and not
a part of RDF). RDF defines only the framework. The elements, artist, country,
company, price, and year, must be defined by someone else (company,
organization, person, etc).
Properties as Attributes

The property elements can also be defined as attributes (instead of
elements):
<?xml version="1.0"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:cd="http://www.recshop.fake/cd#">

<rdf:Description
rdf:about="http://www.recshop.fake/cd/Empire Burlesque"
cd:artist="Bob Dylan" cd:country="USA"
cd:company="Columbia" cd:price="10.90"
cd:year="1985" />

</rdf:RDF>
Properties as Resources

The property elements can also be defined as resources:

<?xml version="1.0"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:cd="http://www.recshop.fake/cd#">

<rdf:Description
rdf:about="http://www.recshop.fake/cd/Empire Burlesque">
 <cd:artist rdf:resource="http://www.recshop.fake/cd/dylan" />
 ...
 ...
</rdf:Description>

</rdf:RDF>

In the example above, the property artist does not have a value, but a
reference to a resource containing information about the artist.

RDF Container Elements

RDF containers are used to describe group of things.

The following RDF elements are used to describe groups: <Bag>, <Seq>, and
<Alt>.

The <rdf:Bag> Element

The <rdf:Bag> element is used to describe a list of values that does not has to be
in a special order.

The <rdf:Bag> element may contain duplicate values.

Example
<?xml version="1.0"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:cd="http://www.recshop.fake/cd#">

<rdf:Description
rdf:about="http://www.recshop.fake/cd/Beatles">
 <cd:artist>
 <rdf:Bag>
 <rdf:li>John</rdf:li>
 <rdf:li>Paul</rdf:li>
 <rdf:li>George</rdf:li>
 <rdf:li>Ringo</rdf:li>
 </rdf:Bag>
 </cd:artist>
</rdf:Description>

</rdf:RDF>

The <rdf:Seq> Element

The <rdf:Seq> element is used to describe an ordered list of values (For
example, in alphabetical order).

The <rdf:Seq> element may contain duplicate values.

Example
<?xml version="1.0"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:cd="http://www.recshop.fake/cd#">

<rdf:Description
rdf:about="http://www.recshop.fake/cd/Beatles">
 <cd:artist>
 <rdf:Seq>
 <rdf:li>George</rdf:li>
 <rdf:li>John</rdf:li>
 <rdf:li>Paul</rdf:li>
 <rdf:li>Ringo</rdf:li>
 </rdf:Seq>
 </cd:artist>
</rdf:Description>

</rdf:RDF>

The <rdf:Alt> Element

The <rdf:Alt> element is used to describe a list of alternative values (the
user can select only one of the values).

Example
<?xml version="1.0"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:cd="http://www.recshop.fake/cd#">

<rdf:Description
rdf:about="http://www.recshop.fake/cd/Beatles">
 <cd:format>
 <rdf:Alt>
 <rdf:li>CD</rdf:li>
 <rdf:li>Record</rdf:li>
 <rdf:li>Tape</rdf:li>
 </rdf:Alt>
 </cd:format>
</rdf:Description>

</rdf:RDF>
RDF Terms

In the examples above we have talked about "list of values" when
describing the container elements. In RDF these "list of values" are called
members.

So, we have the following:

• A container is a resource that contains things
• The contained things are called members (not list of values)

RDF Collections
RDF collections describe groups that can contain ONLY the specified

members.
The rdf:parseType="Collection" Attribute

As seen in the previous chapter, a container says that the containing
resources are members - it does not say that other members are not allowed.

RDF collections are used to describe groups that can contains ONLY the
specified members.

A collection is described by the attribute rdf:parseType="Collection".

Example
<?xml version="1.0"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:cd="http://recshop.fake/cd#">

<rdf:Description
rdf:about="http://recshop.fake/cd/Beatles">
 <cd:artist rdf:parseType="Collection">
 <rdf:Description rdf:about="http://recshop.fake/cd/Beatles/George"/>
 <rdf:Description rdf:about="http://recshop.fake/cd/Beatles/John"/>
 <rdf:Description rdf:about="http://recshop.fake/cd/Beatles/Paul"/>
 <rdf:Description rdf:about="http://recshop.fake/cd/Beatles/Ringo"/>
 </cd:artist>
</rdf:Description>

</rdf:RDF>

RDF Schema (RDFS)

RDF Schema (RDFS) is an extension to RDF.

RDF Schema and Application Classes

RDF describes resources with classes, properties, and values.

In addition, RDF also need a way to define application-specific classes and
properties. Application-specific classes and properties must be defined using
extensions to RDF.

One such extension is RDF Schema.

RDF Schema (RDFS)

RDF Schema does not provide actual application-specific classes and
properties.

Instead RDF Schema provides the framework to describe application-
specific classes and properties.

Classes in RDF Schema is much like classes in object oriented
programming languages. This allows resources to be defined as instances of
classes, and subclasses of classes.

RDFS Example

The following example demonstrates some of the RDFS facilities:

<?xml version="1.0"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xml:base="http://www.animals.fake/animals#">

<rdf:Description rdf:ID="animal">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>

</rdf:Description>

<rdf:Description rdf:ID="horse">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:subClassOf rdf:resource="#animal"/>
</rdf:Description>

</rdf:RDF>

In the example above, the resource "horse" is a subclass of the class "animal".

Example Abbreviated

Since an RDFS class is an RDF resource we can abbreviate the example
above by using rdfs:Class instead of rdf:Description, and drop the rdf:type
information:

<?xml version="1.0"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xml:base="http://www.animals.fake/animals#">

<rdfs:Class rdf:ID="animal" />

<rdfs:Class rdf:ID="horse">
 <rdfs:subClassOf rdf:resource="#animal"/>
</rdfs:Class>

</rdf:RDF>

RDF Dublin Core Metadata Initiative

The Dublin Core Metadata Initiative (DCMI) has created some predefined
properties for describing documents.

The first Dublin Core properties were defined at the Metadata Workshop
in Dublin, Ohio in 1995 and is currently maintained by the Dublin Core Metadata
Initiative

Property Definition

Contributor
An entity responsible for making contributions to the content of the
resource

Coverage The extent or scope of the content of the resource
Creator An entity primarily responsible for making the content of the resource
Format The physical or digital manifestation of the resource
Date A date of an event in the lifecycle of the resource
Description An account of the content of the resource
Identifier An unambiguous reference to the resource within a given context
Language A language of the intellectual content of the resource
Publisher An entity responsible for making the resource available
Relation A reference to a related resource
Rights Information about rights held in and over the resource
Source A Reference to a resource from which the present resource is derived
Subject A topic of the content of the resource
Title A name given to the resource
Type The nature or genre of the content of the resource

A quick look at the table above indicates that RDF is ideal for representing
Dublin Core information.

RDF Example

The following example demonstrates the use of some of the Dublin Core
properties in an RDF document:

<?xml version="1.0"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc= "http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about="http://www.w3schools.com">
 <dc:description>W3Schools - Free tutorials</dc:description>
 <dc:publisher>Refsnes Data as</dc:publisher>
 <dc:date>2008-09-01</dc:date>
 <dc:type>Web Development</dc:type>
 <dc:format>text/html</dc:format>
 <dc:language>en</dc:language>
</rdf:Description>

</rdf:RDF>

4. SPARQL Query Language for RDF

4.1 Introduction

 RDF is a directed, labeled graph data format for representing information in
the Web.

 RDF is often used to represent, among other things, personal information,
social networks, metadata about digital artifacts, as well as to provide a means of
integration over disparate sources of information. This specification defines the
syntax and semantics of the SPARQL query language for RDF.

 The SPARQL query language for RDF is designed to meet the use cases and
requirements identified by the RDF Data Access Working Group in RDF Data
Access Use Cases and Requirements[UCNR].

The SPARQL query language is closely related to the following specifications:

• The SPARQL Protocol for RDF [SPROT] specification defines the remote
protocol for issuing SPARQL queries and receiving the results.

• The SPARQL Query Results XML Format [RESULTS] specification
defines an XML document format for representing the results of SPARQL
SELECT and ASK queries.

4.2 SPARQL Syntax
4.2 .1 RDF Term Syntax

4.2.1. Syntax for IRIs

 The IRIref production designates the set of IRIs [RFC3987]; IRIs are a
generalization of URIs [RFC3986] and are fully compatible with URIs and URLs.
The PrefixedName production designates a prefixed name. The mapping from a
prefixed name to an IRI is described below. IRI references (relative or absolute
IRIs) are designated by the IRI_REF production, where the '<' and '>' delimiters do
not form part of the IRI reference. Relative IRIs match the irelative-ref reference
in section 2.2 ABNF for IRI References and IRIs in [RFC3987] and are resolved
to IRIs as described below.

Grammar rules:
[67] IRIref ::= IRI_REF | PrefixedName
[68] PrefixedName ::= PNAME_LN | PNAME_NS
[69] BlankNode ::= BLANK_NODE_LABEL | ANON

[70] IRI_REF ::= '<' ([^<>"{}|^`\]-[#x00-#x20])* '>'
[71] PNAME_NS ::= PN_PREFIX? ':'
[72] PNAME_LN ::= PNAME_NS PN_LOCAL

 The set of RDF terms defined in RDF Concepts and Abstract Syntax
includes RDF URI references while SPARQL terms include IRIs. RDF URI
references containing "<", ">", '" ' (double quote), space, "{ ", "} ", "| ", "\ ", "^ ",
and "̀ " are not IRIs. The behavior of a SPARQL query against RDF statements
composed of such RDF URI references is not defined.

Prefixed names

 The PREFIX keyword associates a prefix label with an IRI. A prefixed name
is a prefix label and a local part, separated by a colon ": ". A prefixed name is
mapped to an IRI by concatenating the IRI associated with the prefix and the local
part. The prefix label or the local part may be empty. Note that SPARQL local
names allow leading digits while XML local names do not.

Relative IRIs

 Relative IRIs are combined with base IRIs as per Uniform Resource
Identifier (URI): Generic Syntax [RFC3986] using only the basic algorithm in
Section 5.2 . Neither Syntax-Based Normalization nor Scheme-Based
Normalization (described in sections 6.2.2 and 6.2.3 of RFC3986) are performed.
Characters additionally allowed in IRI references are treated in the same way that
unreserved characters are treated in URI references, per section 6.5 of
Internationalized Resource Identifiers (IRIs) [RFC3987].

 The BASE keyword defines the Base IRI used to resolve relative IRIs per
RFC3986 section 5.1.1, "Base URI Embedded in Content". Section 5.1.2, "Base
URI from the Encapsulating Entity" defines how the Base IRI may come from an
encapsulating document, such as a SOAP envelope with an xml:base directive or a
mime multipart document with a Content-Location header. The "Retrieval URI"
identified in 5.1.3, Base "URI from the Retrieval URI", is the URL from which a
particular SPARQL query was retrieved. If none of the above specifies the Base
URI, the default Base URI (section 5.1.4, "Default Base URI") is used.

The following fragments are some of the different ways to write the same IRI:

<http://example.org/book/book1>
BASE <http://example.org/book/>
<book1>
PREFIX book: <http://example.org/book/>
book:book1

4.2..2 Syntax for Literals

 The general syntax for literals is a string (enclosed in either double quotes,
"..." , or single quotes, '...'), with either an optional language tag
(introduced by @) or an optional datatype IRI or prefixed name (introduced by
^^).

 As a convenience, integers can be written directly (without quotation marks
and an explicit datatype IRI) and are interpreted as typed literals of datatype
xsd:integer ; decimal numbers for which there is '.' in the number but no
exponent are interpreted as xsd:decimal ; and numbers with exponents are
interpreted as xsd:double . Values of type xsd:boolean can also be written
as true or false .

 To facilitate writing literal values which themselves contain quotation marks
or which are long and contain newline characters, SPARQL provides an additional
quoting construct in which literals are enclosed in three single- or double-
quotation marks.

Examples of literal syntax in SPARQL include:

• "chat"
• 'chat'@fr with language tag "fr"
• "xyz"^^<http://example.org/ns/userDatatype>
• "abc"^^appNS:appDataType
• '''The librarian said, "Perhaps you would enjoy

'War and Peace'."'''
• 1, which is the same as "1"^^xsd:integer
• 1.3 , which is the same as "1.3"^^xsd:decimal
• 1.300 , which is the same as "1.300"^^xsd:decimal
• 1.0e6 , which is the same as "1.0e6"^^xsd:double
• true , which is the same as "true"^^xsd:boolean
• false , which is the same as "false"^^xsd:boolean

Grammar rules:

[60] RDFLiteral ::=

String (LANGTAG | ('^^' IRIref))?

[61] NumericLiteral ::=

NumericLiteralUnsigned |
NumericLiteralPositive |
NumericLiteralNegative

[62]
NumericLiteralUn
signed

 ::=

INTEGER | DECIMAL | DOUBLE

[63]
NumericLiteralPo
sitive

 ::=

INTEGER_POSITIVE |
DECIMAL_POSITIVE |
DOUBLE_POSITIVE

[64]
NumericLiteralNe
gative

 ::=

INTEGER_NEGATIVE |
DECIMAL_NEGATIVE |
DOUBLE_NEGATIVE

[65] BooleanLitera ::=

'true' | 'false'

[66] String ::=

STRING_LITERAL1 | STRING_LITERAL2 |
STRING_LITERAL_LONG1 |
STRING_LITERAL_LONG2

[76] LANGTAG ::=

'@' [a-zA-Z]+ ('-' [a-zA-Z0-9]+)*

[77] INTEGER ::=

[0-9]+

[78] DECIMAL ::=

[0-9]+ '.' [0-9]* | '.' [0-9]+

[79] DOUBLE ::=

[0-9]+ '.' [0-9]* EXPONENT |
'.' ([0-9])+ EXPONENT |
([0-9])+ EXPONENT

[80] INTEGER_POSITIVE ::=

'+' INTEGER

[81] DECIMAL_POSITIVE ::=

'+' DECIMAL

[82] DOUBLE_POSITIVE ::=

'+' DOUBLE

[83] INTEGER_NEGATIVE ::=

'-' INTEGER

[84] DECIMAL_NEGATIVE ::=

'-' DECIMAL

[85] DOUBLE_NEGATIVE ::=

'-' DOUBLE

[86] EXPONENT ::=

[eE] [+-]? [0-9]+

[87] STRING_LITERAL1 ::=

"'" (([^#x27#x5C#xA#xD]) | ECHAR)* "'"

[88] STRING_LITERAL2 ::=

'"' (([^#x22#x5C#xA#xD]) | ECHAR)* '"'

Tokens matching the productions INTEGER, DECIMAL, DOUBLE and

BooleanLiteral are equivalent to a typed literal with the lexical value of the token
and the corresponding datatype (xsd:integer , xsd:decimal ,
xsd:double , xsd:boolean).

4.2..3 Syntax for Query Variables

 Query variables in SPARQL queries have global scope; use of a given
variable name anywhere in a query identifies the same variable. Variables are
prefixed by either "?" or "$"; the "?" or "$" is not part of the variable name. In a
query, $abc and ?abc identify the same variable. The possible names for
variables are given in the SPARQL grammar.

Grammar rules:
[44] Var ::= VAR1 | VAR2
[74] VAR1 ::= '?' VARNAME
[75] VAR2 ::= '$' VARNAME

[97] VARNAME ::=
(PN_CHARS_U | [0-9]) (PN_CHARS_U | [0- 9] | #x00B7 |
[#x0300-#x036F] | [#x203F-#x2040])*

4.2.4 Syntax for Blank Nodes

 Blank nodes in graph patterns act as non-distinguished variables, not as
references to specific blank nodes in the data being queried.

 Blank nodes are indicated by either the label form, such as "_:abc ", or
the abbreviated form "[] ". A blank node that is used in only one place in the
query syntax can be indicated with [] . A unique blank node will be used to form
the triple pattern. Blank node labels are written as "_:abc " for a blank node with
label "abc ". The same blank node label cannot be used in two different basic
graph patterns in the same query.

 The [:p :v] construct can be used in triple patterns. It creates a blank
node label which is used as the subject of all contained predicate-object pairs. The
created blank node can also be used in further triple patterns in the subject and
object positions.

The following two forms

[:p "v"] .
[] :p "v" .

allocate a unique blank node label (here "b57 ") and are equivalent to writing:

_:b57 :p "v" .

This allocated blank node label can be used as the subject or object of further
triple patterns. For example, as a subject:

[:p "v"] :q "w" .

 which is equivalent to the two triples:

_:b57 :p "v" .
_:b57 :q "w" .

and as an object:

:x :q [:p "v"] .

 which is equivalent to the two triples:

:x :q _:b57 .
_:b57 :p "v" .

 Abbreviated blank node syntax can be combined with other abbreviations for
common subjects and common predicates.

 [foaf:name ?name ;
 foaf:mbox <mailto:alice@example.org>]

 This is the same as writing the following basic graph pattern for some
uniquely allocated blank node label, "b18 ":

 _:b18 foaf:name ?name .
 _:b18 foaf:mbox <mailto:alice@example.org> .
Grammar rules:
[39] BlankNodePropertyList ::= '['PropertyListNotEmpty ']'
[69] BlankNode ::= BLANK_NODE_LABEL | ANON
[73] BLANK_NODE_LABEL ::= '_:' PN_LOCAL
[94] ANON ::= '[' WS* ']'

4.2.5 Syntax for Triple Patterns

Triple Patterns are written as a whitespace-separated list of a subject, predicate
and object; there are abbreviated ways of writing some common triple pattern
constructs.

The following examples express the same query:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?title
WHERE { <http://example.org/book/book1> dc:title ?title }
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX : <http://example.org/book/>

SELECT $title
WHERE { :book1 dc:title $title }
BASE <http://example.org/book/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT $title
WHERE { <book1> dc:title ?title }
Grammar rules:

[32] TriplesSameSubject ::=
VarOrTerm PropertyListNotEmpty |
TriplesNode PropertyList

[33] PropertyListNotEmpty ::=
Verb ObjectList (';' (Verb ObjectList)?
)*

[34] PropertyList ::= PropertyListNotEmpty?

[35] ObjectList ::= Object(',' Object)*

[37] Verb ::= VarOrIRIref | 'a'

4.2.6 Predicate-Object Lists

 Triple patterns with a common subject can be written so that the subject is
only written once and is used for more than one triple pattern by employing the
"; " notation.

 ?x foaf:name ?name ;
 foaf:mbox ?mbox .

 This is the same as writing the triple patterns:

 ?x foaf:name ?name .
 ?x foaf:mbox ?mbox .

4.2.7 Object Lists
 If triple patterns share both subject and predicate, the objects may be
separated by ",".
 ?x foaf:nick "Alice" , "Alice_" .
is the same as writing the triple patterns:
 ?x foaf:nick "Alice" .
 ?x foaf:nick "Alice_" .

Object lists can be combined with predicate-object lists:
 ?x foaf:name ?name ; foaf:nick "Alice" , "Alice_" .
is equivalent to:
 ?x foaf:name ?name .
 ?x foaf:nick "Alice" .
 ?x foaf:nick "Alice_" .

4.2.8 RDF Collections
 RDF collections can be written in triple patterns using the syntax
"(element1 element2 ...)". The form "()" is an alternative for the IRI
http://www.w3.org/1999/02/22-rdf-syntax-ns#nil. When used with collection
elements, such as (1 ?x 3 4), triple patterns with blank nodes are allocated for the
collection. The blank node at the head of the collection can be used as a subject or
object in other triple patterns. The blank nodes allocated by the collection syntax
do not occur elsewhere in the query.
(1 ?x 3 4) :p "w" .
is syntactic sugar for (noting that b0, b1, b2 and b3 do not occur anywhere else in
the query):
 _:b0 rdf:first 1 ;
 rdf:rest _:b1 .
 _:b1 rdf:first ?x ;
 rdf:rest _:b2 .
 _:b2 rdf:first 3 ;
 rdf:rest _:b3 .
 _:b3 rdf:first 4 ;
 rdf:rest rdf:nil .
 _:b0 :p "w" .
 RDF collections can be nested and can involve other syntactic forms:
(1 [:p :q] (2)) .
is syntactic sugar for:
 _:b0 rdf:first 1 ;
 rdf:rest _:b1 .
 _:b1 rdf:first _:b2 .
 _:b2 :p :q .
 _:b1 rdf:rest _:b3 .
 _:b3 rdf:first _:b4 .
 _:b4 rdf:first 2 ;
 rdf:rest rdf:nil .
 _:b3 rdf:rest rdf:nil .
Grammar rules:
[40] Collection ::= '(' GraphNode+ ')'
[92] NIL ::= '(' WS* ')'

4.2.9 rdf:type

 The keyword "a" can be used as a predicate in a triple pattern and is an
alternative for the IRI http://www.w3.org/1999/02/22-rdf-syntax-ns#type. This
keyword is case-sensitive.
 ?x a :Class1 .
 [a :appClass] :p "v" .
is syntactic sugar for:
 ?x rdf:type :Class1 .
 _:b0 rdf:type :appClass .
 _:b0 :p "v" .

5 OWL Web Ontology Language

5.1. Introduction

 The OWL Web Ontology Language is designed for use by applications that
need to process the content of information instead of just presenting information to
humans. OWL facilitates greater machine interpretability of Web content than that
supported by XML, RDF, and RDF Schema (RDF-S) by providing additional
vocabulary along with a formal semantics. OWL has three increasingly-expressive
sublanguages: OWL Lite, OWL DL, and OWL Full.

 OWL is intended to be used when the information contained in documents
needs to be processed by applications, as opposed to situations where the content
only needs to be presented to humans. OWL can be used to explicitly represent the
meaning of terms in vocabularies and the relationships between those terms. This
representation of terms and their interrelationships is called an ontology. OWL has
more facilities for expressing meaning and semantics than XML, RDF, and RDF-
S, and thus OWL goes beyond these languages in its ability to represent machine
interpretable content on the Web. OWL is a revision of the DAML+OIL web
ontology language incorporating lessons learned from the design and application
of DAML+OIL.

 The Semantic Web is a vision for the future of the Web in which information
is given explicit meaning, making it easier for machines to automatically process
and integrate information available on the Web. The Semantic Web will build on
XML's ability to define customized tagging schemes and RDF's flexible approach

to representing data. The first level above RDF required for the Semantic Web is
an ontology language what can formally describe the meaning of terminology used
in Web documents. If machines are expected to perform useful reasoning tasks on
these documents, the language must go beyond the basic semantics of RDF
Schema. The OWL Use Cases and Requirements Document provides more details
on ontologies, motivates the need for a Web Ontology Language in terms of six
use cases, and formulates design goals, requirements and objectives for OWL.

 OWL has been designed to meet this need for a Web Ontology Language.
OWL is part of the growing stack of W3C recommendations related to the
Semantic Web.

 OWL adds more vocabulary for describing properties and classes: among
others, relations between classes (e.g. disjointness), cardinality (e.g. "exactly
one"), equality, richer typing of properties, characteristics of properties (e.g.
symmetry), and enumerated classes.

5.2 The three sublanguages of OWL

 OWL provides three increasingly expressive sublanguages designed for use
by specific communities of implementers and users

-OWL Lite

 supports those users primarily needing a classification hierarchy and simple
constraints. For example, while it supports cardinality constraints, it only permits
cardinality values of 0 or 1. It should be simpler to provide tool support for OWL
Lite than its more expressive relatives, and OWL Lite provides a quick migration
path for thesauri and other taxonomies. Owl Lite also has a lower formal
complexity than OWL DL, see the section on OWL Lite in the OWL Reference
for further details.

-OWL DL

 supports those users who want the maximum expressiveness while retaining
computational completeness (all conclusions are guaranteed to be computable) and
decidability (all computations will finish in finite time). OWL DL includes all
OWL language constructs, but they can be used only under certain restrictions (for
example, while a class may be a subclass of many classes, a class cannot be an
instance of another class). OWL DL is so named due to its correspondence with
description logics, a field of research that has studied the logics that form the

formal foundation of OWL.

-OWL Full

 is meant for users who want maximum expressiveness and the syntactic
freedom of RDF with no computational guarantees. For example, in OWL Full a
class can be treated simultaneously as a collection of individuals and as an
individual in its own right. OWL Full allows an ontology to augment the meaning
of the pre-defined (RDF or OWL) vocabulary. It is unlikely that any reasoning
software will be able to support complete reasoning for every feature of OWL
Full.

Each of these sublanguages is an extension of its simpler predecessor, both
in what can be legally expressed and in what can be validly concluded. The
following set of relations hold. Their inverses do not.

1. Every legal OWL Lite ontology is a legal OWL DL ontology.
2. Every legal OWL DL ontology is a legal OWL Full ontology.
3. Every valid OWL Lite conclusion is a valid OWL DL conclusion.
4. Every valid OWL DL conclusion is a valid OWL Full conclusion.

 Ontology developers adopting OWL should consider which sublanguage
best suits their needs. The choice between OWL Lite and OWL DL depends on
the extent to which users require the more-expressive constructs provided by
OWL DL. The choice between OWL DL and OWL Full mainly depends on the
extent to which users require the meta-modeling facilities of RDF Schema (e.g.
defining classes of classes, or attaching properties to classes). When using OWL
Full as compared to OWL DL, reasoning support is less predictable since
complete OWL Full implementations do not currently exist.

 OWL Full can be viewed as an extension of RDF, while OWL Lite and
OWL DL can be viewed as extensions of a restricted view of RDF. Every OWL
(Lite, DL, Full) document is an RDF document, and every RDF document is an
OWL Full document, but only some RDF documents will be a legal OWL Lite or
OWL DL document. Because of this, some care has to be taken when a user wants
to migrate an RDF document to OWL. When the expressiveness of OWL DL or
OWL Lite is deemed appropriate, some precautions have to be taken to ensure that
the original RDF document complies with the additional constraints imposed by
OWL DL and OWL Lite. Among others, every URI that is used as a class name
must be explicitly asserted to be of type owl:Class (and similarly for properties),
every individual must be asserted to belong to at least one class (even if only
owl:Thing), the URI's used for classes, properties and individuals must be
mutually disjoint. The details of these and other constraints on OWL DL and

OWL Lite are explained in appendix E of the OWL Reference.

5.3 Language Synopsis

 This section provides a quick index to all the language features for OWL
Lite, OWL DL, and OWL Full.

5.3.1 OWL Lite Synopsis

 The list of OWL Lite language constructs is given below.

RDF Schema
Features:

• Class
(Thing,
Nothing)

• rdfs:subCla
ssOf

• rdf:Propert
y

• rdfs:subPr
opertyOf

• rdfs:domai
n

• rdfs:range
• Individual

(In)Equality:

• equivalentClass
• equivalentPrope

ry
• sameAs
• differentFrom
• AllDifferent
• distinctMember

s

Property
Characteristics:

• ObjectProperty
• DatatypePropert

y
• inverseOf
• TransitiveProper

ty
• SymmetricPrope

rty
• FunctionalPrope

rty
• InverseFunction

alProperty

Property
Restrictions:

• Restriction
• onProperty
• allValuesF

rom
• someValue

sFrom

Restricted
Cardinality:

• minCardinality(
only 0 or 1)

• maxCardinality(
only 0 or 1)

• cardinality(only
0 or 1)

Header Information:

• Ontology
• imports

Class
Intersection:

• intersection
f

Datatypes

• xsd
datatypes

Versioning:

• versionInfo
• priorVersion
• backwardComp

atibleWith
• incompatibleWit

h
• DeprecatedClas

s
• DeprecatedPro

perty

Annotation
Properties:

• rdfs:label
• rdfs:comment
• rdfs:seeAlso
• rdfs:isDefinedBy
• AnnotationPrope

rty
• OntologyPropert

y

5.3.2 OWL DL and Full Synopsis

 The list of OWL DL and OWL Full language constructs that are in addition
to or expand those of OWL Lite is given below.

Class Axioms:

• oneOf, dataRange
• disjointWith
• equivalentClass

(applied to class
expressions)

• rdfs:subClassOf
(applied to class
expressions)

Boolean Combinations of Class
Expressions:

• unionOf
• complementOf
• intersectionOf

Arbitrary Cardinality:

• minCardinality
• maxCardinality
• cardinality

Filler Information:

• hasValue

5.4. Language Description of OWL Lite

 This section provides an informal description of the OWL Lite language
features
OWL Lite uses only some of the OWL language features and has more limitations
on the use of the features than OWL DL or OWL Full. For example, in OWL Lite
classes can only be defined in terms of named superclasses (superclasses cannot be
arbitrary expressions), and only certain kinds of class restrictions can be used.
Equivalence between classes and subclass relationships between classes are also
only allowed between named classes, and not between arbitrary class expressions.
Similarly, restrictions in OWL Lite use only named classes. OWL Lite also has a
limited notion of cardinality - the only cardinalities allowed to be explicitly stated
are 0 or 1.

5.4.1 OWL Lite RDF Schema Features

 The following OWL Lite features related to RDF Schema are included.
Class: A class defines a group of individuals that belong together because they
share some properties. For example, Deborah and Frank are both members of the
class Person. Classes can be organized in a specialization hierarchy using
subClassOf. There is a built-in most general class named Thing that is the class of
all individuals and is a superclass of all OWL classes. There is also a built-in most
specific class named Nothing that is the class that has no instances and a subclass
of all OWL classes.
 rdfs:subClassOf: Class hierarchies may be created by making one or more
statements that a class is a subclass of another class. For example, the class Person
could be stated to be a subclass of the class Mammal. From this a reasoner can
deduce that if an individual is a Person, then it is also a Mammal.
 rdf:Property: Properties can be used to state relationships between
individuals or from individuals to data values. Examples of properties include
hasChild, hasRelative, hasSibling, and hasAge. The first three can be used to relate
an instance of a class Person to another instance of the class Person (and are thus
occurences of ObjectProperty), and the last (hasAge) can be used to relate an
instance of the class Person to an instance of the datatype Integer (and is thus an
occurence of DatatypeProperty). Both owl:ObjectProperty and
owl:DatatypeProperty are subclasses of the RDF class rdf:Property.
 rdfs:subPropertyOf: Property hierarchies may be created by making one or
more statements that a property is a subproperty of one or more other properties.
For example, hasSibling may be stated to be a subproperty of hasRelative. From
this a reasoner can deduce that if an individual is related to another by the
hasSibling property, then it is also related to the other by the hasRelative property.
 rdfs:domain: A domain of a property limits the individuals to which the

property can be applied. If a property relates an individual to another individual,
and the property has a class as one of its domains, then the individual must belong
to the class. For example, the property hasChild may be stated to have the domain
of Mammal. From this a reasoner can deduce that if Frank hasChild Anna, then
Frank must be a Mammal. Note that rdfs:domain is called a global restriction since
the restriction is stated on the property and not just on the property when it is
associated with a particular class. See the discussion below on property restrictions
for more information.
 rdfs:range: The range of a property limits the individuals that the property
may have as its value. If a property relates an individual to another individual, and
the property has a class as its range, then the other individual must belong to the
range class. For example, the property hasChild may be stated to have the range of
Mammal. From this a reasoner can deduce that if Louise is related to Deborah by
the hasChild property, (i.e., Deborah is the child of Louise), then Deborah is a
Mammal. Range is also a global restriction as is domain above. Again, see the
discussion below on local restrictions (e.g. AllValuesFrom) for more information.
 Individual: Individuals are instances of classes, and properties may be used
to relate one individual to another. For example, an individual named Deborah
may be described as an instance of the class Person and the property hasEmployer
may be used to relate the individual Deborah to the individual StanfordUniversity.

5.4.2 OWL Lite Equality and Inequality

 The following OWL Lite features are related to equality or inequality.

equivalentClass: Two classes may be stated to be equivalent. Equivalent
classes have the same instances. Equality can be used to create synonymous
classes. For example, Car can be stated to be equivalentClass to
Automobile. From this a reasoner can deduce that any individual that is an
instance of Car is also an instance of Automobile and vice versa.

equivalentProperty: Two properties may be stated to be equivalent.
Equivalent properties relate one individual to the same set of other
individuals. Equality may be used to create synonymous properties. For
example, hasLeader may be stated to be the equivalentProperty to hasHead.
From this a reasoner can deduce that if X is related to Y by the property
hasLeader, X is also related to Y by the property hasHead and vice versa. A
reasoner can also deduce that hasLeader is a subproperty of hasHead and
hasHead is a subProperty of hasLeader.

sameAs: Two individuals may be stated to be the same. These constructs
may be used to create a number of different names that refer to the same
individual. For example, the individual Deborah may be stated to be the
same individual as DeborahMcGuinness.

differentFrom: An individual may be stated to be different from other
individuals. For example, the individual Frank may be stated to be different
from the individuals Deborah and Jim. Thus, if the individuals Frank and
Deborah are both values for a property that is stated to be functional (thus
the property has at most one value), then there is a contradiction. Explicitly
stating that individuals are different can be important in when using
languages such as OWL (and RDF) that do not assume that individuals
have one and only one name. For example, with no additional information,
a reasoner will not deduce that Frank and Deborah refer to distinct
individuals.

AllDifferent: A number of individuals may be stated to be mutually distinct
in one AllDifferent statement. For example, Frank, Deborah, and Jim could
be stated to be mutually distinct using the AllDifferent construct. Unlike the
differentFrom statement above, this would also enforce that Jim and
Deborah are distinct (not just that Frank is distinct from Deborah and Frank
is distinct from Jim). The AllDifferent construct is particularly useful when
there are sets of distinct objects and when modelers are interested in
enforcing the unique names assumption within those sets of objects. It is
used in conjunction with distinctMembers to state that all members of a list
are distinct and pairwise disjoint.

5.4.3 OWL Lite Property Characteristics

 There are special identifiers in OWL Lite that are used to provide
information concerning properties and their values. The distinction between
ObjectProperty and DatatypeProperty is mentioned above in the property
description.

inverseOf: One property may be stated to be the inverse of another
property. If the property P1 is stated to be the inverse of the property P2,
then if X is related to Y by the P2 property, then Y is related to X by the P1
property. For example, if hasChild is the inverse of hasParent and Deborah
hasParent Louise, then a reasoner can deduce that Louise hasChild
Deborah.

TransitiveProperty: Properties may be stated to be transitive. If a property
is transitive, then if the pair (x,y) is an instance of the transitive property P,
and the pair (y,z) is an instance of P, then the pair (x,z) is also an instance
of P. For example, if ancestor is stated to be transitive, and if Sara is an
ancestor of Louise (i.e., (Sara,Louise) is an instance of the property
ancestor) and Louise is an ancestor of Deborah (i.e., (Louise,Deborah) is an
instance of the property ancestor), then a reasoner can deduce that Sara is
an ancestor of Deborah (i.e., (Sara,Deborah) is an instance of the property

ancestor).
OWL Lite (and OWL DL) impose the side condition that transitive
properties (and their superproperties) cannot have a maxCardinality 1
restriction. Without this side-condition, OWL Lite and OWL DL would
become undecidable languages. See the property axiom section of the OWL
Semantics and Abstract Syntax document for more information.

SymmetricProperty: Properties may be stated to be symmetric. If a
property is symmetric, then if the pair (x,y) is an instance of the symmetric
property P, then the pair (y,x) is also an instance of P. For example, friend
may be stated to be a symmetric property. Then a reasoner that is given that
Frank is a friend of Deborah can deduce that Deborah is a friend of Frank.

FunctionalProperty : Properties may be stated to have a unique value. If a
property is a FunctionalProperty, then it has no more than one value for
each individual (it may have no values for an individual). This
characteristic has been referred to as having a unique property.
FunctionalProperty is shorthand for stating that the property's minimum
cardinality is zero and its maximum cardinality is 1. For example,
hasPrimaryEmployer may be stated to be a FunctionalProperty. From this a
reasoner may deduce that no individual may have more than one primary
employer. This does not imply that every Person must have at least one
primary employer however.

InverseFunctionalProperty: Properties may be stated to be inverse
functional. If a property is inverse functional then the inverse of the
property is functional. Thus the inverse of the property has at most one
value for each individual. This characteristic has also been referred to as an
unambiguous property. For example, hasUSSocialSecurityNumber (a
unique identifier for United States residents) may be stated to be inverse
functional (or unambiguous). The inverse of this property (which may be
referred to as isTheSocialSecurityNumberFor) has at most one value for
any individual in the class of social security numbers. Thus any one
person's social security number is the only value for their
isTheSocialSecurityNumberFor property. From this a reasoner can deduce
that no two different individual instances of Person have the identical US
Social Security Number. Also, a reasoner can deduce that if two instances
of Person have the same social security number, then those two instances
refer to the same individual.

5.4.4 OWL Lite Property Restrictions

 OWL Lite allows restrictions to be placed on how properties can be used by
instances of a class. These type (and the cardinality restrictions in the next

element indicates the restricted property. The following two restrictions limit
which values can be used while the next section's restrictions limit how many
values can be used.

 allValuesFrom: The restriction allValuesFrom is stated on a property with
respect to a class. It means that this property on this particular class has a local
range restriction associated with it. Thus if an instance of the class is related by the
property to a second individual, then the second individual can be inferred to be an
instance of the local range restriction class. For example, the class Person may
have a property called hasDaughter restricted to have allValuesFrom the class
Woman. This means that if an individual person Louise is related by the property
hasDaughter to the individual Deborah, then from this a reasoner can deduce that
Deborah is an instance of the class Woman. This restriction allows the property
hasDaughter to be used with other classes, such as the class Cat, and have an
appropriate value restriction associated with the use of the property on that class.
In this case, hasDaughter would have the local range restriction of Cat when
associated with the class Cat and would have the local range restriction Person
when associated with the class Person. Note that a reasoner can not deduce from
an allValuesFrom restriction alone that there actually is at least one value for the
property.

 someValuesFrom: The restriction someValuesFrom is stated on a property with
respect to a class. A particular class may have a restriction on a property that at
least one value for that property is of a certain type. For example, the class
SemanticWebPaper may have a someValuesFrom restriction on the hasKeyword
property that states that some value for the hasKeyword property should be an
instance of the class SemanticWebTopic. This allows for the option of having
multiple keywords and as long as one or more is an instance of the class
SemanticWebTopic, then the paper would be consistent with the someValuesFrom
restriction. Unlike allValuesFrom, someValuesFrom does not restrict all the values
of the property to be instances of the same class. If myPaper is an instance of the
SemanticWebPaper class, then myPaper is related by the hasKeyword property to
at least one instance of the SemanticWebTopic class. Note that a reasoner can not
deduce (as it could with allValuesFrom restrictions) that all values of hasKeyword
are instances of the SemanticWebTopic class

5.4.5 OWL Lite Restricted Cardinality

 OWL Lite includes a limited form of cardinality restrictions. OWL (and
OWL Lite) cardinality restrictions are referred to as local restrictions, since they
are stated on properties with respect to a particular class. That is, the restrictions
constrain the cardinality of that property on instances of that class. OWL Lite
cardinality restrictions are limited because they only allow statements concerning
cardinalities of value 0 or 1 (they do not allow arbitrary values for cardinality, as is
the case in OWL DL and OWL Full).

 minCardinality: Cardinality is stated on a property with respect to a
particular class. If a minCardinality of 1 is stated on a property with respect to a
class, then any instance of that class will be related to at least one individual by
that property. This restriction is another way of saying that the property is required
to have a value for all instances of the class. For example, the class Person would
not have any minimum cardinality restrictions stated on a hasOffspring property
since not all persons have offspring. The class Parent, however would have a
minimum cardinality of 1 on the hasOffspring property. If a reasoner knows that
Louise is a Person, then nothing can be deduced about a minimum cardinality for
her hasOffspring property. Once it is discovered that Louise is an instance of
Parent, then a reasoner can deduce that Louise is related to at least one individual
by the hasOffspring property. From this information alone, a reasoner can not
deduce any maximum number of offspring for individual instances of the class
parent. In OWL Lite the only minimum cardinalities allowed are 0 or 1. A
minimum cardinality of zero on a property just states (in the absence of any more
specific information) that the property is optional with respect to a class. For
example, the property hasOffspring may have a minimum cardinality of zero on
the class Person (while it is stated to have the more specific information of
minimum cardinality of one on the class Parent).
 maxCardinality: Cardinality is stated on a property with respect to a
particular class. If a maxCardinality of 1 is stated on a property with respect to a
class, then any instance of that class will be related to at most one individual by
that property. A maxCardinality 1 restriction is sometimes called a functional or
unique property. For example, the property hasRegisteredVotingState on the class
UnitedStatesCitizens may have a maximum cardinality of one (because people are
only allowed to vote in only one state). From this a reasoner can deduce that
individual instances of the class USCitizens may not be related to two or more
distinct individuals through the hasRegisteredVotingState property. From a
maximum cardinality one restriction alone, a reasoner can not deduce a minimum
cardinality of 1. It may be useful to state that certain classes have no values for a
particular property. For example, instances of the class UnmarriedPerson should
not be related to any individuals by the property hasSpouse. This situation is
represented by a maximum cardinality of zero on the hasSpouse property on the
class UnmarriedPerson.

 cardinality: Cardinality is provided as a convenience when it is useful to
state that a property on a class has both minCardinality 0 and maxCardinality 0 or
both minCardinality 1 and maxCardinality 1. For example, the class Person has
exactly one value for the property hasBirthMother. From this a reasoner can
deduce that no two distinct individual instances of the class Mother may be values
for the hasBirthMother property of the same person.

5.4.6 OWL Lite Class Intersection

 OWL Lite contains an intersection constructor but limits its usage.

intersectionOf: OWL Lite allows intersections of named classes and
restrictions. For example, the class EmployedPerson can be described as the
intersectionOf Person and EmployedThings (which could be defined as
things that have a minimum cardinality of 1 on the hasEmployer property).
From this a reasoner may deduce that any particular EmployedPerson has at
least one employer.

5.4.7 OWL Lite Header Information

 OWL Lite supports notions of ontology inclusion and relationships and
attaching information to ontologies. See the OWL Reference for details and the
OWL Guide for examples.

5.4.8 OWL Lite Annotation Properties

 OWL Lite allows annotations on classes, properties, individuals and
ontology headers. The use of these annotations is subject to certain restrictions.
See the section on Annotations in the OWL Reference for details.

5.4.9 OWL Lite Versioning

 RDF already has a small vocabulary for describing versioning information.
OWL significantly extends this vocabulary. See the OWL Reference for further
details.

5.5. Incremental Language Description of OWL DL and OWL Full
 Both OWL DL and OWL Full use the same vocabulary although OWL DL
is subject to some restrictions. Roughly, OWL DL requires type separation (a class
can not also be an individual or property, a property can not also be an individual
or class). This implies that restrictions cannot be applied to the language elements

of OWL itself (something that is allowed in OWL Full). Furthermore, OWL DL
requires that properties are either ObjectProperties or DatatypeProperties:
DatatypeProperties are relations between instances of classes and RDF literals and
XML Schema datatypes, while ObjectProperties are relations between instances of
two classes. The OWL Semantics and Abstract Syntax document explains the
distinctions and limitations. We describe the OWL DL and OWL Full vocabulary
that extends the constructions of OWL Lite below.

oneOf: (enumerated classes): Classes can be described by enumeration of
the individuals that make up the class. The members of the class are exactly
the set of enumerated individuals; no more, no less. For example, the class
of daysOfTheWeek can be described by simply enumerating the individuals
Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday. From
this a reasoner can deduce the maximum cardinality (7) of any property that
has daysOfTheWeek as its allValuesFrom restriction.

hasValue: (property values): A property can be required to have a certain
individual as a value (also sometimes referred to as property values). For
example, instances of the class of dutchCitizens can be characterized as
those people that have theNetherlands as a value of their nationality. (The
nationality value, theNetherlands, is an instance of the class of
Nationalities).

• disjointWith: Classes may be stated to be disjoint from each other. For
example, Man and Woman can be stated to be disjoint classes. From this
disjointWith statement, a reasoner can deduce an inconsistency when an
individual is stated to be an instance of both and similarly a reasoner can
deduce that if A is an instance of Man, then A is not an instance of Woman.

unionOf, complementOf, intersectionOf(Boolean combinations): OWL
DL and OWL Full allow arbitrary Boolean combinations of classes and
restrictions: unionOf, complementOf, and intersectionOf. For example,
using unionOf, we can state that a class contains things that are either
USCitizens or DutchCitizens. Using complementOf, we could state that
children are not SeniorCitizens. (i.e. the class Children is a subclass of the
complement of SeniorCitizens). Citizenship of the European Union could
be described as the union of the citizenship of all member states.

minCardinality, maxCardinality, cardinality (full cardinality): While in
OWL Lite, cardinalities are restricted to at least, at most or exactly 1 or 0,
full OWL allows cardinality statements for arbitrary non-negative integers.
For example the class of DINKs ("Dual Income, No Kids") would restrict
the cardinality of the property hasIncome to a minimum cardinality of two
(while the property hasChild would have to be restricted to cardinality 0).

complex classes : In many constructs, OWL Lite restricts the syntax to single
class names (e.g. in subClassOf or equivalentClass statements). OWL Full
extends this restriction to allow arbitrarily complex class descriptions, consisting
of enumerated classes, property restrictions, and Boolean combinations. Also,
OWL Full allows classes to be used as instances (and OWL DL and OWL Lite do
not). For more on this topic, see the "Design for Use" section of the Guide
document.

