Introduction to

(Hoc may va Khai pha dir liéu)

Khoat Than

School of Information and Communication Technology
Hanoi University of Science and Technology

2021

Contents of the course

® I[ntroduction to Machine Learning & Data Mining
= Supervised learning

o Decision free & Random forest
= Unsupervised learning

® Practical advice

1. Decision free

m Decision tree

o To represent a function by using a tree.

= Fach decision free can be interpreted as a set of rules of
the form: IF-THEN

= Decision frees have been used in many
practical applications.

Examples of a decision tree (1)

“Sport”?
is prese/ WHt
“‘player”? “Music’?
is prese% i%bsent is Pref/t \9 absent
Interested Uninterested Interested "My God™?
is prese% y absent
Interested Uninterested
(..., “sport’,...,"player’,...) — Interested
*(...,"My God’,...) — Interested

* (...,"sport’,...) — Uninterested

Examples of a decision tree (2)

Outlook="?
Humidity=? Ves Wind=?
Hi% \\brmal Stron/ \Weak
No Yes No Yes

* (Outlook=0Overcast, Temperature=Hot, Humidity=High, Wind=weak)
— Yes

* (Outlook=Rain, Temperature=Mild, Humidity=High, Wind=Strong)
— No

* (Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong)
— No

Classification problem

= Data representation:

o Each observation is represented by n attributes/features, e.q.,
X = (X1, Xigs ..., Xin) .

o Each attribute is nominal/categorical, i.e., represents names,
labels or categories, e.qg.,
x;1 € {high,normal}, Xi» € {male, female, other}

o There is a set C of predefined labels.

= We have to learn a function from a training dataset:
D ={(x;, Y1), (X2, Y2), --es (Xp1o Ym)}

Tree representation (1)

® Fach internal node represents an attribute for testing the
incoming dafta.

= Each branch/subfree of a node corresponds to a value of
the attribute of that node.

= Each leaf node represents a class label.

= Once a tree has been learned, we can predict the label

for a new instance by using its atfributes to fravel from the
root downto a leaf.

o The label of the leaf will be used to assign to the new instance.

Tree representation (2)

» EFach path from the root 1o a leaf is a conjunction/AND of
the attribute tests.

= A decision tree itself is a disjunction/OR of those
conjunctions.

Outlook="7
Humidity="? Ves Wind=?

Hi% \Vormal S tron/ \Weak
No No Yes

Yes

Representation by a disjunction

“Sport”?
1is prese% wﬂt
“‘player’? “Music”?
is prese% i%bsent is Pref/t y absent
Interested Uninterested Interested My God™?
is prese% y absent

Interested Uninterested

(“sport” is present) A (“player” is present)] V

(“sport” is absent) A (“Music” is present)] V

(“sport” is absent) A (“Music” is absent) A (“My God” is present)]

2. Learning a decision free by ID3

= |D3 (Iterative Dichotomiser 3) is a greedy algorithm which
was proposed by Ross Quinlan in 1986.

" [t uses the top-down scheme.

= At each node N, select a test attribute A which can help us
best do classification for the data in N.

o Generate a branch for each value of A, and then separate the
data into its branches accordingly.

= Grow the tree until:
o It classifies correctly all the training data; or

o All the attributes are used.

= Note: each attribute can only appear at most once in any
path of the tree.

The ID3 algorithm

ID3_alg(Training_Set, Class_Labels, Attributes)
Generate the Root of the free
If all of Training_Set belong to class ¢, then Return Root as leaf with label ¢

If Aftributes is empty, then
Return Root as leaf with label ¢ = Majority_Class_Label(Training_Set)

A «— a set of Atfribufes that are best discriminative for Training_Set
Let A be the test attributes of Root

For each value v of A

Generate a branch of Root which corresponds with v.
Determine Training_Set, = { xin Training_Set | X, =V}
If (Training_Set, is empty) Then
Generate a leaf with class label ¢ = Majority_Class_Label(Training_Set)

Else
Generate a subtree by ID3_alg(Training_Set,, Class_Labels, Atftributes \{A})

Return Root

How to choose the test attributes®e

= At each node, how can we choose a set of test attributese

o These attributes should be discriminative, i.e., can help us
classify well the data inside that node.

= How to know an attribute to be discriminativee

= Ex: assuming 2 classes in the data, which of A; and A,
should be selected as the test attribute?

A=? (ci: 35, c,: 25) (cy: 35, c,: 25)

Vi1 Vi V13
Cq1: 9
C2: 5

» Information gain can help.

Information gain: enfropy

= Entropy measures the impurity/inhomogeneity of a setf.

» Entropy of a set S with ¢ classes can be defined as:

Entropy(S) = —>_,_, pilogy pi

o Where p; is the proportion of instances with class label iin S;
and 0.log,0 = 0 as a convention; p;+p,+...+p. = 1

= For 2 classes: entropy(S) = - p;log,p; - P,log,P,

= Meanings of entropy in Information Theory:

o Entropy shows the number of bits on average to encode a class of S.

o Entropy of a message measures the average amount of information
contained in that message.

o Entropy of a random variable x measures the unpredictabillity of x.

Information gain: entropy example n

= S consists of 14 examples for which 9 belong to class ¢, and
5 belong to class ¢,.

-
= SO the entropy of S is: D
Entropy/(S) 50-5“
=-(9/14).log,(92/14) -(5/14).log,(5/14) E
~ 0.94 |
05 1'
P1

= Entropy = 0 if all examples in S have the same label.
= Entropy = 1 if the two classes in S are equal in size.

= Otherwise, entropy will always belong to (0, 1).

Information gain

= Information gain of an afttribute in S:

o Measures the reduction of entropy if we divide S into subsets
according to that attribute.

= Information gain of attribute A in S is defined as:

Gain(S,A) = Entropy(S) — > ||SS'“‘| Entropy(S,)
veValues(A)

o Where Values(A) is the set of all values of A, and
S, ={x | xinS§, and x4 = v}

» The second term in Gain(S,A) measures the information
remained when S is divided into subsets according to the
values of A.

= Meaning of Gain(S,A): the average amount of information
is lost when dividing S according to A.

Information gain: example (1)

m A set S of observations about a person playing tennis.

Day Outlook Temperature Humidity Wind Play Tennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
[Mitchell, 1997]

Information gain: example (2)

= What is Gain(S, Wind)?
= Wind has two values: Strong & Weak
= S = {9 examples with label Yes, 5 examples with label No}

" Sweak = {6 examples with label Yes and 2 examples with
label No, having Wind=Weak}

= Sstrong = 13 €xamples with label Yes, 3 examples with label
No, having Wind=S§trong}

. Sy
= So: Gain(S,Wind) = Entropy(S) — |S|| Entropy(S,)

ve{Strong,Weak}

8 6
= Entropy(S) — EEntropy(SWeak) — 4Entropy(55tr0ng)

38 6
094_ﬁ 081_ﬁ*1 0.048

ID3: example (1)

= At the root, which one of {Outlook, Temperature, Humidity,
Wind} should be the test attribute?e

o Gain(S, Outlook) = ... = 0.246

o Gain(S, Temperature) = ... = 0.029
o Gain(S, Humidity) = ... = 0.151

o Gain(S, Wind) = ... =0.048

= SO, Outlook is selected as the test attribute.

Outlook=? | S={9+, 5-}

y/overcaN

Node1 Yes Node?2

Somolzn 3} Sowws=n0} s G

ID3: example (2)

= At Nodel, which one of

{Temperature, Humidity, Wind}

Outlook="?

should be the test attribute?
sunny .
o Notfe: Outlook is left out Ssunny= /Ne{caSNm
{2+ 3-}

o Gain(Ssynny, Wind) = ... =0.019 Humidity="? SYes
o Gain(Ssynny, TeMperature) =...= 0.57 {vaf"éfi
o Gain(Ssynny, HUMIdity) = ... = 0.97 High Normal
= SO, Humidity is selected to
divide Nodel. Node3 Node4
SHigh= SNormal=
{0+, 3-} {2+, 0-}

S={o+, 5.}

Node2

SRain=
{3+! 2'}

ID3: searching scheme (1)

» |D3 searches for a tree that fits well with the training data.
o By growing the tree gradually.

= Information Gain decides the search direction of ID3.

= |D3 just searches for only one tree.

" [D3 never backtracks, as a consequence:

o It can find a local optimal solution/tree.

o Once an attribute has been selected, ID3 never rethinks of this
choice.

ID3: searching scheme (2)

= For a fraining dataset, there might be many trees thaf fif
well with it.

o Which tree will be selected by ID3¢

Outlook="? Outlook="?
Sw%ver%st%ﬂ %vrt\
Humidity=?| Yes Wind="? Temperature=?| Yes Wind="?
Hig}/ \Normal Stron% Y\]eak Ho% Co‘ol \Kild Stron% Y\Zeak
No Yes No Yes No Yes |Humidity=?| No Yes

Hi g/ \\formal

No Yes

ID3: searching scheme (3)

= |D3 selects the first free that fits the fraining dataq,

o Because it never reconsiders its choices when growing a tree.
= SO, the searching scheme of ID3:

o Prefers simple frees.

o Prefers trees in which the attributes with higher information gain
will be placed closer to the roots.

3. Some issues of ID3

» The learnt trees may overfit the training data.
= How to work with real attributese
o Many applications have real inputs.
" |s there any better measure than information gaine
= How to deal with missing values?

o Missing-value is an inherent problem in many practical
applications.

= How to enclose the cost of attributes in ID3¢

Overfitting in ID3 (2)

= An example: confinuing to grow the tree can improve the
accuracy on the fraining data, but perform badly on the
test data.

0-9 Ll 1 1 Ll 1 1 1 1 1

0.85 o - -

0.8 F /— .

0.75 F // --------- -

0.7 = '-",.' \\ _

—_——————

Accuracy

0.65 H .

0.6 On training data .
On test data

055 F .

0.5 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)

[Mitchell, 1997]

Overfitting: solutions

= ? solutions:

o Stop learning early: prevent the free before it fits the fraining
data perfectly.

o Prune the full free: grow the tree to its full size, and then post
prune the free.

= |t is hard to decide when to stop learning.

= Post-pruning the tree empirically results in better
performance. But

o How to decide the good size of a tree?

o When to stop pruninge

= We can use a validation set to do pruning, such as,
reduced-error pruning, and rule-post pruning.

ID3: attribute selection

® Information gain:
o Prefers the attribute that has more unigue values.

o Attributes with more unique values will be placed closer to the
root than the other attribute.

= We can use some other measures, such as Gain Ratio

GainRatio(S, A) = Gain(S,A)
AMRALions, 47 = SplitInformation(S,A)’
. . Sy | Sy |
Splitinformation(S,A) = — S| log, S|

veValues(A)

ID3: missing or real values

= How to work with real attributes?e
o Real attributes/features are popular in practice.

o One way is to discretization, i.e., transforming a real attribute
into a discrete one by dividing the domain of that attribute into
a set of intervals.

Ex: [0, 1] = {[0, 0.25); [0.25, 0.5); [0.5, 0.75); [0.75, 1]}

= How to deal with missing values?
o Missing values are inherent in practical applications.
o An observation x may not have a value x,.

o Solutfion 1: fillin x, as the most popular value of A in the training
data.

o Solution 2: fill in x, as the most popular value of A in the training
data which belong to the same class with x.

5. Random forests

®» Random forests (RF) is a method by Leo Breiman (2001) for
both classification and regression.

= Main idea: prediction is based on combination of many

decision frees, by faking the average of all individual
predictions.

= EFach tree in RF is simple but random.

= Each tree is grown differently,
depending on the choices of
the attributes and training data.

5. Random forests

= RF currently is one of the most popular and accurate
methods [Ferndndez-Delgado et al., 2014]

o It is also very general.
= RF can be implemented easily and efficiently.

" [t can work with problems of very high dimensions, without
overfitting ©

= However, little is known about its theoretical properties ®

5. RF: three basic ingredients

* Randomization and no pruning:

o For each free and at each node, we select randomly a subset
of attributes.

o Find the best split, and then grow appropriate subtrees.

o Every tree will be grown to its largest size without pruning.

= Combination: each prediction later is made by taking the
average of all predictions of individual trees.

= Bagging: the training set for each tree is generated by
sampling (with replacement) from the originol data.

ll l??lillllﬂlllll’n
A ml :\ lmmml‘m

: ,t,.

5. RF: algorithm

= [nput: training data D
= Learning: grow K trees as follows

o Generate a training set D, by sampling with replacement from
D.

o Learn the i free from D::
o At each node:
+ Select randomly a subset S of attributes.

+ Split the node into subtrees according to S.

o Grow this tree upto its largest size without pruning.

= Prediction: taking the average of all predictions from the
individual trees.

5. RF: practical performance

= RF is extensively compared with other methods

o By Ferndndez-Delgado et al. (2014).

o Using 55 different problemes.

o Using average accuracy (uf) as a measure.

No. Classifier uf No. Classifier uf
1 rf_t 91.1 11 Bagging LibSVM_w 89.9
2 parRF_t 91.1 12 RandomCommittee_w 89.9
3 svm_C 90.7 13 Bagging_RandomTree_w 89.8
4 RRF_t 90.6 14 MultiBoost AB_RandomTree_w | 89.8
5 RRFglobal_t 90.6 15 MultiBoost AB_LibSVM _w 89.8
6 LibSVM_w 90.6 16 MultiBoost AB_PART _w 89.7
7 RotationForest_w 90.5 17 Bagging PART -w 89.7
8 C5.0-t 90.5 18 AdaBoostM1_J48 _w 89.5
9 rforest_R 90.3 19 Bagging REPTree_w 89.5

10 treebag_t 90.2 20 MultiBoostAB_J48_w 89.4

References

L. Breiman. Random forests. Machine learning, 45(1), 5-32, 2001.

Manuel Ferndndez-Delgado, Eva Cernadas, Senén Barro, Dinani Amorim. Do we
Need Hundreds of Classifiers to Solve Real World Classification Problems? Journal
of Machine Learning Research, 15(Oct):3133-3181, 2014.

T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

M. Nunez. The use of background knowledge in decision tree induction. Machine
Learning, 6(3): 231-250, 1991.

Quinlan, J. R. Induction of Decision Trees. Mach. Learn. 1, 1 (Mar. 1986), 81-106,
1986

Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical
Learning. Springer, 2009.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM
computing surveys (CSUR), 34(1), 1-47.

