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1. Basic learning problems

¡ Supervised learning: learn a function y = f(x) from a given 
training set {{x1, x2, …, xN}; {y1, y2,…, yN}} so that yi ≅ f(xi) for 
every i.
¨ Each training instance has a label/response. 

¡ Unsupervised learning: learn a function y = f(x) from a 
given training set {x1, x2, …, xN}.
¨ No response is available

¨ Our target is the hidden structure in data.
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Unsupervised learning: examples (1)

¡ Clustering data into clusters
¨ Discover the data groups/clusters

¡ Community detection
¨ Detect communities in online social networks
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challenging problem than classification. There is a growing interest
in a hybrid setting, called semi-supervised learning (Chapelle et al.,
2006); in semi-supervised classification, the labels of only a small
portion of the training data set are available. The unlabeled data,
instead of being discarded, are also used in the learning process.
In semi-supervised clustering, instead of specifying the class labels,
pair-wise constraints are specified, which is a weaker way of
encoding the prior knowledge. A pair-wise must-link constraint
corresponds to the requirement that two objects should be as-
signed the same cluster label, whereas the cluster labels of two ob-
jects participating in a cannot-link constraint should be different.
Constraints can be particularly beneficial in data clustering (Lange
et al., 2005; Basu et al., 2008), where precise definitions of under-
lying clusters are absent. In the search for good models, one would
like to include all the available information, no matter whether it is
unlabeled data, data with constraints, or labeled data. Fig. 1 illus-
trates this spectrum of different types of learning problems of
interest in pattern recognition and machine learning.

2. Data clustering

The goal of data clustering, also known as cluster analysis, is to
discover the natural grouping(s) of a set of patterns, points, or ob-
jects. Webster (Merriam-Webster Online Dictionary, 2008) defines
cluster analysis as ‘‘a statistical classification technique for discov-
ering whether the individuals of a population fall into different
groups by making quantitative comparisons of multiple character-

istics.” An example of clustering is shown in Fig. 2. The objective is
to develop an automatic algorithm that will discover the natural
groupings (Fig. 2b) in the unlabeled data (Fig. 2a).

An operational definition of clustering can be stated as fol-
lows: Given a representation of n objects, find K groups based
on a measure of similarity such that the similarities between ob-
jects in the same group are high while the similarities between
objects in different groups are low. But, what is the notion of
similarity? What is the definition of a cluster? Fig. 2 shows that
clusters can differ in terms of their shape, size, and density. The
presence of noise in the data makes the detection of the clusters
even more difficult. An ideal cluster can be defined as a set of
points that is compact and isolated. In reality, a cluster is a sub-
jective entity that is in the eye of the beholder and whose signif-
icance and interpretation requires domain knowledge. But, while
humans are excellent cluster seekers in two and possibly three
dimensions, we need automatic algorithms for high-dimensional
data. It is this challenge along with the unknown number of clus-
ters for the given data that has resulted in thousands of cluster-
ing algorithms that have been published and that continue to
appear.

2.1. Why clustering?

Cluster analysis is prevalent in any discipline that involves anal-
ysis of multivariate data. A search via Google Scholar (2009) found
1660 entries with the words data clustering that appeared in 2007

Fig. 1. Learning problems: dots correspond to points without any labels. Points with labels are denoted by plus signs, asterisks, and crosses. In (c), the must-link and cannot-
link constraints are denoted by solid and dashed lines, respectively (figure taken from Lange et al. (2005).

Fig. 2. Diversity of clusters. The seven clusters in (a) (denoted by seven different colors in 1(b)) differ in shape, size, and density. Although these clusters are apparent to a data
analyst, none of the available clustering algorithms can detect all these clusters.
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Unsupervised learning: examples (2)

¡ Trends detection
¨ Discover the trends, demands, future needs 

of online users

¡ Entity-interaction analysis
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2. Clustering 

¡ Clustering problem:
¨ Input: a training set without any label.

¨ Output: clusters of the training instances

¡ A cluster:
¨ Consists of similar instances in some senses.

¨ Two clusters should be different from each other.
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challenging problem than classification. There is a growing interest
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ering whether the individuals of a population fall into different
groups by making quantitative comparisons of multiple character-

istics.” An example of clustering is shown in Fig. 2. The objective is
to develop an automatic algorithm that will discover the natural
groupings (Fig. 2b) in the unlabeled data (Fig. 2a).

An operational definition of clustering can be stated as fol-
lows: Given a representation of n objects, find K groups based
on a measure of similarity such that the similarities between ob-
jects in the same group are high while the similarities between
objects in different groups are low. But, what is the notion of
similarity? What is the definition of a cluster? Fig. 2 shows that
clusters can differ in terms of their shape, size, and density. The
presence of noise in the data makes the detection of the clusters
even more difficult. An ideal cluster can be defined as a set of
points that is compact and isolated. In reality, a cluster is a sub-
jective entity that is in the eye of the beholder and whose signif-
icance and interpretation requires domain knowledge. But, while
humans are excellent cluster seekers in two and possibly three
dimensions, we need automatic algorithms for high-dimensional
data. It is this challenge along with the unknown number of clus-
ters for the given data that has resulted in thousands of cluster-
ing algorithms that have been published and that continue to
appear.

2.1. Why clustering?

Cluster analysis is prevalent in any discipline that involves anal-
ysis of multivariate data. A search via Google Scholar (2009) found
1660 entries with the words data clustering that appeared in 2007

Fig. 1. Learning problems: dots correspond to points without any labels. Points with labels are denoted by plus signs, asterisks, and crosses. In (c), the must-link and cannot-
link constraints are denoted by solid and dashed lines, respectively (figure taken from Lange et al. (2005).

Fig. 2. Diversity of clusters. The seven clusters in (a) (denoted by seven different colors in 1(b)) differ in shape, size, and density. Although these clusters are apparent to a data
analyst, none of the available clustering algorithms can detect all these clusters.
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Clustering 

¡ Approaches to clustering
¨ Partition-based clustering

¨ Hierarchical clustering

¨ Mixture models

¨ Deep clustering

¨ …

¡ Evaluation of clustering quality
¨ Distance/difference between any two clusters should be large.

(inter-cluster distance)

¨ Difference between instances inside a cluster should be small.
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3. K-means for clustering

¡ K-means was first introduced by Lloyd in 1957.

¡ K-means is the most popular method for clustering, which is 
partition-based.

¡ Data representation:  D = {x1, x2, …, xr}, each xi is a vector 
in the n-dimensional Euclidean space.

¡ K-means partitions D into K clusters:
¨ Each cluster has a central point which is called centroid.

¨ K is a pre-specified constant.
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K-means: main steps

¡ Input: training data D, number K of clusters, and distance 
measure d(x,y).

¡ Initialization: select randomly K instances in D as the initial 
centroids.

¡ Repeat the following two steps until convergence
¨ Step 1: for each instance, assign it to the cluster with nearest 

centroid.

¨ Step 2: for each cluster, recompute its controid from all the 
instances assigned to that cluster.
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K-means: example (1)

¡ NAFOSTED
¨ Title
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K-means: example (2)
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K-means: convergence

¡ The algorithm converges if:
¨ Very few instances are reassigned to new clusters, or 

¨ The centroids do not change significantly, or

¨ The following sum does not change significantly

¨ Where Ci is the ith cluster; mi is the centroid of cluster Ci.
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K-means: centroid, distance

¡ Re-computation of the centroids:

¨ mi is the centroid of cluster Ci. |Ci| denotes the size of Ci.

¡ Distance measure: 
¨ Euclidean

¨ Other measures are possible.
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K-means: about distance

¡ Distance measure
¨ Each measure provides a view on data

¨ There are infinite number of distance measures

¨ Which distance is good?

¡ Similarity measures can be 
used
¨ Similarity between two objects
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K-means: affects of outliers

¡ K-means is sensitive with outliers, i.e., outliers might affect 
significantly on clustering results.
¨ Outliers are instances that significantly differ from the normal 

instances.

¨ The attribute distributions of outliers are very different from 
those of normal points.

¨ Noises or errors in data can result in outliers.
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K-means: outlier example
16
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K-means: outlier solutions

¡ Outlier removal: we may remove some instances that are 
significantly far from the centroids, compared with other 
instances.
¨ Removal can be done a priori or when learning clusters.

¡ Random sampling: instead of clustering all data, we take a 
random sample S from the whole training data.
¨ S will be used to learn K clusters. Note that S often contains 

fewer noises/outliers than the original training data.

¨ After learning, the remaining data will be assigned to the 
learned clusters.
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K-means: initialization

¡ Quality of K-means depends much on the initial centroids.
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[Liu, 2006]

1st centroid
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K-means: initialization solution (1)

¡ We repeat K-means many times
¨ Each time we initialize a different set of centroids.

¨ After learning, we combine results from those runs to obtain a 
unified clustering.
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K-means: initialization solution (2)

¡ K-means++: to obtain a good clustering, we can initialize 
the centroids from D in sequence as follows
¨ Select randomly the first centroid m1.

¨ Select the second centroid which are farthest to m1.

¨ …

¨ Select ith centroid which are farthest from {m1, …, mi-1}.

¨ …

¡ By using this initialization scheme, K-means can converge 
to a near optimal solution [Arthur, D.; Vassilvitskii, 2007]
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K-means: curved clusters

¡ When using Euclidean distance, K-means cannot detect 
non-spherical clusters.
¨ How to deal with those cases?
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K-means: summary

¡ Advantages:
¨ Be very simple,

¨ Be efficient in practice,

¨ Converges in expected polynomial time [Manthey & Röglin, 
JACM, 2011]

¨ Be flexible in choosing the distance measures.

¡ Limitations:
¨ Choose a good similarity measure for a domain is not easy.

¨ Be sensitive with outliers.
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4. Online K-means

¡ K-means:
¨ We need all training data for each iteration.

¨ Therefore, it cannot work with big datasets,

¨ And cannot work with stream data where data come in 
sequence.

¡ Online K-means helps us to cluster big/stream data.
¨ It is an online version of K-means [Bottou, 1998].

¨ It follows the methodology from online learning and stochastic 
gradient.

¨ At each iteration, one instance will be exploited to update the 
available clusters.
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Revisiting K-means

¡ Note that K-means finds K clusters from the training 
instances {x1, x2, …, xM} by minimizing the following loss 
function:

¨ Where w(xi) is the nearest centroid to xi.

¡ Using its gradient, we can minimize Q by repeating the 
following update until convergence:

¨ Where γt is a small constant, often called learning rate.

¡ This update will converge to a local minimum.
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Online K-means: idea

¡ Note that each iteration of K-means requires the full 
gradient:

𝑄!" =$
#$%

&

[𝑥# −𝑤!(𝑥#)]

¨ Which requires all training data.

¡ Online K-means minimizes Q stochastically:
¨ At each iteration, we just use a little information from the whole 

gradient Q’.

¨ Those information comes from the training instances at iteration 
t:

𝑥! −𝑤!(𝑥!)
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Online K-means: algorithm

¡ Initialize K centroids randomly.

¡ Update the centroids as an instance comes
¨ At iteration t, take an instance xt.

¨ Find the nearest centroid wt to xt, and then update wt as 
follows:

¡ Note: the learning rates                    are positive constants, 
which should satisfy
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wt+1 = wt +γ t (xt −wt )
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Online K-means: learning rate

¡ A popular choice of learning rate:

n τ, κ are possitive constants.

n κ Î (0.5, 1] is called forgeting rate. Large κ means that the 
algorithm remembers the past longer, and that new observations 
play less and less important role as t grows.

27
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¡ Objective Q decreases as t increases.

¨ Online K-means (Black circles), K-means (Black squares)

¨ Partial gradient (empty circles), full gradient (empty squares)

Convergence of Online K-means
28
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Exercises

¡ Solutions to K-means when the data distributions are not 
spherical?

¡ How to decide a suitable cluster for a new instance?
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