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1. Basic learning problems

= Supervised learning: learn a function y = f(x) from a given
training set {{X;, X,, ..., Xx}; {Y1. Yo.... Y3} SO that y, = f(x;) for
every I.

o Each training instance has a label/response.

= Unsupervised learning: learn a function y = f(x) from a
given training set {X;, Xy, ..., X\}.

o No response is available

o Our target is the hidden sfructure in data.




Unsupervised learning: examples (1)

= Clustering data into clusters

o Discover the data groups/clusters
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= Community detection

o Detect communities in online social networks




Unsupervised learning: examples (2)

= Trends detection

o Discover the trends, demands, future needs
of online users

® Entity-interaction analysis
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2. Clustering

= Clustering problem:
o Input: a training set without any label.
o Output: clusters of the training instances
= A cluster:
o Consists of similar instances in some senses.

o Two clusters should be different from each other.

After clustering
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Clustering

= Approaches to clustering
o Partition-based clustering
o Hierarchical clustering
o Mixture models
o Deep clustering
o ...
= Evaluation of clustering quality

o Distance/difference between any two clusters should be large.
(inter-cluster distance)

o Difference between instances inside a cluster should be small.



3. K-means for clustering

= K-means was first infroduced by Lloyd in 1957.

= K-means is the most popular method for clustering, which is
partition-based.

= Data representation: D ={x;, X,, ..., X}, €ach x; is a vector
in the n-dimensional Euclidean space.

= K-means partitions D into K clusters:
o Each cluster has a central point which is called centroid.

o K is a pre-specified constant.



K-means: main steps

= Input: training data D, number K of clusters, and distance
measure d(x,y).

= [nitialization: select randomly K instances in D as the initial
centroids.

® Repeat the following two steps until convergence

o Step 1: for each instance, assign it to the cluster with nearest
centroid.

o Step 2: for each cluster, recompute its controid from all the
instances assigned to that cluster.



K-means: example (1)
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K-means: example (2)
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K-means: convergence

= The algorithm converges if:
o Very few instances are reassigned to new clusters, or
o The centroids do not change significantly, or

o The following sum does not change significantly
k

Error = Z Za’(x,mi)2

i=1 xeC;

o Where C;is the ith cluster; m; is the centroid of cluster C..



K-means: centroid, distance

® Re-computation of the cenftroids:

m= ¥ x

i| xeC;

o m; is the centroid of cluster C,. | C;| denotes the size of C..

= Distance measure;

o Euclidean

= \/(xl —my )2 +(x2 —m, )2 +’”+(‘xn —m, )2

a’(x,mi):Hx—mi

o Other measures are possible.



K-means: about distance

= Distance measure
o Each measure provides a view on data
o There are infinite number of distance measures

o Which distance is good?

= Similarity measures can be
used

o Similarity between two objects




K-means: affects of outliers

» K-means is sensitive with outliers, i.e., outliers might affect
significantly on clustering results.

o Qutliers are instances that significantly differ from the normal
instances.

o The attribute distributions of outliers are very different from
those of normal poinfts.

o Noises or errors in data can result in outliers.



K-means: outlier example

outher

outher

e

(B): Ideal clusters

[Liu, 2006]



K-means: outlier solutions

= Outlier removal: we may remove some instances that are
significantly far from the centroids, compared with other
instances.

o Removal can be done a priori or when learning clusters.

= Random sampling: instead of clustering all data, we take a
random sample S from the whole training data.

o S will be used to learn K clusters. Note that S often contains
fewer noises/outliers than the original training data.

o After learning, the remaining data will be assigned to the
learned clusters.



K-means: initialization

= Quality of K-means depends much on the inifial centroids.
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K-means: inifialization solution (1)

" We repeat K-means many tfimes
o Each time we initialize a different set of centroids.

o After learning, we combine results from those runs to obtain a
unified clustering.
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K-means: inifialization solution (2)

= K-means++: 1o obtain a good clustering, we can inifialize
the centroids from D in sequence as follows

o Select randomly the first centroid m,;.

o Select the second centroid which are farthest to m,.

o ...

o Select i centroid which are farthest from {m,, ..., m_;}.

D e o o

= By using this inifialization scheme, K-means can converge
to a near optimal solution [Arthur, D.; Vassilvitskii, 2007]



K-means: curved clusters

= When using Euclidean distance, K-means cannot detect
non-spherical clusters.

o How to deal with those casese

(A Two natural clusters (B &-means clusters

[Liu, 2006]



K-means: summary

= Advantages:
o Be very simple,
o Be efficient in practice,

o Converges in expected polynomial time [Manthey & Roglin,
JACM, 2011]

o Be flexible in choosing the distance measures.
= Limitations:
o Choose a good similarity measure for a domain is not easy.

o Be sensitive with outliers.



4. Online K-means

= K-means:
o We need all training data for each iteration.
o Therefore, it cannot work with big datasets,

o And cannot work with stream data where data come in
sequence.

®" Online K- means helps us to cluster big/stream data.
o It is an online version of K-means [Bottou, 1998].

o It follows the methodology from online learning and stochastic
gradient.

o At each iteration, one instance will be exploited to update the
available clusters.



Revisiting K-means

= Note that K-means finds K clusters from the training
instances {x;, Xy, ..., X} by minimizing the following loss
function:

M
Qk—means (W) = %E” 'xi — W(Xi) ”i
i=1

o Where w(x)) is the nearest centroid to x..

= Using its gradient, we can minimize Q by repeating the
following update until convergence:
M

wt+1 = Wt + )/IE[xi — Wt(xi)]

i=1

o Where v; is a small constant, often called learning rate.

= This update will converge to a local minimum.



Online K-means: idea

= Note that each iteration of K-means requires the full

gradient:
M

0i = ) [ — we(xp)]

=1

o Which requires all training data.

= Online K-means minimizes Q stochastically:

o At each iteration, we just use a little information from the whole
gradient Q’.

o Those information comes from the training instances at iteration
t:

X — We(x¢)



Online K-means: algorithm

m [nitialize K centroids randomly.
» Updafte the centroids as an instance comes
o Atiteration t, take an instance x;.

o Find the nearest centroid w; to x;, and then update w; as
follows:

Wau=w,+ )/t(’xt - Wt)

= Notfe: the learning rates {v,,7,,...} are positive constants,
which should satisfy

o0 oo 2
= O0O° < OO
t=1 yf ’E t=1 )/;



Online K-means: learning rate

= A popular choice of learning rate:
y,=(t+7)

= T, kK Are possitive constants.

= x e (0.5, 1]is called forgeting rate. Large k means that the

algorithm remembers the past longer, and that new observations
play less and less important role as t grows.



Convergence of Online K-means

= Objective Q decreases as t increases.
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Exercises

= Solutions to K-means when the data distributions are not
sphericale

= How to decide a suitable cluster for a new instance?



