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Revisiting overtfitting

= The complexity of the learned function: y = f(x; D)

o For a given training data D: the more complicated f, the more
possibility that f fits D better.

o For a given D: there exist many functions that fit D perfectly
(i.e., no error on D).

o However, those functions might generalize badly.
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The Bias-Variance Decomposition

= Consider y(x) = y*(x) + € as the (unknown) regression function

« e~Normal(0,0?) is a Gaussian noise with mean 0 and variance a?.

« € may represent the noise due to measurement or data collection.
= Let f(x; D) be the regressor, learned by method A from a training set D
= Note: We want that f well approximates the truth y*.

+ f(x; D) is random, according to the randomness when collecting D.

~ ~ 2
= For any instance x, the error made by f is (y(x) — f(x; D))

» The error made by learning method A:
(L6i clhia thuat toan A khi phan doan x)

R 2
erra(x) = Epe (y(x) - f(x; D))

+ Why expectatione a different training set D’ will make A to return a
different function f(x; D"



The Bias-Variance Decomposition (2) '

erry(x) = 0 + [Bias]? + Variance

~ - " 2
« Bias = y*(x) — Epf(x;D); Variance = Ep (f(x; D) — Ep,f(x; D’))
= This is known as Bias-Variance Decomposition

+ 0% cannot be avoided due to noises or uncontrolled factors

« Bias: how faris the frue value from the mean of predictions by method
A2

« Variance: how much does each prediction by A vary around its
meane

= To obtain a small prediction error:

« Small bias? Increase model complexity = Variancw_ Trade-off

« Small variance?¢ Decrease model complexity = Bias t



Bias-Variance tradeoff: classical view

= The more complex the model f(x; D) is, the more d
points it can capture, and the lower the bias can be.

+ However, higher complexity will make the model "move"

more to capture the data points, and hence its variance
will be larger.
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Regularization: infroduction

= Regularization is now a popular and useful technique in ML.

= |t is a technique to exploit further information to
o Reduce overfitting in ML.
o Solve ill-posed problems in Maths.

= The further information is often enclosed in a penalty on the
complexity of f(x; D).
o More penalty will be imposed on complex function:s.
o We prefer simpler functions among all that fit well the training data.
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Regularization: the principle

» We need to learn a function f(x,w) from the training set D
o X is a data example and belongs to input space.
o W is the parameter and often belongs to a parameter space W.

o F={f(x,w):w € W}is the function space, parameterized by w.

= For many ML models, the fraining problem is often reduced to an
optimization problem:

w* = arg min L(f (x,w), D) (1)
weWw
o W sometimes tells the size/complexity of that function.

o L(f(x,w), D) is an empirical loss/risk which depends on D. This loss
shows how well function f fits D.

= Another view:
fr= argmin L(f,D)



Regularization: the principle

= Adding a penalty to (1), we consider

w* = arg ‘%1511, L(f(x,w),D) + Ag(w) (2)

o Where 4 > 0 is called the regularization/penalty constant.
o g(w) measures the complexity of w: g(w) = 0

= L(f, D) measures the goodness of function f on D.

= The penalty (regularization) term: Ag(w)

o Allows to trade off the fitness on D and the generalization.
(cho phép danh dai 16i trén tap hoc v&i kha nang tong quat hoa)

o The greater A, the heavier penalty, implying that g(w) should be
smaller.

o In practice, A should be neither too small nor too large.
(A khéng nén qua I&n hoac qua bé trong thuc té)



Regularization: popular types

= g(w) often relates to some norms when w is an n-
dimensional vector.

o Lg-norm: ||w||, counts the number of non-zeros in w.

o Ly-norm:

o Ly-norm:
n
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Regularization in Ridge regression

= Ridge regression can be derived from OLS by adding a
penalty ferm into the objective function when learning.

" Learning a regressor in Ridge is reduced to
w* = arg min RSS(w, D) + A||w||5
W

o Where A is a positive constant.
o The term A|lw||3 plays the role as regularization.

o Large A reduces the size of w.



Regularization in Lasso

» Lasso [Tibshirani, 1996] is a variant of OLS for linear regression by
using L, to do regularization.

» Learning a linear regressor is reduced to

w* = argmin RSS(w, D) + A|[w]|,
W

o Where A is a positive constant.
o Allw||; is the regularization term. Large A reduces the size of w.

= Regularization here amounts to imposing a Laplace distribution
(as prior) over each w;, with density function:

2
p(wild) = - e~

o The larger A, the more possibility that w;, = 0.



Regularization in SVM

» Learning a classifier in SYVM is reduced to the following problem:

Tw

o Minimize w
o Conditionedon:  y;(wlx; +b) =1, Vie{l,..,1}
® |In the cases of noises/errors, learning is reduced to

o Minimize
T
1
wiw + C Z &;
i=1

yiwlx; +b) = 1-¢;,

o Conditfioned on { £ >0, vie{l,..,r}

&+ -+ & measures the training error,

w'w is the regularization term.



Some other regularization methods

= Dropout: (Hilton and his colleagues, 2012)

o At each iteration of the training process, randomly drop out some
parts and just update the other parts of our model.

= Batch normalization [loffe & Szegedy, 2015]

o Normalize the inputs at each neuron of a neural network

o Reduce input variance, easier training, faster convergence
= Data augmentation

o Produce different versions of an example in the training set, by
adding simple noises, tfranslation, rotation, cropping, ...

o Those versions are added to the training data set
= Early stopping

o Stop training early to avoid overtraining & reduce overfitting



Regularization: MAP role

= Under some conditions, we can view regularization as
w* = arg meivrlllL(f(x, w),D) + A1g(w)
w
Likelihood Prior

o Where D is a sample from a probability distribution whose log
likelihood is —L(f (x,w), D).

o W is a random variable and follows the prior with density
p(w) x exp(—Ag(w))

= Then w* = arg max {-L(f(x,w),D) — Ag(w)}
w
w* = arg maxlog Pr(D|w) + log Pr(w) = arg maxlog Pr(w|D)
wew wew

= As a result, regularization in fact helps us to learn an MAP
solution w*,



Regularization: MAP In Ridge

= Consider the regression model: x € R"

' : - ! : thus foll
“*Pick w ~ Normal(0, o*I), where I is the identity matrix Y Nl

distribution

with mean 0
/ and variance

wlety =wlx 1

< Generate sample x ~ Normal (0, 1)

» Then the MAP estimation from the training data D is

w* = arg max log Pr(w|D) = arg maxlog[Pr(D|w) Pr(w)]
w w

(x,y)eD Q@

= arg mvﬁlx 2 log Pr(x, y|w) + log Pr(W)/ Ridge regression

= arg min Z L (y —wlix)? + 1 wlw + constant
w 2 20'2
(x,y)€D

= Regularization using L, with penalty constant 2 = o72.



Regularization: MAP in Ridge & Lasso

= The regularization constant in Ridge: 1 = o2
= The regularization constant in Lasso: A = b1

= Gaussian (left) and Laplace distribution (right)

1 x —
1 (x — p)? f(xlu b)_%exp( | b“')
flxlp, o) = 0\/_exp< 252 ) , —

10 e T T

08:_ /\ ﬁzg gg (1)(2):__
~ | IRREEE=E
lw) 06} !
é 0.4__ /\ / \ ]
= \ —:

AN

X

(Figure by Wikipedia)



Regularizafion: limiting the search space n

= The regularization constant in Ridge: 1 = o2
= The regularization constant in Lasso: A = b1
» The larger A, the higher probability that x occurs around 0.
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Regularization: limiting the search space n

= The regularized problem:

w* = arg VrgleivrlllL(f(x, w),D) + 1g(w) (2)

m A result from the optimization literature shows that (2) is
equivalent to the following:

w* = arg v%ivrtl/l'(f(x’ w),D) suchthat g(w) <s (3)

o For some constant s.

= Nofe that the consfraint of g(w) <s plays the role as limiting
the search space of w.



Regularization: effects of A

= Vector w* = (wy, s1, 52, s3, s4, s5, s6, Age, Sex, BMI, BP)
changes when A changes in Ridge regression.

o W* goes to 0 as A increases.
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Regularization: practical effectiveness n

= Ridge regression was under investigation on a prostate
dataset with 67 observations.

o Performance was measured by RMSE (root mean square errors)
and Correlation coefficient.

A 0.1 1 10 100 1000 10000
RMSE 0.74 0.74 0.74 0.84 1.08 1.16
Correlation 0.77 0.77 0.78 0.76 0.74 0.73
coeficient

o Too high or too low values of A often result in bad predictions.

O Why?’c’



Bias-Variance tradeoff: revisit

= Classical view:
More complex model f(x; D)
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« Lower bias, higher variance

= Modern phenomenon: Taiding Sample

Low High

« Very rich models such as neural networks Model Complexity
are trained to exactly fit the dafa, but

often obtain high accuracy on test data
[Belkin et al., 2019; Zhang et al., 2021]
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Regularization: summary

= Advantages:
o Avoid overfitting.
o Limit the search space of the function to be learned.
o Reduce bad effects from noises or errors in observations.

o Might model data better. As an example, L, often work well
with data/model which are inherently sparse.

" Limitations:
o Consume time to select a good regularization constant.

o Might pose some difficulties to design an efficient algorithm.
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