
Machine Learning
(Học máy – IT3190E)

Khoat Than
School of Information and Communication Technology

Hanoi University of Science and Technology

2024

2Contents

¡ Introduction to Machine Learning

¡ Supervised learning

¡ Probabilistic modeling

¡ Regularization
¡ Reinforcement learning
¡ Practical advice

3Revisiting overfitting

¡ The complexity of the learned function: 𝑦 = #𝑓 𝒙;𝑫

¨ For a given training data D: the more complicated !𝑓, the more
possibility that !𝑓 fits D better.

¨ For a given D: there exist many functions that fit D perfectly
(i.e., no error on D).

¨ However, those functions might generalize badly.
y

x

Overfitting

Fix the training set size, vary H complexity (e.g., degree of polynomials)

Example from Bishop, Figure 1.5

M

E
R

M
S

0 3 6 9
0

0.5

1
Training
Test

For any given N , some h of su�cient complexity fits the data
but may have very bad generalization error!!

CS194-10 Fall 2011 6

Er
ro

r

Complexity

4The Bias-Variance Decomposition

¡ Consider 𝑦 𝒙 = 𝑦∗ 𝒙 + 𝜖 as the (unknown) regression function
v 𝜖~𝑁𝑜𝑟𝑚𝑎𝑙 0, 𝜎! is a Gaussian noise with mean 0 and variance 𝜎!.

v 𝜖 may represent the noise due to measurement or data collection.

¡ Let !𝑓 𝒙;𝑫 be the regressor, learned by method 𝒜 from a training set D

¡ Note: We want that ,𝑓 well approximates the truth y∗.

v ,𝑓 𝒙;𝑫 is random, according to the randomness when collecting D.

¡ For any instance x, the error made by !𝑓 is 𝑦(𝒙) − !𝑓 𝒙;𝑫
"

¡ The error made by learning method 𝓐:
(Lỗi của thuật toán 𝒜 khi phán đoán x)

𝑒𝑟𝑟# 𝒙 = 𝔼𝑫,& 𝑦(𝒙) − !𝑓 𝒙;𝑫
"

v Why expectation? a different training set 𝑫’ will make 𝒜 to return a
different function "𝑓 𝒙;𝑫′

5The Bias-Variance Decomposition (2)

𝑒𝑟𝑟# 𝒙 = 𝜎" + 𝐵𝑖𝑎𝑠 " + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

v 𝐵𝑖𝑎𝑠 = 𝑦∗ 𝒙 − 𝔼𝑫 !𝑓 𝒙;𝑫 ; 	 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝔼𝑫 !𝑓 𝒙;𝑫 − 𝔼𝑫' !𝑓 𝒙;𝑫′
"

¡ This is known as Bias-Variance Decomposition
v 𝜎(: cannot be avoided due to noises or uncontrolled factors

v Bias: how far is the true value from the mean of predictions by method
𝒜?

v Variance: how much does each prediction by 𝒜 vary around its
mean?

¡ To obtain a small prediction error:

v Small bias? Increase model complexity è Variance tends to increase

v Small variance? Decrease model complexity è Bias tends to increase

Trade-off

6Bias-Variance tradeoff: classical view

¡ The more complex the model !𝑓 𝒙;𝑫 is, the more data
points it can capture, and the lower the bias can be.
v However, higher complexity will make the model "move"

more to capture the data points, and hence its variance
will be larger.

7.3 The Bias–Variance Decomposition 227

0.
0

0.
1

0.
2

0.
3

0.
4

Number of Neighbors k

50 40 30 20 10 0

k−NN − Regression

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

Subset Size p

Linear Model − Regression

0.
0

0.
1

0.
2

0.
3

0.
4

Number of Neighbors k

50 40 30 20 10 0

k−NN − Classification

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

Subset Size p

Linear Model − Classification

FIGURE 7.3. Expected prediction error (orange), squared bias (green) and vari-
ance (blue) for a simulated example. The top row is regression with squared error
loss; the bottom row is classification with 0–1 loss. The models are k-nearest
neighbors (left) and best subset regression of size p (right). The variance and bias
curves are the same in regression and classification, but the prediction error curve
is different.

Expected
prediction
error

Variance

Bias

38 2. Overview of Supervised Learning

High Bias

Low Variance

Low Bias

High Variance

P
re
d
ic
ti
on

E
rr
or

Model Complexity

Training Sample

Test Sample

Low High

FIGURE 2.11. Test and training error as a function of model complexity.

be close to f(x0). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias–variance tradeoff.

More generally, as the model complexity of our procedure is increased, the
variance tends to increase and the squared bias tends to decrease. The op-
posite behavior occurs as the model complexity is decreased. For k-nearest
neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 1

N

∑
i(yi − ŷi)2. Unfortunately

training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In
that case the predictions f̂(x0) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.

Classical
view

7Regularization: introduction

¡ Regularization is now a popular and useful technique in ML.

¡ It is a technique to exploit further information to
¨ Reduce overfitting in ML.
¨ Solve ill-posed problems in Maths.

¡ The further information is often enclosed in a penalty on the
complexity of #𝑓 𝒙;𝑫 .
¨ More penalty will be imposed on complex functions.
¨ We prefer simpler functions among all that fit well the training data.

8Regularization: the principle

¡ We need to learn a function 𝑓(𝒙,𝒘) from the training set D

¨ x is a data example and belongs to input space.

¨ w is the parameter and often belongs to a parameter space W.

¨ 𝑭 = {𝑓 𝒙,𝒘 :𝒘 ∈ 𝑾} is the function space, parameterized by w.

¡ For many ML models, the training problem is often reduced to an
optimization problem:

𝒘∗ = arg min
𝒘∈𝑾

𝐿(𝑓 𝒙,𝒘 ,𝑫) (1)

¨ w sometimes tells the size/complexity of that function.

¨ 𝐿(𝑓 𝒙,𝒘 ,𝑫) is an empirical loss/risk which depends on D. This loss
shows how well function f fits D.

¡ Another view:
𝑓∗ = argmin

+∈𝑭
𝐿(𝑓, 𝑫)

9Regularization: the principle

¡ Adding a penalty to (1), we consider

𝒘∗ = arg min
𝒘∈𝑾

𝐿(𝑓 𝒙,𝒘 ,𝑫) + 𝜆𝑔(𝒘) (2)

¨ Where 𝜆 > 0 is called the regularization/penalty constant.

¨ 𝑔(𝒘) measures the complexity of w: 𝑔(𝒘) 	≥ 	0

¡ 𝐿(𝑓, 𝑫) measures the goodness of function f on D.

¡ The penalty (regularization) term: 𝜆𝑔(𝑤)

¨ Allows to trade off the fitness on D and the generalization.
(cho phép đánh đổi lỗi trên tập học với khả năng tổng quát hoá)

¨ The greater λ, the heavier penalty, implying that 𝑔(𝒘) should be
smaller.

¨ In practice, λ should be neither too small nor too large.
(λ không nên quá lớn hoặc quá bé trong thực tế)

10Regularization: popular types

¡ 𝑔(𝒘) often relates to some norms when w is an n-
dimensional vector.

¨ L0-norm: ||w||0 counts the number of non-zeros in w.

¨ L1-norm:

𝒘 - =G
./-

0

𝑤.

¨ L2-norm:

𝒘 "
" =G

./-

0

𝑤."

¨ Lp-norm: 𝒘 1 =
! 𝑤- 1 +⋯+ 𝑤0 1

11Regularization in Ridge regression

¡ Ridge regression can be derived from OLS by adding a
penalty term into the objective function when learning.

¡ Learning a regressor in Ridge is reduced to

𝒘∗ = argmin
𝐰
𝑅𝑆𝑆 𝒘,𝑫 + 𝜆 𝒘 (

(

¨ Where λ is a positive constant.

¨ The term 𝜆 𝒘 "
" plays the role as regularization.

¨ Large λ reduces the size of w.

12Regularization in Lasso

¡ Lasso [Tibshirani, 1996] is a variant of OLS for linear regression by
using L1 to do regularization.

¡ Learning a linear regressor is reduced to

𝒘∗ = argmin
𝐰
𝑅𝑆𝑆 𝒘,𝑫 + 𝜆 𝒘 -

¨ Where λ is a positive constant.

¨ 𝜆 𝒘 ! is the regularization term. Large λ reduces the size of w.

¡ Regularization here amounts to imposing a Laplace distribution
(as prior) over each wi, with density function:

𝑝 𝑤+ 𝜆) =
𝜆
2 𝑒

,-|/#|

¨ The larger λ, the more possibility that wi = 0.

13Regularization in SVM

¡ Learning a classifier in SVM is reduced to the following problem:

¨ Minimize "
#𝒘

3𝒘

¨ Conditioned on: 𝑦" 𝒘#𝒙" + 𝑏 	≥ 1, 	 ∀𝑖 ∈ {1,… , 𝑟}

¡ In the cases of noises/errors, learning is reduced to

¨ Minimize

-
"𝒘

3𝒘+ 𝐶G
./-

4

𝜉.

¨ Conditioned on A𝑦" 𝒘
#𝒙" + 𝑏 ≥ 1 − 𝜉" ,

𝜉" ≥ 0, 	∀𝑖 ∈ {1,… , 𝑟}

¡ 𝜉1 +⋯+ 𝜉𝑟 measures the training error,
"
#𝒘

3𝒘 is the regularization term.

14Some other regularization methods

¡ Dropout: (Hilton and his colleagues, 2012)

¨ At each iteration of the training process, randomly drop out some
parts and just update the other parts of our model.

¡ Batch normalization [Ioffe & Szegedy, 2015]

¨ Normalize the inputs at each neuron of a neural network

¨ Reduce input variance, easier training, faster convergence

¡ Data augmentation

¨ Produce different versions of an example in the training set, by
adding simple noises, translation, rotation, cropping, …

¨ Those versions are added to the training data set

¡ Early stopping

¨ Stop training early to avoid overtraining & reduce overfitting

15Regularization: MAP role

¡ Under some conditions, we can view regularization as

𝒘∗ = arg min
/∈𝑾

𝐿 𝑓 𝒙,𝒘 ,𝑫 + 𝜆𝑔(𝒘)	

¨ Where D is a sample from a probability distribution whose log
likelihood is −𝐿 𝑓 𝒙,𝒘 ,𝑫 .

¨ w is a random variable and follows the prior with density
𝑝(𝒘) ∝ exp(−𝜆𝑔 𝒘)

¡ Then 𝒘∗ = argmax
𝒘∈𝑾

	{−𝐿 𝑓 𝒙,𝒘 ,𝑫 − 𝜆𝑔 𝒘 }

𝒘∗ = argmax
𝒘∈𝑾

log Pr(𝑫|𝒘) + log Pr(𝒘)	 = argmax
𝒘∈𝑾

log Pr(𝒘|𝑫)

¡ As a result, regularization in fact helps us to learn an MAP
solution w*.

Likelihood Prior

16Regularization: MAP in Ridge

¡ Consider the regression model: 𝒙 ∈ ℝ3

vPick 𝒘	~	𝑁𝑜𝑟𝑚𝑎𝑙 0, 𝜎2𝑰 , where I is the identity matrix

vGenerate sample 𝒙	~	𝑁𝑜𝑟𝑚𝑎𝑙(0, !"𝑰)

vLet 𝑦 = 𝒘𝑇𝒙

¡ Then the MAP estimation from the training data 𝑫 is

𝒘∗ = argmax
𝒘

log Pr(𝒘|𝑫) = argmax
𝒘

log[Pr(𝑫|𝒘) Pr 𝒘]

= argmax
𝒘

W
(𝒙,))∈𝑫

log Pr(𝒙, 𝑦|𝒘) + log Pr(𝒘) 	

= argmin
𝒘

W
(𝒙,))∈𝑫

1
2
𝑦 − 𝒘#𝒙 - +

1
2𝜎2

𝒘#𝒘+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

¡ Regularization using 𝐿2 with penalty constant 𝜆	 = 	𝜎,(.

Ridge regression
@@

𝑦 thus follows
a Normal

distribution
with mean 0

and variance
1

17Regularization: MAP in Ridge & Lasso

¡ The regularization constant in Ridge: 𝜆 = 𝜎,(

¡ The regularization constant in Lasso: 𝜆 = 𝑏,5

¡ Gaussian (left) and Laplace distribution (right)

𝑓 𝑥 𝜇, 𝜎 =
1

𝜎 2𝜋
exp −

𝑥 − 𝜇 $

2𝜎$

x

𝑓
𝑥
𝜇,
𝜎

𝑓 𝑥 𝜇, 𝑏 =
1
2𝑏 exp −

|𝑥 − 𝜇|
𝑏

𝑓
𝑥
𝜇,
𝑏

x
(Figure by Wikipedia)

18Regularization: limiting the search space

¡ The regularization constant in Ridge: 𝜆 = 𝜎,(

¡ The regularization constant in Lasso: 𝜆 = 𝑏,5

¡ The larger λ, the higher probability that x occurs around 0.

𝑓 𝑥 𝜇, 𝜎 =
1

𝜎 2𝜋
exp −

𝑥 − 𝜇 $

2𝜎$

x

𝑓
𝑥
𝜇,
𝜎

𝑓 𝑥 𝜇, 𝑏 =
1
2𝑏 exp −

|𝑥 − 𝜇|
𝑏

𝑓
𝑥
𝜇,
𝑏

x

19Regularization: limiting the search space

¡ The regularized problem:

𝑤∗ = arg min
/∈𝑾

𝐿(𝑓 𝑥, 𝑤 ,𝑫) + 𝜆𝑔(𝑤) (2)

¡ A result from the optimization literature shows that (2) is
equivalent to the following:

𝑤∗ = arg min
/∈𝑾

𝐿(𝑓 𝑥, 𝑤 ,𝑫) 	 such	that	 𝑔 𝑤 ≤ 𝑠	 (3)

¨ For some constant s.

¡ Note that the constraint of g(w) ≤ s plays the role as limiting
the search space of w.

20Regularization: effects of λ

¡ Vector w* = (w0, s1, s2, s3, s4, s5, s6, Age, Sex, BMI, BP)
changes when λ changes in Ridge regression.

¨ w* goes to 0 as λ increases.
Hesterberg et al./LARS and !1 penalized regression 67

theta

be
ta

−5
00

0
50
0

0.0 0.1 1.0 10.0

AGE

SEX

BMI

BP

S1

S2

S3
S4

S5

S6

Fig 1. Coefficients for ridge regression (standardized variables)

2.2.3. LASSO

Tibshirani (1996) proposed minimizing the residual sum of squares, subject
to a constraint on the sum of absolute values of the regression coefficients,∑p

j=1
|βj | ≤ t. This is equivalent to minimizing the sums of squares of residuals

plus an "1 penalty on the regression coefficients,

‖Y − Xβ‖2
2 + θ

p∑

j=1

|βj |. (3)

A similar formulation was proposed by Chen et al. (1998) under the name
basis pursuit, for denoising using overcomplete wavelet dictionaries (this corre-
sponds to p > n).

Figure 2 shows the resulting coefficients. For comparison, the right panel
shows the coefficients from ridge regression, plotted on the same scale. To the
right, where the penalties are small, the two procedures give close to the same
results. More interesting is what happens starting from the left, as all coefficients
start at zero and penalties are relaxed. For ridge regression all coefficients imme-
diately become nonzero. For LASSO, coefficients become nonzero one at a time.
Hence the "1 penalty results in variable selection, as variables with coefficients
of zero are effectively omitted from the model.

Another important difference occurs for the predictors that are most signif-
icant. Whereas an "2 penalty θ

∑
β2

j pushes βj toward zero with a force pro-
portional to the value of the coefficient, an "1 penalty θ

∑
|βj | exerts the same

force on all nonzero coefficients. Hence for variables that are most valuable, that
clearly should be in the model and where shrinkage toward zero is less desirable,
an "1 penalty shrinks less. This is important for providing accurate predictions
of future values.

21Regularization: practical effectiveness

¡ Ridge regression was under investigation on a prostate
dataset with 67 observations.

¨ Performance was measured by RMSE (root mean square errors)
and Correlation coefficient.

¨ Too high or too low values of λ often result in bad predictions.

¨ Why??

λ 0.1 1 10 100 1000 10000
RMSE 0.74 0.74 0.74 0.84 1.08 1.16
Correlation
coeficient

0.77 0.77 0.78 0.76 0.74 0.73

22Bias-Variance tradeoff: revisit

¡ Classical view:
More complex model #𝑓 𝑥;𝑫
v Lower bias, higher variance

¡ Modern phenomenon:
v Very rich models such as neural networks

are trained to exactly fit the data, but
often obtain high accuracy on test data
[Belkin et al., 2019; Zhang et al., 2021]

v 𝐵𝑖𝑎𝑠 ≅ 0

v GPT-4, ResNets,
StyleGAN,
DALLE-3, …

¡ Why???

38 2. Overview of Supervised Learning

High Bias

Low Variance

Low Bias

High Variance

P
re
d
ic
ti
on

E
rr
or

Model Complexity

Training Sample

Test Sample

Low High

FIGURE 2.11. Test and training error as a function of model complexity.

be close to f(x0). As k grows, the neighbors are further away, and then
anything can happen.
The variance term is simply the variance of an average here, and de-

creases as the inverse of k. So as k varies, there is a bias–variance tradeoff.
More generally, as the model complexity of our procedure is increased, the

variance tends to increase and the squared bias tends to decrease. The op-
posite behavior occurs as the model complexity is decreased. For k-nearest
neighbors, the model complexity is controlled by k.
Typically we would like to choose our model complexity to trade bias

off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 1

N

∑
i(yi − ŷi)2. Unfortunately

training error is not a good estimate of test error, as it does not properly
account for model complexity.
Figure 2.11 shows the typical behavior of the test and training error, as

model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In
that case the predictions f̂(x0) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd

!C of the form

h(x)=
NX

k=1

ak�(x ; vk) where �(x ; v):=e
p
�1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd

⇥R, we find the predictor hn,N 2

HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)� yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN)
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khk

H1
, which is generally

difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.

D
ow

nl
oa

de
d

at
 V

ie
t N

am
: P

N
AS

 S
po

ns
or

ed
 o

n
Ju

ne
 2

8,
 2

02
1

Model complexity

Ri
sk

 (E
rro

r)

23Regularization: summary

¡ Advantages:

¨ Avoid overfitting.

¨ Limit the search space of the function to be learned.

¨ Reduce bad effects from noises or errors in observations.

¨ Might model data better. As an example, L1 often work well
with data/model which are inherently sparse.

¡ Limitations:

¨ Consume time to select a good regularization constant.

¨ Might pose some difficulties to design an efficient algorithm.

24References

¡ Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the
National Academy of Sciences, 116(32), 15849-15854.

¡ Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on
Machine Learning (pp. 448-456).

¡ Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. Advances in Neural Information Processing
Systems, 25, 1097-1105.

¡ Hesterberg, T., Choi, N. H., Meier, L., & Fraley, C. (2008). Least angle and L1
penalized regression: A review. Statistics Surveys.

¡ Tibshirani, R (1996). Regression shrinkage and selection via the Lasso. Journal of the
Royal Statistical Society, vol. 58(1), pp. 267-288.

¡ Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical
Learning. Springer, 2009.

¡ Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021). Understanding
deep learning (still) requires rethinking generalization. Communications of the
ACM, 64(3), 107-115.

