

Machine Learning (Học máy – IT3190E)

Khoat Than

School of Information and Communication Technology Hanoi University of Science and Technology

2024

- Introduction to Machine Learning
- Supervised learning
- Probabilistic modeling

Regularization

- Reinforcement learning
- Practical advice

- The complexity of the learned function: $y = \hat{f}(x; D)$
 - □ For a given training data **D**: the more complicated \hat{f} , the more possibility that \hat{f} fits **D** better.
 - For a given D: there exist many functions that fit D perfectly (i.e., no error on D).
 - However, those functions might generalize badly.

- Consider $y(x) = y^*(x) + \epsilon$ as the (unknown) regression function
 - * $\epsilon \sim Normal(0, \sigma^2)$ is a Gaussian noise with mean 0 and variance σ^2 .
 - * ϵ may represent the noise due to measurement or data collection.
- Let $\hat{f}(x; D)$ be the regressor, learned by method \mathcal{A} from a training set **D**
- Note: We want that \hat{f} well approximates the truth y^* .
 - * $\hat{f}(x; D)$ is random, according to the randomness when collecting **D**.
- For any instance **x**, the error made by \hat{f} is $(y(\mathbf{x}) \hat{f}(\mathbf{x}; \mathbf{D}))^2$
- The error made by learning method A: (Lỗi của thuật toán A khi phán đoán x)

$$err_A(\mathbf{x}) = \mathbb{E}_{\mathbf{D},\epsilon} \left(y(\mathbf{x}) - \hat{f}(\mathbf{x}; \mathbf{D}) \right)^2$$

* Why expectation? a different training set D' will make A to return a different function $\hat{f}(x; D')$

 $err_A(\mathbf{x}) = \sigma^2 + [Bias]^2 + Variance$

* Bias = $y^*(\mathbf{x}) - \mathbb{E}_D \hat{f}(\mathbf{x}; \mathbf{D});$ Variance = $\mathbb{E}_D \left(\hat{f}(\mathbf{x}; \mathbf{D}) - \mathbb{E}_{D'} \hat{f}(\mathbf{x}; \mathbf{D}') \right)^2$

- This is known as Bias-Variance Decomposition
 - * σ^2 : cannot be avoided due to noises or uncontrolled factors
 - * Bias: how far is the true value from the mean of predictions by method \mathcal{A} ?
 - \ast Variance: how much does each prediction by $\mathcal A$ vary around its mean?
- To obtain a small prediction error:
 - Small bias? Increase model complexity → Varian
 Trade-off
 - Small variance? Decrease model complexity → Bias t/ /t

- The more complex the model $\hat{f}(x; D)$ is, the more data points it can capture, and the lower the bias can be.
 - However, higher complexity will make the model "move" more to capture the data points, and hence its variance will be larger.

k-NN - Regression

Classical

view

- Regularization is now a popular and useful technique in ML.
- It is a technique to exploit further information to
 - □ Reduce overfitting in ML.
 - Solve ill-posed problems in Maths.
- The further information is often enclosed in a penalty on the complexity of f(x; D).
 - More penalty will be imposed on complex functions.
 - We prefer simpler functions among all that fit well the training data.

Tikhonov, smoothing an illposed problem

Zaremba, model complexity minimization

Bayes: priors over parameters

Andrew Ng: need no maths, but it prevents overfitting!

Regularization: the principle

- We need to learn a function f(x, w) from the training set **D**
 - □ **x** is a data example and belongs to **input space**.
 - □ w is the parameter and often belongs to a parameter space W.
 - □ $F = \{f(x, w) : w \in W\}$ is the function space, parameterized by w.
- For many ML models, the training problem is often reduced to an optimization problem:

$$\boldsymbol{w}^* = \arg\min_{\boldsymbol{w}\in\boldsymbol{W}} L(f(\boldsymbol{x},\boldsymbol{w}),\boldsymbol{D})$$
(1)

- w sometimes tells the size/complexity of that function.
- □ L(f(x, w), D) is an empirical loss/risk which depends on **D**. This loss shows how well function f fits **D**.
- Another view:

$$f^* = \arg\min_{f \in F} L(f, D)$$

Adding a penalty to (1), we consider

$$w^* = \arg\min_{w \in W} L(f(x, w), D) + \lambda g(w)$$

- □ Where $\lambda > 0$ is called the regularization/penalty constant.
- $\Box g(w)$ measures the complexity of $w: g(w) \ge 0$
- $L(f, \mathbf{D})$ measures the goodness of function f on \mathbf{D} .
- The penalty (regularization) term: $\lambda g(w)$
 - Allows to trade off the fitness on **D** and the generalization.
 (cho phép đánh đổi lỗi trên tập học với khả năng tổng quát hoá)
 - Definition The greater λ, the heavier penalty, implying that g(w) should be smaller.
 - In practice, λ should be neither too small nor too large.
 (λ không nên quá lớn hoặc quá bé trong thực tế)

Regularization: popular types

- g(w) often relates to some norms when w is an n-dimensional vector.
 - $\Box L_0-norm: \qquad ||w||_0 \text{ counts the number of non-zeros in } w.$

- Ridge regression can be derived from OLS by adding a penalty term into the objective function when learning.
- Learning a regressor in Ridge is reduced to

$$\boldsymbol{w}^* = \arg\min_{\boldsymbol{w}} RSS(\boldsymbol{w}, \boldsymbol{D}) + \lambda \|\boldsymbol{w}\|_2^2$$

- \square Where λ is a positive constant.
- The term $\lambda \|w\|_2^2$ plays the role as regularization.
- \square Large λ reduces the size of **w**.

- Lasso [Tibshirani, 1996] is a variant of OLS for linear regression by using L₁ to do regularization.
- Learning a linear regressor is reduced to

$$\boldsymbol{w}^* = \arg\min_{\boldsymbol{w}} RSS(\boldsymbol{w}, \boldsymbol{D}) + \lambda \|\boldsymbol{w}\|_1$$

 $\hfill\square$ Where λ is a positive constant.

- $\square \lambda \| \boldsymbol{w} \|_1$ is the regularization term. Large λ reduces the size of \boldsymbol{w} .
- Regularization here amounts to imposing a Laplace distribution (as prior) over each w_i, with density function:

$$p(w_i|\lambda) = \frac{\lambda}{2} e^{-\lambda|w_i|}$$

 \square The larger λ , the more possibility that $w_i = 0$.

- Learning a classifier in SVM is reduced to the following problem:
 - \square Minimize $\frac{1}{2} \boldsymbol{w}^T \boldsymbol{w}$
 - □ Conditioned on: $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1, \forall i \in \{1, ..., r\}$
- In the cases of noises/errors, learning is reduced to

D Minimize

$$\frac{1}{2}\boldsymbol{w}^T\boldsymbol{w} + C\sum_{i=1}^r \xi_i$$

Conditioned on

$$\begin{cases} y_i(\boldsymbol{w}^T\boldsymbol{x}_i+b) \ge 1-\xi_i, \\ \xi_i \ge 0, \quad \forall i \in \{1, \dots, r\} \end{cases}$$

• $\xi_1 + \dots + \xi_r$ measures the training error, $\frac{1}{2} w^T w$ is the regularization term.

- **Dropout:** (Hilton and his colleagues, 2012)
 - At each iteration of the training process, randomly drop out some parts and just update the other parts of our model.
- Batch normalization [loffe & Szegedy, 2015]
 - Normalize the inputs at each neuron of a neural network
 - Reduce input variance, easier training, faster convergence

Data augmentation

- Produce different versions of an example in the training set, by adding simple noises, translation, rotation, cropping, ...
- $\hfill\square$ Those versions are added to the training data set

Early stopping

Stop training early to avoid overtraining & reduce overfitting

Under some conditions, we can view regularization as

$$w^* = \arg \min_{w \in W} L(f(x, w), D) + \lambda g(w)$$

Likelihood Prior

- □ Where **D** is a sample from a probability distribution whose log<u>likelihood</u> is -L(f(x, w), D).
- □ w is a random variable and follows the prior with density $p(w) \propto \exp(-\lambda g(w))$
- Then $w^* = \arg \max_{w \in W} \{-L(f(x, w), D) \lambda g(w)\}$

 $w^* = \arg \max_{w \in W} \log \Pr(D|w) + \log \Pr(w) = \arg \max_{w \in W} \log \Pr(w|D)$

As a result, regularization in fact helps us to learn an MAP solution w*.

Regularization: MAP in Ridge

• Consider the regression model: $x \in \mathbb{R}^n$

Then the MAP estimation from the training data D is

$$w^* = \arg \max_{w} \log \Pr(w|D) = \arg \max_{w} \log[\Pr(D|w) \Pr(w)]$$

= $\arg \max_{w} \sum_{(x,y)\in D} \log \Pr(x, y|w) + \log \Pr(w)$
= $\arg \min_{w} \sum_{(x,y)\in D} \frac{1}{2}(y - w^T x)^2 + \frac{1}{2\sigma^2}w^T w + constant$
Ridge regression
@@

• Regularization using L_2 with penalty constant $\lambda = \sigma^{-2}$.

- The regularization constant in Ridge: $\lambda = \sigma^{-2}$
- The regularization constant in Lasso: $\lambda = b^{-1}$
- Gaussian (left) and Laplace distribution (right)

(Figure by Wikipedia)

17

- The regularization constant in Ridge: $\lambda = \sigma^{-2}$
- The regularization constant in Lasso: $\lambda = b^{-1}$
- The larger λ , the higher probability that x occurs around 0.

The regularized problem:

$$w^* = \arg\min_{w \in W} L(f(x, w), D) + \lambda g(w)$$
(2)

A result from the optimization literature shows that (2) is equivalent to the following:

$$w^* = \arg\min_{w \in W} L(f(x, w), D)$$
 such that $g(w) \le s$ (3)

□ For some constant s.

■ Note that the constraint of g(w) ≤ s plays the role as limiting the search space of w. • Vector $\mathbf{w}^* = (w_0, s1, s2, s3, s4, s5, s6, Age, Sex, BMI, BP)$ changes when λ changes in Ridge regression.

 \square **w**^{*} goes to 0 as λ increases.

- Ridge regression was under investigation on a prostate dataset with 67 observations.
 - Performance was measured by RMSE (root mean square errors) and Correlation coefficient.

λ	0.1	1	10	100	1000	10000
RMSE	0.74	0.74	0.74	0.84	1.08	1.16
Correlation coeficient	0.77	0.77	0.78	0.76	0.74	0.73

 $\hfill\square$ Too high or too low values of λ often result in bad predictions.

□ Whyśś

Bias-Variance tradeoff: revisit

- Classical view:
 More complex model f(x; D)
 - Lower bias, higher variance

Modern phenomenon:

Very rich models such as neural networks are trained to exactly fit the data, but often obtain high accuracy on test data [Belkin et al., 2019; Zhang et al., 2021]

High Bias

Prediction Error

Advantages:

- Avoid overfitting.
- $\hfill\square$ Limit the search space of the function to be learned.
- Reduce bad effects from noises or errors in observations.
- Might model data better. As an example, L₁ often work well with data/model which are inherently sparse.

Limitations:

- □ Consume time to select a good regularization constant.
- De Might pose some difficulties to design an efficient algorithm.

- Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machinelearning practice and the classical bias-variance trade-off. Proceedings of the National Academy of Sciences, 116(32), 15849-15854.
- Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning (pp. 448-456).
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097-1105.
- Hesterberg, T., Choi, N. H., Meier, L., & Fraley, C. (2008). Least angle and L1 penalized regression: A review. Statistics Surveys.
- Tibshirani, R (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, vol. 58(1), pp. 267-288.
- Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning. Springer, 2009.
- Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2021). Understanding deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3), 107-115.