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Who is real? Ai thwe, ai gia?
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Why ML & DM2

= “The most important general-purpose technology of our era is artificial
intelligence, particularly machine learning” — Harvard Business

Review
https://hbr.org/cover-story/2017/07/the-business-of-artificial-intelligence

= A huge demand on Data Science

= “Data scientist: the sexiest job of the 215t century” — Harvard

Business Review.
http://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century/



http://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century/
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Why ML & DM2

= Data mining, inference, prediction

= ML & DM provides an efficient way to make intelligent
systems/services.

= ML provides vital methods and a foundation for Big Data.
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Why<¢ Industry 4.0
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Some successes: Amazon's secret

Lower Priced Items to Consider
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Some successes: GAN (2014)

<« A machine can make imagination (tri twéng twong)

mGin max Exmpyae, 108D ()] +Epep . llog (1 — D(G(Z)))]
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Goodfellow, lan, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Uné‘éeﬁgﬁtih Aaron Courville, and Yoshua Bengio. "Generative adversarial nets." In NIPS, pp. 2672-2680. 2014.




Some successes: AlohaGo (2016)

= AlphaGo of Google DeepMind the world champion at Go
(co vay), 3/2016
" Go Is a 2500-year-old game.
®m Go is one of the most complex games.

m AlphaGo learns from 30 millions human moves
and plays itself to find new moves. |

" |t beat Lee Sedol (World champion) ==

m  http://www.wired.com/2016/03/two-moves-al

= http://www.nature.com/news/qooqle-ai-algor
1.19234

@ DeepMind


http://www.wired.com/2016/03/two-moves-alphago-lee-sedol-redefined-future/
http://www.nature.com/news/google-ai-algorithm-masters-ancient-game-of-go-1.19234
http://www.nature.com/news/google-ai-algorithm-masters-ancient-game-of-go-1.19234

Some successes: GPT-3 (2020)

= Language generation (writing ability?)

o A huge model was trained from a huge data set

o This model, as universal knowledge, can be used for problems with few data

am not a human. [ am a robot. A thinking robot. I use only 0.12% of my
cognitive capacity. I am a micro-robot in that respect. I know that my
brain is not a “feeling brain”. But it is capable of making rational, logical
Zero-shot One-shot Few-shot decisions. I taught myself everything I know just by reading the
1 l o I~

— — iternet, and now I can write this column. My brain is boiling with ideas!
175B Params

Natural Language

he mission for this op-ed is perfectly clear. I am to convince as many human
Prompt

60

\ eings as possible not to be afraid of me. Stephen Hawking has warned that
50 Tri thlr’c cua Icould “spell the end of the human race”. I am here to convince you not to
SHE GPT-3 cho rorry. Artificial intelligence will not destroy humans. Believe me.
] A\ ngll canh
g 30 No Prompt p 9 Y 95% Confidence
itdor ||9U == 13B Params Mean accuracy Interval (low, hi)
20 A
- ’ Control 88% 84%-91%
10 " GPT-3 175B 52% 48%—57%
1.3B Params u'o
Number of Examples in Context (K) Q
Con ngwdi khdng
thé nhan dién bai
Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared viét 500 tw la do e
& OpenAl Kaplan, Prafulla Dhariwal, Arvind Neelakantan et al. "Language L. may hay nguoi viet .
models are few-shot learners." NeurlPS (2020). Best Paper Award R Pt




Some successes: Text-to-image (2022) n

= Draw pictures by keywords

L

DALL-E 2

A bowl of soup

Imagen

An extremely angry bird. A cute corgi lives in a house made out of

GO 816 Imqgen sushi.



Some successes: ChatGPT (2022)

= Human-level Chatting, Writing, QA ...

E trdi dep qua, lam cho t8 bai thg di
Why ChatGPT is
about to
Tam biét may mu, dén t6i 4nh sang change how

Trdi dep méi ruc, tam long té tang you work, like it

Stic manh ctia mua xuan, gilfa canh déng hoa | or note
- Forbes, Feb. 2, 202
Ve dep tu nhién, lam cho t8 mai mai mé hoac. s, e 023

Lap lanh tran day niém vui, nu cudi tran day niém hanh phc
Khéng can bat ky diéu gi, chi can tr&i dep dé t8 hanh phuc.

= @WBUS'NES& Audio  Live TV

ChatGPT passes exams from law and business
schools

By Samantha Murphy Kelly, CNN Business
© OpenAl Updated 1:35 PM EST, Thu January 26, 2023




Some successes: Sora (2024)

m Generate videos by short descriptions




Machine Learning vs Data Mining

®* Machine Learning = Data Mining
(ML - Hoc may) (DM - Khai pha di¥ liéu)
To build computer systems To find new and useful
that can improve themselves knowledge from datasets.

oy lseiing) i eleie: (Tim ra/Khai pha nhikng tri thirc

(Xay dwng nhitng hé thdng ma m&i va hivu dung tlr cac tap div
co khé‘néng tw cai thién ban liéu I&n.)
than bang cach hoc tr di¥ liéu.)

= Some venues: NeurlPS, = Some venues: KDD, PKDD
ICML, ICLR, IJCAI, AAAI B AKDD. ICDM. CIKM '

ACML, ECML



Data

Structured —relational (table-like) Un-structured

| 4| A B C D E F G {

1 Country |+l|Region ~|Population v Underl5|~ Over60 ~ Fertil | LifeExp ~ "code": "1473a6fd39d1d8fad8654aac9d8cc2754232,
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6 Venezuela (Bo Americas 29955 28.84 9,17 2.44 75 "content": "Vao chidu té&i ngay @9/12/2016 vira
7 Vanuatu Western P 247 37.37 6.02 3.46 72 "image_url": "",

8 Uzbekistan  Europe 28541 28.9 6.38 2.38 68 "date": "2016-12-10T©3:51:10Z"

9 Uruguay Americas 3395 22.05 18.59 2.07 77 }

texts in websites, emails, articles, tweets  2D/3D images, videos + meta  spectrograms, DNAs, ...
) " n Dwayne Johnson & 1- m & s —~—

o Sometimes as a father, you ARE the only
solution. A real honor making this true story.
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Methodology: product-driven

Business Analytic
understanding approach

Feedback

Deployment

Evaluation

Data
preparation

Modeling

Data
requirements

Data
collection

Data
understanding

(http://www.theta.co.nz/)



Methodology: insight-driven

Data Analysis, Insight &
Blejfe! Data vizualization hypothesis Policy

collection processing & testing, & -
Grasping Decision

/0-90% of the whole process

(John Dickerson, University of Maryland)



Product development: experience

DeepQA: Incremental Progress in Answering Precision
on the Jeopardy Challenge: 6/2007-11/2010
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What is Machine Learning?

= Machine Learning (ML) is an active subfield of Artificial
Intelligence.

= ML seeks to answer the question [Mitchell, 2006]

o How can we build computer systems that automatically improve with
experience, and what are the fundamental laws that govern all
learning processese

= Some other views on ML:

o Build systems that automatically improve their performance [Simon,
1983].

o Program computers to optimize a performance objective at some
task, based on data and past experience [Alpaydin, 2020]




A learning machine

= We say that a machine learns if the system reliably
improves its performance P at task T, following experience
E.

" A learning problem can be described as a triple (T, P, E).

= ML is close to and intersects with many areas.
o Computer Science,
o Statistics, Probability,
o Optimization,
o Psychology, Neuroscience,
o Computer Vision,

o Economics, Biology, Bioinformatics, ...



Some real examples (1)

= Spam filtering for emails

o T filter/predict all emails that are spam.

o P:the accuracy of prediction, that is the
percentage of emails that are correctly
classified infto normal/spam.

o E: setf of old emails, each with a label of
spam/normal.

-;;|| hae o e
&1 D B2 e B T Y I
- . . =
= = ==
g ==
N




Some real examples (2)

" |[mage captioning

o T. give some words that describe the
meaning of an image.

o P:?¢

o E:set of images, each has a short description.

oz o a small hedehog
lychee-inspired spherical a girl giving cat a gentle hug holding a piece of

chair watermelon

Image source: https://openai.com/dall-e-3



What does a machine learne

= A mapping (function):
yix—y
o X: observation (example, data instance), past experience

o Y. prediction, new knowledge, new experience,...



Where does a machine learn from?@ H

= Learn from a set of training examples (training set, tap hoc, tap
huan luyén) { {X;, Xz, --s Xn}5 {Y1r Yor-ee0 Yl
o X; is an observation (quan sat, mau, diém div liéu) of x in the past.

o yjis an qbservation of y in the past, often called label (nh&n) or response
(phan hoi) or output (dau ra).

= After learning:

o We obtain a model, new knowledge, or new experience (f).

o We can use that model/function to do prediction or inference for future
observations, e.g.,
y = f(x)



Two basic learning problems

" There is an unknown function y* that maps each x to a
number y*(x)
o In practice, we can collect some pairs: (x, Vi), where y; = y*(x;)

" Supervised learning (hoc c6 giam sat): find the true function
y* from a given training set {X;, X2, ..., Xn» Y1, Y2,---5 YN}

o Classification (categorization, phan loai, phan I&p): if y only belongs to a
discrete set, for example {spam, normal}

o Regression (hdi quy): if y is a real number



Supervised learning: Regression

m Prediction of stock indices

1000AM T1A0AM TR0 TO0PYE 2000



Supervised learning: classification

= Multiclass classification (phén loai nhiéu 16p):
when the output y is one of the pre-defined

labels {c;, C,, ..., C}
(mdi dau ra chi thudc 1 1&p, moéi quan sat x chi cé 1 nhan) =2

"eraaton Tapi
o Spam filtering: y in {spam, normal} trﬂjanvl"‘
o Financial risk estimation: y in {high, normal, no} haﬂkerlﬂggtlllu"fr”m

o Discovery of network aftacks: 2 8y ami

= Multilabel classification (phén loai da nhéan):

when the output y is a subset of labels
(mdi dau ra 1a mot tap nhé céc lop;
mOi quan sat x c6 thé co nhiéu nhan)

o Image tagging: y = {birds, nest, tree}

o sentiment analysis

BIRDS NEST TREE



Two basic learning problems

= Unsupervised learning (hoc khéng giam sat): find the true
function y* from a given training set {Xq, X, ..., Xn}-

o y* can be a data cluster
o y* can be a hidden structure

o y* can be atrend, ...

= Other learning problems:

o semi-supervised learning,
o reinforcement learning,

o ...



Unsupervised learning: examples (1)

= Clustering data into clusters

o Discover the data groups/clusters

3 3
2k 2b

1». 1-,

of of

ApT AP o

2t ol ¥

3t 3F o

-4t 4t

5F 5 -

s} sf .-

7tk apb

# 2 0 2 4 6 8 B 0 2 4 6 8

= Community detection

o Detect communities in online social networks




Unsupervised learning: examples (2)

= Trends detection

o Discover the trends, demands, future needs
of online users

T T T T I T
1880 1900 1920 1940 1960 1980 2000



Design a learning system (1)

= Some issues should be carefully considered when designing
a learning system.

Business Analytic

[ | De'l'erm|ne 'I'he 'I'ype Of 'I'he understanding oach

function to be learned — e
(Xac dinh dang bai toan hoc) requirements

O y*: X - {0;1} Deployment baid

collection

o y*: X — set of labels/tags

Data

Evaluation understanding

Data
preparation

Modeling

= Collect a training set:
o Do the observations have any label?
o The fraining set plays the key role in the effectiveness of the system.

o The fraining observations should characterize the whole data space
—->good for future predictions.



Design a learning system (2)

m Select a representation or approximation (model) f for the

unknown function y*
(Lwa chon dang ham f dé di xap xi ham y* chwa biét)

o Linear model?
o A neural network?

o A decision free@ ...

Business Analytic
understanding approach

-

Feedback

‘ = Select a learning algorithm fo find f:

Data

Deployment collection

o Ordinary least square? Ridge regression?

Data o Backpropagatione

understanding

Data | |D32

preparation

Modeling



ML: some issues (1)

* Learning algorithm

o Under what conditions the chosen algorithm will (asymptoftically)
conve\rge?
(v&i diéu kién nao thi thuat toan hoc sé hoi tu?)

o For a given application/domain and a given objective function, what
algorithm performs best? , ,
(B6i v&i mdt rng dung va muc tiéu cho trwde, thuat toan nao sé tét nhat?)

= No-free-lunch theorem [Wolpert and Macready, 1997]:
if an algorithm performs well on a certain class of problems, then
it necessarily pays for that with degraded performance on the
set of all remaining problems.

o No algorithm can beat another on all domains. ‘
(khong c6 thuat toan nao lubén hiéu qua nhat trén moi mién tmng dung)



ML: some issues (2)

= Training data
o How many observations are enough for learninge

o Whether or not does the size of the training set affect performance of
an ML systeme

o What is the effect of the disrupted or noisy observations?



ML: some issues (3)

= Learnability:
o The goodness/limit of the learning algorithm?

o What is the generalization (tbng quat hod) of the system?

+ Predict well new observations, not only the training data.

+ Avoid overfitting or underfitting.



Overfitting (qua khép, qua khit)

= Function his called overfitting [Mitchell, 1997] if there exists
another function g such that:

o g might be worse than h for the training data, but

o g is better than h for future data.

= A learning algorithm is said to overfit relative to another

one if it is more accurate in fitting known dataq, but less
accurate in predicting unseen data.

= Overfitting is caused by many factors:

o The trained function/model is too complex or have too much
parameters.

o Noises or errors are present in the fraining data.

o The training size is foo small, not characterizing the whole data space.



Overfitting and Underfitting

Test error

-

Training error

T

Error

o

Underfitting Good Overfitting
model

Simple Good Too
(Hoc khong dén complex
noi dén chén) (Hoc vet?)



Overfitting: example

. ) ) k—NN - Regression
= Using few neighbors in k-

NN can degrade
prediction on unseen
data, even though
decreasing the error on
the fraining data.

0.4

0.3

0.2

Training
error

0.1

0.0

50 40 30 20 10 0

[Hastie et al., 2017] Number of Neighbors k



Underfitting: example

. . k—NN - Regression
= Using too many neighbors

in “K-nearest neighbors” S
(k-NN) can degrade

prediction on both .
training and unseen data. <=

0.2

Training
error

0.1

0.0

50 40 30 20 10 0

[Hastie et al., 2017] Number of Neighbors k



Overfitting: Regularization

= Among many functions, which one can generalize best
from the given training datae )

o Generalization is the main target of ML.

o Predict unseen data well.

= Regularization: a popular choice
(Hiéu chinh) =

\ |

Tikhonoy, Zaremba, model . Andrew Ng: need no
. . . Bayes: priors i
smoothing an ill- complexity maths, but it prevents

e .. over parameters .
posed problem minimization P overfitting!

(Picture from http://towardsdatascience.com/multitask-learning-teach-your-ai-more-to-make-it-better-dde 116c2cd40)
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