
1

2

Introduction to
Data Science

(IT4142E)

Contents
• Lecture 1: Overview of Data Science
• Lecture 2: Data crawling and preprocessing

• Lecture 3: Data cleaning and integration
• Lecture 4: Exploratory data analysis
• Lecture 5: Data visualization
• Lecture 6: Multivariate data visualization
• Lecture 7: Machine learning

• Lecture 8: Big data analysis
• Lecture 9: Capstone Project guidance

• Lecture 10+11: Text, image, graph analysis
• Lecture 12: Evaluation of analysis results

3

This lecture
1. How to choose the right chart?

2. Bar Chart – Column Chart

3. Line Chart

4. Histogram

5. Scatter Plot

6. Violin

7. Other charts

8. Multivariable Visualization

4

1. How to choose the right chart?
• Data visualization is a technique to communicate

insights from data through visual representation

• Main goal: is to distill large datasets into visual
graphics to allow for a straighforward understanding of
complex relationship within the data

• It is important to choose the right chart for visualizing
your data

5

What story do you want to tell?
• It is important to understand why we need a kind of

chart
• Graphs
• Plots
• Maps
• Diagrams
• ...

• Relationship

• Data over time

• Ranking

• Distribution

• Comparison

6

Relationship
• To display a connection or correlation between two or

more variables

• When assessing a relationship between data sets, we
are trying to understand how these data sets combine
and interact with each other

• The relationship or correlation can be positive or
negative

• Whether or not the variables might be supportive or working
against each other

7

Relationship
• Scatter plot

• Histogram

• Pair Plot

• Heat map

8

Data over time
• Goal: to explore the relationship between variables to

find trends or changes over time

• The date/time appears as a link property between
variables, so a kind of relationship

• Line chart

• Area chart

• Stack Area Chart

• Area Chart Unstacked

9

Ranking
• Goal: to display the relative order of data values

• Vertical bar chart

• Horizontal bar chart or Column Chart

• Multi-set bar chart

• Stack bar chart

• Lollipop Chart

10

Distribution
• Goal: to see how a variable is distributed

• Histogram

• Density Curve with Histogram

• Density plot

• Box plot

• Strip plot

• Violin Plot

• Population Pyramid

11

Comparison
• Goal: to display the trends between multiple variable in

datasets or multiple categories within a single variable

• Bubble chart

• Bullet chart

• Pie chart

• Net pie chart

• Donut chart

• TreeMap

• Diverging bar

• Choropleth map

• Bubble map

12

2. Bar/Column Chart
• A series of bars illustrating a variable’s development

• 4 types of bar charts:
• Horizontal bar chart
• Vertical bar chart
• Group bar chart
• Stacked bar chart

• This kind of chart is appropriated when we want to
track the development of one or two variables over
time

• One axis shows the specific categories being
compared (independent variable)

• The other axis represents a measured value
(dependent variable)

13

Vertical Bar Chart (Column Chart)
• Distinguish it from histograms

• not to display a continuous developments over an interval
• discrete data
• data is categorical and used to answer the question of how

many in each category

• Used to compare several items in a specific range of
values

• Ideal for comparing a single category of data between
individual sub-items

14

Vertical Bar Chart (Column Chart)

15

Quantitative
Dependent

variable

Discrete/Nominal
Independent variable

Benefits from
both position
(top of bar)
and length
(size of bar)

Vertical Bar Chart (Column Chart)

16

import numpy as np
import matplotlib.pyplot as plt

linear_data = np.array([1, 2, 3, 4, 5, 6, 7, 8])
exponential_data = linear_data ** 2

xvals = range(len(linear_data))
plt.bar(xvals, linear_data, width=0.3)

exp_xvals = []
for item in xvals:

exp_xvals.append(item+0.3)
plt.bar(exp_xvals, exponential_data, width=0.3,
color='r')

plt.legend(['Linear data', 'Exponential data'])
plt.show()

Vertical Bar Chart (Column Chart)

17

import numpy as np
import matplotlib.pyplot as plt

linear_data = np.array([1, 2, 3, 4, 5, 6, 7, 8])
exponential_data = linear_data ** 2

xvals = np.arange(len(linear_data))
exp_xvals = []
for item in xvals:

exp_xvals.append(item+0.3)

fig, ax = plt.subplots()
ax.bar(xvals, linear_data, width=0.3)
ax.bar(exp_xvals, exponential_data, width=0.3,
color='r')
ax.legend(['Linear data', 'Exponential data'])
ax.set_xticks(xvals + 0.3 / 2)
ax.set_xticklabels(xvals)
plt.show()

Horizontal Bar Chart
• Represent the data horizontally

• The data categories are shown on the y-axis

• The data values are shown on the x-axis

• The length of each bar is equal to the value
corresponding to the data category

• All bars go across from left to right

• Use barh() function

18

Stacked Bar Chart
• Stacked bar charts segment their bars

• Used to show how a broader category is divided into
smaller categories

• The relationship of each part on the total amount is
also showed

• Place each value for the segment after the previous
one

• The total value of the bar chart is all the segment
values added together

• Ideal for comparing the total amount across each
group/segmented bar

19

Stacked Bar Chart

20

Stacked Bar Chart

21

3. Line Chart
• Line charts are used to display quantitative values over

a continuous interval or period

• Drawn by first plotting data points on a cartesian
coordinate grid and then connecting them

• Y-axis has a quantitative value

• X-axis is a timescale or a sequence of intervals

• Best for continuous data

• Most frequently used to show trends and analyze how
the data has changed over time

22

Line charts

23

Quantitative
continuous
dependent
variable

Quantitative continuous
independent variable

Benefits from
position but
not length

Line chart (pylab vs pyplot

24

from pylab import *
t = arange(0.0, 2.0, 0.01)
s = sin(2.5*pi*t)
plot(t,s)

xlabel('time (s)')
ylabel('voltage (mV)')
title('Sine Wave')
grid(True)
show()

import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0.0, 2.0, 0.01)
s = np.sin(2.5*np.pi*t)
plt.plot(t,s)

plt.xlabel('time (s)')
plt.ylabel('voltage (mV)')
plt.title('Sine Wave')
plt.grid(True)
plt.show()

Line chart (cont.)

25

import numpy as np
import matplotlib.pyplot as plt
linear_data =
np.array([1,2,3,4,5,6,7,8])
exponential_data =
linear_data**2
plt.plot(linear_data, '-o',
exponential_data, '-o')
plt.show()

Line chart (cont.)

26

import numpy as np
import matplotlib.pyplot as
plt
linear_data =
np.array([1,2,3,4,5,6,7,8])
exponential_data =
linear_data**2
plt.plot(linear_data, '-o',
exponential_data, '-o')
plt.gca().fill_between(range(l
en(linear_data)),

linear_data, exponential_data,

facecolor='blue',

alpha=0.25)
plt.show()

Area Chart
• Built based on line chart

• The area between the x-axis and the line is filled in
with color or shading

• Ideal for clearly illustrating the magnitude of change
between two or more data points

• Use stackplot() function

• Or just fill in color the area between two lines

27

Area Chart

28

4. Histogram
• Histogram is an accurate representation of the

distribution of numerical data

• An estimation of the probability distribution of a
continuos variable

• To construct a histogram, follow these steps
• Bin the range of values
• Divide the entire range of values into a series of intervals
• Count how many values fall into each interval

• Bins are usually specified as consecutive, non-
overlapping intervals of variable

29

Histogram example

30

Histogram example

31

import numpy as np
import matplotlib.pyplot as plt

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2,
sharex=True)

axs = [ax1, ax2, ax3, ax4]

for n in range(0, len(axs)):
sample_size = 10**(n+1)
sample = np.random.normal(loc=0.0, scale=1.0,

size=sample_size)
axs[n].hist(sample)
axs[n].set_title('n={}'.format(sample_size))

plt.show()

Histogram example

32

import numpy as np
import matplotlib.pyplot as plt

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2,
sharex=True)

axs = [ax1, ax2, ax3, ax4]

for n in range(0, len(axs)):
sample_size = 10**(n+1)
sample = np.random.normal(loc=0.0, scale=1.0,

size=sample_size)
axs[n].hist(sample, bins=100)
axs[n].set_title('n={}'.format(sample_size))

plt.show()

Histogram example

33

5. Scatter plot
• A kind of chart that is often used in statistics and data

science

• It consists of multiple data points plotted across two
axes

• Each variable depicted in a scatter plot would have
various observations

• Used to identify the data’s relationship with each
variable (i.e., correlation, trend patterns)

• In machine learning, scatter plots are often used in
regression, where x and y are continuous variable

• Also being used in clustering scatters or outlier
detection

34

Practice with Pandas and Seaborn to
manipulating data

35

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

iris =
pd.read_csv("../input/Iris.csv")

iris.head()

Import the dataset Iris

Practice with Pandas and Seaborn to
manipulating data

36

Use scatter plot for Iris data
• Plot two variables: SepalLengthCm and SepalWidthCm

37

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

iris =
pd.read_csv("../input/Iris.csv")
iris.head()

iris["Species"].value_counts()
iris.plot(kind="scatter",
x="SepalLengthCm",

y="SepalWidthCm")

plt.show()

Use scatter plot for Iris data
• Display color for each kind of Iris

38

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

iris =
pd.read_csv("../input/Iris.csv")
iris.head()

iris["Species"].value_counts()
col = iris['Species'].map({"Iris-
setosa":'r', "Iris-
virginica":'g', "Iris-
versicolor":'b'})
iris.plot(kind="scatter",
x="SepalLengthCm",
y="SepalWidthCm", c=col)

plt.show()

Marginal Histogram
• Histograms added to the margin of each axis of a

scatter plot for analyzing the distribution of each
measure

• Assess the relationship between two variables and
examine their distributions

39

Marginal Histogram

40

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

iris =
pd.read_csv("../input/Iris.csv")
iris.head()

iris["Species"].value_counts()
sns.jointplot(x="SepalLengthCm",
y="SepalWidthCm", data=iris,
size=5)

plt.show()

6. Other kinds of chart
Box Plot
• Box and Whisker Plot (or

Box Plot) is a convenient
way of visually displaying
the data distribution
through their quartiles

41

Box Plot
• Some observations from viewing Box Plot

• What the key values are such as: the average, median, 25th
percentile etc.

• If there are any outliers and what their values are
• Is the data symmetrical
• How tightly is the data grouped
• If the data is skewed and if so, in what direction

42

Box Plot

43

import pandas as pd
import seaborn as sns
import matplotlib.pyplot
as plt

iris =
pd.read_csv("../input/Ir
is.csv")
iris.head()

sns.boxplot(x="Species",
y="PetalLengthCm",

data=iris)

plt.show()

Box Plot

44

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as
plt

iris =
pd.read_csv("../input/Iris.
csv")
iris.head()

ax =
sns.boxplot(x="Species",

y="PetalLengthCm",
data=iris)

ax =
sns.stripplot(x="Species",

y="PetalLengthCm",
data=iris, jitter=True,

edgecolor="gray")

plt.show()

Violin Plot
• Combination of the box plot with a kernel density plot

• Same information from box plot

45

Violin Plot
• Shows the entire distribution of the data

46

Violin Plot
• Histogram shows the symmetric shape of the distribution

47

Violin Plot
• The kernel density plot used for creating the violin plot is

the same as the one added on top of the histogram

48

Violin Plot
• Wider sections of the violin plot represent a higher

probability of observations taking a given value

• The thinner sections correspond to a lower probability.

49

Violin Plot of Iris data

50

import pandas as pd
import seaborn as sns
import
matplotlib.pyplot as
plt

iris =
pd.read_csv("../input/
Iris.csv")
iris.head()

sns.violinplot(x="Spec
ies",
y="PetalLengthCm",
data=iris, size=6)

plt.show()

Regression Plot
• Create a regression line between 2 parameters and

helps to visualize their linear relationships

• Example: data set tips of seaborn contains information
about:

• the people who probably had food at the restaurant and
whether or not they left a tip

• the gender of the people, whether they smoke, day, time

• Use seaborn’s function lmplot() to create regression
plot

51

Regression Plot example

52

Regression Plot Example

53

• Show the linear
relationship betweet
the total bill of
customers and the
tips they gave

Regression Plot Example

54

Distinguish two
categories by sex

Heatmaps
• The underlying idea: replace numbers with colors

• The goal of heatmaps is to provide a colored visual
summary of information

• Heatmaps are useful for cross-examining multivariate
data, through placing variables in rows and columns
and coloring cells within the table

• All the rows are one category (labels displayed on the
left side)

• All the columns are another category (labels displayed
on the bottom)

• Data in a cell demonstrates the relationship between
two variables in the connecting row and column

55

Heatmap Example

56

Heatmap with seaborn

57

Heatmap with seaborn

58

Graphs

59

edge

node

Graphs

60

edge

node

If we add this edge then
this would be a
complete graph, also
called a clique

Directed Graphs and Hierarchies

• Directed vs Undirected
• Cyclic vs acyclic
• Tree

• Minimally connected
• N nodes, n-1 edges
• Single parent node can

have multiple child
nodes

• Hierarchy
• Acyclic directed graph
• Having a root node

61

Node Degree

• Degree of a node =
number of edges

• Directed graph nodes
have an in-degree and
an out-degree

• Social Networks
• Many low degree

nodes and fewer high
degree nodes

• Also called power-law
or scale-free graphs

62

Graph Visualization
• For visualizing more abstract and non-quantitative data

• For example:
• The relationship/contacts of individuals in a population (also

called network of contacts)
• The hierarchical structure of classes in a module

• Matplotlib does not support this kind of visualization

63

Roassal: an agile visualization tool
• Roassal is a DSL, written in Smalltalk and integrated in

Pharo/Moose – an open source platform for software
and data analysis

• Installing from: http://www.moosetechnology.org

64

Hierarchy

65

| b |
b := RTMondrian new.
b shape circle size: 30.
b nodes: RTShape withAllSubclasses.
b shape arrowedLine

withShorterDistanceAttachPoint
.
b edgesFrom: #superclass.
b layout forceWithCharge: -500.
b build.
^ b view

Network structure

66

| b lb |
b := RTMondrian new.
b shape circle color: (Color red alpha: 0.4).
b nodes: Collection withAllSubclasses.
b edges connectFrom: #superclass.
b shape

bezierLineFollowing: #superclass;
color: (Color blue alpha: 0.1).

b edges
notUseInLayout;
connectToAll: #dependentClasses.

b normalizer normalizeSize: #numberOfMethods min: 5
max: 50.
b layout force.
b build.
lb := RTLegendBuilder new.
lb view: b view.
lb addText: 'Circle = classes, size = number of
methods; gray links = inheritance;'.
lb addText: 'blue links = dependencies; layout =
force based layout on the inheritance links'.
lb build.
^ b view @ RTZoomableView

Tree Map

• Maps quantities to area
• Color used to differentiate areas
• Shading delineates hierarchical

regions
• When to use?

• Limited space but large amount of
hierarchical data

• Values can be aggregated in the tree
structure

• Advantages
• Saving space, display a large number

of item simultaneously
• Using color and size of areas to

detect special sample data

67

Tree map layout

68

121 211 12 111 11

Tree map layout

69

5

344 23

121 211 12 111 11

• Set parents node values to sum of child node
values from bottom up

11

16

Tree map layout

70

5

344 23

121 211 12 111 11

• Set parents node values to sum of child node
values from bottom up

• Partition based on current node’s value as a
portion of parent node’s value from top down

11

16

11/16 5/16

Tree map layout

71

5

344 23

121 211 12 111 11

• Set parents node values to sum of child node
values from bottom up

• Partition based on current node’s value as a
portion of parent node’s value from top down

11

16

11/16 5/16

4/11

4/11

3/11

3/5

2/5

Tree map layout

72

5

344 23

121 211 12 111 11

• Set parents node values to sum of child node
values from bottom up

• Partition based on current node’s value as a
portion of parent node’s value from top down

11

16

11/16 5/16

4/11

4/11

3/11

3/5

2/5

2/4 1/41/4

1/4 1/4 2/4

2/3 1/3

1/3

1/3

1/3

1/3

1/3

8. Multivariable Visualization

73

• For data tables with n>3
variables: parallel
coordinates

• Each vertical line
corresponds to a variable

• A point in n-dimensional
space is represented as
a polyline with vertices on
the parallel axes

• the position of the vertex
on the i-th axis
corresponds to the value of
the i-th attribute for this
record

• It might be interesting to try
different axis arrangements

Parallel Plot
• Parallel Coordinates Plots allow to compare the feature

of several individual observations on a set of numerical
variables

• Each vertical bar represents a variable and usually has
its own scale

• Values are plotted as series of lines connected across
each axis

• Color can be used to represent different groups of
individuals or highlight a specific one

• Allow to compare variations of adjacent axis
• Changing the order can lead to the discovery of new patterns

in the dataset

74

Parallel plot with pandans for Iris data

75

• Samples are grouped in 3
species

• Setosa seems have smaller
petals but its sepal tends to be
wider

Thank you
for your

attention!!!

76

