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1. How to choose the right chart?
• Data visualization is a technique to communicate 

insights from data through visual representation

• Main goal: is to distill large datasets into visual 
graphics to allow for a straighforward understanding of 
complex relationship within the data

• It is important to choose the right chart for visualizing 
your data
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What story do you want to tell?
• It is important to understand why we need a kind of 

chart 
• Graphs
• Plots
• Maps
• Diagrams
• ...

• Relationship

• Data over time

• Ranking

• Distribution

• Comparison
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Relationship
• To display a connection or correlation between two or 

more variables

• When assessing a relationship between data sets, we 
are trying to understand how these data sets combine 
and interact with each other

• The relationship or correlation can be positive or 
negative

• Whether or not the variables might be supportive or working 
against each other
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Relationship
• Scatter plot

• Histogram

• Pair Plot

• Heat map
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Data over time
• Goal: to explore the relationship between variables to 

find trends or changes over time

• The date/time appears as a link property between 
variables, so a kind of relationship

• Line chart

• Area chart

• Stack Area Chart

• Area Chart Unstacked
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Ranking
• Goal: to display the relative order of data values

• Vertical bar chart

• Horizontal bar chart or Column Chart

• Multi-set bar chart

• Stack bar chart

• Lollipop Chart
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Distribution
• Goal: to see how a variable is distributed

• Histogram

• Density Curve with Histogram

• Density plot

• Box plot

• Strip plot

• Violin Plot

• Population Pyramid
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Comparison
• Goal: to display the trends between multiple variable in 

datasets or multiple categories within a single variable 

• Bubble chart

• Bullet chart

• Pie chart

• Net pie chart

• Donut chart

• TreeMap

• Diverging bar

• Choropleth map

• Bubble map
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2. Bar/Column Chart
• A series of bars illustrating a variable’s development

• 4 types of bar charts:
• Horizontal bar chart
• Vertical bar chart
• Group bar chart
• Stacked bar chart

• This kind of chart is appropriated when we want to 
track the development of one or two variables over 
time

• One axis shows the specific categories being 
compared (independent variable)

• The other axis represents a measured value 
(dependent variable)
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Vertical Bar Chart (Column Chart)
• Distinguish it from histograms

• not to display a continuous developments over an interval
• discrete data 
• data is categorical and used to answer the question of how 

many in each category

• Used to compare several items in a specific range of 
values

• Ideal for comparing a single category of data between 
individual sub-items
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Vertical Bar Chart (Column Chart)
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Quantitative
Dependent

variable

Discrete/Nominal 
Independent variable

Benefits from 
both position 
(top of bar) 
and length 
(size of bar)

Vertical Bar Chart (Column Chart)
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import numpy as np
import matplotlib.pyplot as plt

linear_data = np.array([1, 2, 3, 4, 5, 6, 7, 8])
exponential_data = linear_data ** 2

xvals = range(len(linear_data))
plt.bar(xvals, linear_data, width=0.3)

exp_xvals = []
for item in xvals:

exp_xvals.append(item+0.3)
plt.bar(exp_xvals, exponential_data, width=0.3, 
color='r')

plt.legend(['Linear data', 'Exponential data'])
plt.show()



Vertical Bar Chart (Column Chart)
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import numpy as np
import matplotlib.pyplot as plt

linear_data = np.array([1, 2, 3, 4, 5, 6, 7, 8])
exponential_data = linear_data ** 2

xvals = np.arange(len(linear_data))
exp_xvals = []
for item in xvals:

exp_xvals.append(item+0.3)

fig, ax = plt.subplots()
ax.bar(xvals, linear_data, width=0.3)
ax.bar(exp_xvals, exponential_data, width=0.3, 
color='r')
ax.legend(['Linear data', 'Exponential data'])
ax.set_xticks(xvals + 0.3 / 2)
ax.set_xticklabels(xvals)
plt.show()

Horizontal Bar Chart
• Represent the data horizontally

• The data categories are shown on the y-axis

• The data values are shown on the x-axis

• The length of each bar is equal to the value 
corresponding to the data category

• All bars go across from left to right

• Use barh() function
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Stacked Bar Chart
• Stacked bar charts segment their bars

• Used to show how a broader category is divided into 
smaller categories 

• The relationship of each part on the total amount is 
also showed

• Place each value for the segment after the previous 
one

• The total value of the bar chart is all the segment 
values added together

• Ideal for comparing the total amount across each 
group/segmented bar
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Stacked Bar Chart
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Stacked Bar Chart
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3. Line Chart
• Line charts are used to display quantitative values over 

a continuous interval or period

• Drawn by first plotting data points on a cartesian 
coordinate grid and then connecting them

• Y-axis has a quantitative value

• X-axis is a timescale or a sequence of intervals

• Best for continuous data 

• Most frequently used to show trends and analyze how 
the data has changed over time
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Line charts
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Quantitative 
continuous
dependent
variable

Quantitative continuous
independent variable

Benefits from 
position but 
not length

Line chart (pylab vs pyplot
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from pylab import *
t = arange(0.0, 2.0, 0.01)
s = sin(2.5*pi*t)
plot(t,s)

xlabel('time (s)')
ylabel('voltage (mV)')
title('Sine Wave')
grid(True)
show()

import numpy as np
import matplotlib.pyplot as plt
t = np.arange(0.0, 2.0, 0.01)
s = np.sin(2.5*np.pi*t)
plt.plot(t,s)

plt.xlabel('time (s)')
plt.ylabel('voltage (mV)')
plt.title('Sine Wave')
plt.grid(True)
plt.show()



Line chart (cont.)
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import numpy as np
import matplotlib.pyplot as plt
linear_data = 
np.array([1,2,3,4,5,6,7,8])
exponential_data = 
linear_data**2
plt.plot(linear_data, '-o', 
exponential_data, '-o') 
plt.show() 

Line chart (cont.)
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import numpy as np
import matplotlib.pyplot as 
plt
linear_data = 
np.array([1,2,3,4,5,6,7,8])
exponential_data = 
linear_data**2
plt.plot(linear_data, '-o', 
exponential_data, '-o')
plt.gca().fill_between(range(l
en(linear_data)),

linear_data, exponential_data,

facecolor='blue',

alpha=0.25)
plt.show()



Area Chart
• Built based on line chart

• The area between the x-axis and the line is filled in 
with color or shading

• Ideal for clearly illustrating the magnitude of change 
between two or more data points

• Use stackplot() function

• Or just fill in color the area between two lines
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Area Chart
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4. Histogram
• Histogram is an accurate representation of the 

distribution of numerical data

• An estimation of the probability distribution of a 
continuos variable

• To construct a histogram, follow these steps
• Bin the range of values
• Divide the entire range of values into a series of intervals
• Count how many values fall into each interval

• Bins are usually specified as consecutive, non-
overlapping intervals of variable
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Histogram example
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Histogram example
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import numpy as np
import matplotlib.pyplot as plt

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2, 
sharex=True)

axs = [ax1, ax2, ax3, ax4]

for n in range(0, len(axs)):
sample_size = 10**(n+1)
sample = np.random.normal(loc=0.0, scale=1.0, 

size=sample_size)
axs[n].hist(sample)
axs[n].set_title('n={}'.format(sample_size))

plt.show()

Histogram example
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import numpy as np
import matplotlib.pyplot as plt

fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2, 
sharex=True)

axs = [ax1, ax2, ax3, ax4]

for n in range(0, len(axs)):
sample_size = 10**(n+1)
sample = np.random.normal(loc=0.0, scale=1.0, 

size=sample_size)
axs[n].hist(sample, bins=100)
axs[n].set_title('n={}'.format(sample_size))

plt.show()



Histogram example
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5. Scatter plot
• A kind of chart that is often used in statistics and data 

science

• It consists of multiple data points plotted across two 
axes

• Each variable depicted in a scatter plot would have 
various observations

• Used to identify the data’s relationship with each 
variable (i.e., correlation, trend patterns)

• In machine learning, scatter plots are often used in 
regression, where x and y are continuous variable

• Also being used in clustering scatters or outlier 
detection
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Practice with Pandas and Seaborn to 
manipulating data
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import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

iris = 
pd.read_csv("../input/Iris.csv")

iris.head()

Import the dataset Iris

Practice with Pandas and Seaborn to 
manipulating data
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Use scatter plot for Iris data
• Plot two variables: SepalLengthCm and SepalWidthCm
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import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

iris = 
pd.read_csv("../input/Iris.csv")
iris.head()

iris["Species"].value_counts()
iris.plot(kind="scatter", 
x="SepalLengthCm", 

y="SepalWidthCm")

plt.show()

Use scatter plot for Iris data
• Display color for each kind of Iris
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import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

iris = 
pd.read_csv("../input/Iris.csv")
iris.head()

iris["Species"].value_counts()
col = iris['Species'].map({"Iris-
setosa":'r', "Iris-
virginica":'g', "Iris-
versicolor":'b'})
iris.plot(kind="scatter", 
x="SepalLengthCm", 
y="SepalWidthCm", c=col)

plt.show()



Marginal Histogram
• Histograms added to the margin of each axis of a 

scatter plot for analyzing the distribution of each 
measure

• Assess the relationship between two variables and 
examine their distributions
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Marginal Histogram
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import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

iris = 
pd.read_csv("../input/Iris.csv")
iris.head()

iris["Species"].value_counts()
sns.jointplot(x="SepalLengthCm", 
y="SepalWidthCm", data=iris, 
size=5)

plt.show()



6. Other kinds of chart
Box Plot
• Box and Whisker Plot (or 

Box Plot) is a convenient 
way of visually displaying 
the data distribution 
through their quartiles
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Box Plot
• Some observations from viewing Box Plot

• What the key values are such as: the average, median, 25th 
percentile etc.

• If there are any outliers and what their values are
• Is the data symmetrical
• How tightly is the data grouped
• If the data is skewed and if so, in what direction
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Box Plot
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import pandas as pd
import seaborn as sns
import matplotlib.pyplot
as plt

iris = 
pd.read_csv("../input/Ir
is.csv")
iris.head()

sns.boxplot(x="Species", 
y="PetalLengthCm", 

data=iris)

plt.show()

Box Plot
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import pandas as pd
import seaborn as sns
import matplotlib.pyplot as 
plt

iris = 
pd.read_csv("../input/Iris.
csv")
iris.head()

ax = 
sns.boxplot(x="Species", 

y="PetalLengthCm", 
data=iris)

ax = 
sns.stripplot(x="Species", 

y="PetalLengthCm", 
data=iris, jitter=True, 

edgecolor="gray")

plt.show()



Violin Plot
• Combination of the box plot with a kernel density plot

• Same information from box plot
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Violin Plot
• Shows the entire distribution of the data
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Violin Plot
• Histogram shows the symmetric shape of the distribution
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Violin Plot
• The kernel density plot used for creating the violin plot is 

the same as the one added on top of the histogram
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Violin Plot
• Wider sections of the violin plot represent a higher 

probability of observations taking a given value

• The thinner sections correspond to a lower probability.
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Violin Plot of Iris data
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import pandas as pd
import seaborn as sns
import 
matplotlib.pyplot as 
plt

iris = 
pd.read_csv("../input/
Iris.csv")
iris.head()

sns.violinplot(x="Spec
ies", 
y="PetalLengthCm", 
data=iris, size=6)

plt.show()



Regression Plot
• Create a regression line between 2 parameters and 

helps to visualize their linear relationships

• Example: data set tips of seaborn contains information 
about:

• the people who probably had food at the restaurant and 
whether or not they left a tip

• the gender of the people, whether they smoke, day, time

• Use seaborn’s function lmplot() to create regression 
plot
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Regression Plot example
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Regression Plot Example
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• Show the linear 
relationship betweet 
the total bill of 
customers and the 
tips they gave 

Regression Plot Example
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Distinguish two 
categories by sex



Heatmaps
• The underlying idea: replace numbers with colors

• The goal of heatmaps is to provide a colored visual 
summary of information

• Heatmaps are useful for cross-examining multivariate 
data, through placing variables in rows and columns 
and coloring cells within the table

• All the rows are one category (labels displayed on the 
left side)

• All the columns are another category (labels displayed 
on the bottom)

• Data in a cell demonstrates the relationship between 
two variables in the connecting row and column
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Heatmap Example
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Heatmap with seaborn
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Heatmap with seaborn
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Graphs

59

edge

node

Graphs
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edge

node

If we add this edge then 
this would be a 
complete graph, also 
called a clique



Directed Graphs and Hierarchies

• Directed vs Undirected
• Cyclic vs acyclic
• Tree

• Minimally connected
• N nodes, n-1 edges
• Single parent node can 

have multiple child 
nodes

• Hierarchy
• Acyclic directed graph
• Having a root node
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Node Degree

• Degree of a node = 
number of edges

• Directed graph nodes 
have an in-degree and 
an out-degree

• Social Networks
• Many low degree 

nodes and fewer high 
degree nodes

• Also called power-law 
or scale-free graphs
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Graph Visualization
• For visualizing more abstract and non-quantitative data

• For example:
• The relationship/contacts of individuals in a population (also 

called network of contacts)
• The hierarchical structure of classes in a module

• Matplotlib does not support this kind of visualization
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Roassal: an agile visualization tool
• Roassal is a DSL, written in Smalltalk and integrated in 

Pharo/Moose – an open source platform for software 
and data analysis

• Installing from: http://www.moosetechnology.org
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Hierarchy
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| b |
b := RTMondrian new.
b shape circle size: 30.
b nodes: RTShape withAllSubclasses.
b shape arrowedLine

withShorterDistanceAttachPoint
.
b edgesFrom: #superclass.
b layout forceWithCharge: -500.
b build.
^ b view

Network structure
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| b lb |
b := RTMondrian new.
b shape circle color: (Color red alpha: 0.4).
b nodes: Collection withAllSubclasses.
b edges connectFrom: #superclass.
b shape

bezierLineFollowing: #superclass;
color: (Color blue alpha: 0.1).

b edges
notUseInLayout;
connectToAll: #dependentClasses.

b normalizer normalizeSize: #numberOfMethods min: 5 
max: 50.
b layout force.
b build.
lb := RTLegendBuilder new.
lb view: b view.
lb addText: 'Circle = classes, size = number of 
methods; gray links = inheritance;'.
lb addText: 'blue links = dependencies; layout = 
force based layout on the inheritance links'.
lb build.
^ b view @ RTZoomableView



Tree Map

• Maps quantities to area
• Color used to differentiate areas
• Shading delineates hierarchical 

regions
• When to use?

• Limited space but large amount of 
hierarchical data

• Values can be aggregated in the tree 
structure

• Advantages
• Saving space, display a large number 

of item simultaneously
• Using color and size of areas to 

detect special sample data
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Tree map layout
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Tree map layout
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5

344 23
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• Set parents node values to sum of child node 
values from bottom up
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16

Tree map layout
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5

344 23

121 211 12 111 11

• Set parents node values to sum of child node 
values from bottom up

• Partition based on current node’s value as a 
portion of parent node’s value from top down
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Tree map layout
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344 23

121 211 12 111 11

• Set parents node values to sum of child node 
values from bottom up

• Partition based on current node’s value as a 
portion of parent node’s value from top down
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2/5

Tree map layout
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344 23

121 211 12 111 11

• Set parents node values to sum of child node 
values from bottom up

• Partition based on current node’s value as a 
portion of parent node’s value from top down
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8. Multivariable Visualization
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• For data tables with n>3 
variables: parallel 
coordinates

• Each vertical line 
corresponds to a variable

• A point in n-dimensional
space is represented as 
a polyline with vertices on 
the parallel axes

• the position of the vertex 
on the i-th axis 
corresponds to the value of 
the i-th attribute for this
record

• It might be interesting to try
different axis arrangements

Parallel Plot
• Parallel Coordinates Plots allow to compare the feature 

of several individual observations on a set of numerical 
variables

• Each vertical bar represents a variable and usually has 
its own scale

• Values are plotted as series of lines connected across 
each axis

• Color can be used to represent different groups of 
individuals or highlight a specific one

• Allow to compare variations of adjacent axis
• Changing the order can lead to the discovery of new patterns 

in the dataset
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Parallel plot with pandans for Iris data
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• Samples are grouped in 3 
species

• Setosa seems have smaller 
petals but its sepal tends to be 
wider

Thank you 
for your 

attention!!!
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