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Big data 5'V

Big data is a term for data sets that are so large 
or complex that traditional data processing 
application software is inadequate to deal with 
them (wikipedia)
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Big data technology stack
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Scalable data management
• Scalability

• Able to manage incresingly big volume of data
• Accessibility

• Able to maintain efficiciency in reading and writing data (I/O) 
into data storage systems

• Transparency
• In distributed environment, users should be able to access 

data over the network as easily as if the data were stored 
locally. 

• Users should not have to know the physical location of data to 
access it. 

• Availability
• Fault tolerance 
• The number of users, system failures, or other consequences 

of distribution shouldnʼt compromise the availability.
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Scalable data ingestion and processing

• Data ingestion
• Data from different complementing information systems is to be 

combined to gain a more comprehensive basis to satisfy the 
need

• How to ingest data efficiently from various, distributed 
heterogeneous sources? 

• Different data formats 
• Different data models and schemas
• Security and privacy 

• Data processing 
• How to process massive volume of data in a timely fashion? 
• How to process massive stream of data in a real-time fashion? 
• Traditional parallel, distributed processing (OpenMP, MPI)

• Big learning curve
• Scalability is limited 
• Fault tolerence is hard to achive
• Expensive, high performance computing infrastructure
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Scalable analytic algorithms 
• Challenges 

• Big volume 
• Big dimensionality
• Realtime processing

• Scaling-up Machine Learning algorithms
• Adapting the algorithm to handle Big Data in a single machine. 

• Eg. Sub-sampling
• Eg. Principal component analysis
• Eg. feature extraction and feature selection

• Scaling-up algorithms by parallelism
• Eg. k-nn classification based on MapReduce
• Eg. scaling-up support vector machines (SVM) by a divide and-

conquer approach
• Novel realtime processing architecture

• Eg. Mini-batch in Spark streaming
• Eg. Complex event processing in Apache Flink 
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Eg. Curse of dimensionality
• The required number of samples (to achieve the same 

accuracy) grows exponentionally with the number of 
variables!

• In practice: number of training examples is fixed!
=> the classifier’s performance usually will degrade for a large 
number of features!
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In fact, after a certain point, increasing
the dimensionality of the problem by
adding new features would actually
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Utilization and interpretability of big data

• Domain expertise to findout 
problems and interprete analytics 
results 

• Scalable visualization and 
interpretability of million data points 

• to facilitate their interpretability and 
understanding
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Privacy and security
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Big data job trends
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Talent shortage in big data
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Big data skill set
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How  to land big data related jobs
• Learn to code 

• Coursera
• Udacity
• Freecodecamp
• Codecademy

• Math, Stats and machine learning 
• Kaggle

• Hadoop, NoSQL, Spark
• Visualization and Reporting

• Tableau
• Pentahoo

• Meetup & Share
• Find a mentor
• Internships, projects
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Data science method

17Source: Foundational Methodology for Data Science, IBM, 2015

1. Formulate a question

3. Analyze data

4. Product
2. Gather data
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Cleaning big data: most time-consuming, least 
enjoyable data science task

• Data preparation accounts for about 80% of the work of 
data scientists

19source: https://www.forbes.com/



Cleaning big data: most time-consuming, least 
enjoyable data science task

• 57% of data scientists regard cleaning and organizing 
data as the least enjoyable part of their work and 19% 
say this about collecting data sets.
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Online courses
• https://www.coursera.org/learn/nosql-database-

systems
• https://who.rocq.inria.fr/Vassilis.Christophides/Big/index

.htm
• https://www.coursera.org/learn/big-data-

introduction?specialization=big-data
• https://www.coursera.org/learn/big-data-integration-

processing?specialization=big-data
• https://www.coursera.org/learn/big-data-

management?specialization=big-data
• https://www.coursera.org/learn/hadoop
• https://www.coursera.org/learn/scala-spark-big-data
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Hadoop ecosystem

23



We need a system that scales
• Traditional tools are overwhelmed

• Slow disks, unreliable machines, parallelism is not easy

• 3 challenges
• Reliable storage
• Powerful data processing
• Efficient visualization 
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What is Apache Hadoop?
• Scalable and economical data storage and 
processing

• The Apache Hadoop software library is a framework that 
allows for the distributed processing of large data sets 
across clusters of computers using simple programming 
models. It is designed to scale out from single servers to 
thousands of machines, each offering local computation and 
storage. Rather than rely on hardware to deliver high-
availability, the library itself is designed to detect and handle 
failures at the application layer, so delivering a highly-
available service on top of a cluster of computers, each of 
which may be prone to failures (commodity hardware).

• Heavily inspired by Google data architecture
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Hadoop main components
• Storage: Hadoop distributed file system 

(HDFS)
• Processing: MapReduce framework
• System utilities: 

• Hadoop Common: The common utilities that 
support the other Hadoop modules.

• Hadoop YARN: A framework for job scheduling and 
cluster resource management.
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Scalability
• Distributed by design

• Hadoop can run on cluster 
• Individual servers within a cluster are called 

nodes
• each node may both store and process data 

• Scale out by adding more nodes to increase 
scalability

• Up to several thousand nodes 
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Fault tolerance
• Cluster of commodity servers

• Hardware failure is the norm rather than the exception
• Built with redundancy 

• File loaded into HDFS are replicated across nodes in 
the cluster 

• If a node failed, its data is re-replicated using one of the 
copies 

• Data processing jobs are broken into individual tasks
• Each task takes a small amount of data as input 
• Parallel tasks execution
• Failed tasks also get rescheduled elsewhere

• Routine failures are handled automatically without any 
loss of data 
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Hadoop distributed file system
• Provides inexpensive and reliable storage for massive 

amounts of data 
• Optimized for big files (100 MB to several TBs file 

sizes)
• Hierarchical UNIX style file system

• (e.g., /hust/soict/hello.txt)
• UNIX style file ownership and permissions

• There are also some major deviations from UNIX 
• Append only
• Write once read many times
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HDFS Architecture
• Master/slave architecture
• HDFS master: namenode

• Manage namespace and 
metadata

• Monitor datanode

• HDFS slave: datanode
• Handle read/write the actual 

data
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HDFS main design principles
• I/O pattern

• Append only à reduce synchronization 

• Data distribution
• File is splitted in big chunks (64 MB)
à reduce metadata size
à reduce network communication

• Data replication
• Each chunk is usually replicated in 3 different nodes

• Fault tolerance
• Data node: re-replication
• Name node

• Secondary namenode
• Enqury data nodes instead of complex checkpointing scheme
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Data processing: MapReduce
• MapReduce framework is the Hadoop default data 

processing engine 
• MapReduce is a programming model for data 

processing
• it is not a language, a style of processing data created by 

Google

• The beauty of MapReduce
• Simplicity
• Flexibility
• Scalability
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a MR job = {Isolated Tasks}n
• MapReduce divides the workload into multiple
independent tasks and schedule them across cluster
nodes

• A work performed by each task is done in isolation
from one another for scalability reasons
• The communication overhead required to keep the data on the

nodes synchronized at all times would prevent the model from
performing reliably and efficiently at large scale
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Data Distribution
• In a MapReduce cluster, data is usually managed by a

distributed file systems (e.g., HDFS)
• Move code to data and not data to code
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Keys and Values
• The programmer in MapReduce has to specify two

functions, the map function and the reduce function
that implement the Mapper and the Reducer in a
MapReduce program

• In MapReduce data elements are always structured
as

key-value (i.e., (K, V)) pairs
• The map and reduce functions receive and emit (K, V)

pairs

(K, V) 
Pairs

Map 
Function

(K’, 
V’) 

Pairs

Reduce 
Function

(K’’, 
V’’) 
Pairs

Input Splits Intermediate Outputs Final Outputs
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Partitions
§ A different subset of intermediate key space is

assigned to each Reducer
§ These subsets are known as partitions

Different colors represent 
different keys (potentially) 
from different Mappers

Partitions are the input to Reducers
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MapReduce example
• Input: text file containing order ID, employee name,

and sale amount
• Output: sum of all sales per employee
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Map phase
• Hadoop splits job into many individual map tasks 

• Number of map tasks is determined by the amount of input data 
• Each map task receives a portion of the overall job input to process 
• Mappers process one input record at a time 
• For each input record, they emit zero or more records as output 

• In this case, the map task simply parses the input record 
• And then emits the name and price fields for each as output 
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Map phase



• Hadoop automatically sorts and merges output from all 
map tasks 

• This intermediate process is known as the shuffle and sort 
• The result is supplied to reduce tasks 
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Shuffle & sort 
phase



Reduce phase
• Reducer input comes from the shuffle and sort process 

• As with map, the reduce function receives one record at a time 
• A given reducer receives all records for a given key 
• For each input record, reduce can emit zero or more output records 

• Our reduce function simply sums total per person 
• And emits employee name (key) and total (value) as output 
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Data flow for the entire MapReduce job
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Word Count Dataflow
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MapReduce - Dataflow
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Map reduce life cycle
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Hadoop ecosystem
• Many related tools integrate with Hadoop

• Data analysis  
• Database integration 
• Workflow management 

• These are not considered ‘core Hadoop’ 
• Rather, they are part of the ‘Hadoop ecosystem’ 
• Many are also open source Apache projects 
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Apache Pig
• Apache Pig builds on Hadoop to offer high level data processing 

• Pig is especially good at joining and transforming data 

• The Pig interpreter runs on the client machine 
• Turns PigLatin scripts into MapReduce jobs 
• Submits those jobs to the cluster 
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Apache Hive
• Another abstraction on top of MapReduce

• Reduce development time 
• HiveQL: SQL-like language

• The Hive interpreter runs on the client machine 
• Turns HiveQL scripts into MapReduce jobs 
• Submits those jobs to the cluster 

47



Apache Hbase
• HBase is a distributed column-oriented data store built on top of 

HDFS
• Is considered as  the Hadoop database 

• Data is logically organized into tables, rows and columns
• terabytes, and even petabytes of data in a table
• Tables can have many thousands of columns

• Scales to provide very high write throughput 
• Hundreds of thousands of inserts per second

• Fairly primitive when compared to RDBMS 
• NoSQL : There is no high/level query language  
• Use API to scan / get / put values based on keys
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Apache sqoop
• Sqoop is a tool designed for efficiently 

transferring bulk data between Apache 
Hadoop and structured datastores such 
as relational databases.

• It can import all tables, a single table, or 
a portion of a table into HDFS 

• Via a Map/only MapReduce job 
• Result is a directory in HDFS containing 

comma/delimited text files 

• Sqoop can also export data from HDFS 
back to the database 
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Kafka decouples Data Pipelines

Apache Kafka
Kafka decouple data streams 
Producers don’t know about 
consumers 
Flexible message consumption
Kafka broker delegates log 
partition offset (location) to 
Consumers (clients)

Producer

Consumer Consumer

Producers

Kafka 
Cluster

Consumers

Broker Broker Broker Broker

Producer

Zookeeper

Offsets



Apache Oozie
• Oozie is a workflow scheduler system to manage 

Apache Hadoop jobs.
• Oozie Workflow jobs are Directed Acyclical Graphs 

(DAGs) of actions.
• Oozie supports many workflow actions, including 

• Executing MapReduce jobs 
• Running Pig or Hive scripts 
• Executing standard Java or shell programs 
• Manipulating data via HDFS commands 
• Running remote commands with SSH 
• Sending e/mail messages 
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Apache Zookeeper
• Apache ZooKeeper is a highly reliable 

distributed coordination service
• Group membership
• Leader election
• Dynamic Configuration
• Status monitoring

• All of these kinds of services are used in some 
form or another by distributed applications
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PAXOS algorithm
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YARN – Yet Another Resource Negotiator

• Nodes have "resources" – memory and CPU cores –
which are allocated to application when requested 

• Moving beyond Map Reduce
• MR and non-MR running on the same cluster
• Most jobtracker functions moved to application masters 

HADOOP 1.0

HDFS
(redundant, reliable 

storage)

MapReduce
(cluster resource management

& data processing)

HDFS
(redundant, reliable storage)

YARN
(cluster resource management)

MapReduce
(data processing)

Others
(data processing)

HADOOP 2.0
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YARN execution
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Big data platform: Hadoop ecosystem
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Big data management 
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Thank you 
for your 

attention!!!
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