
1

Introduction to
Data Science

(IT4142E)

Contents
q Lecture 1: Overview of Data Science
q Lecture 2: Data crawling and preprocessing
q Lecture 3: Data cleaning and integration
q Lecture 4: Exploratory data analysis
q Lecture 5: Data visualization
q Lecture 6: Multivariate data visualization
q Lecture 7: Machine learning
q Lecture 8: Big data analysis
q Lecture 9: Capstone Project guidance
q Lecture 10+11: Text, image, graph analysis
q Lecture 12: Evaluation of analysis results

3

Big data 5'V

Big data is a term for data sets that are so large
or complex that traditional data processing
application software is inadequate to deal with
them (wikipedia)

4

Big data technology stack

5

Scalable data management
• Scalability

• Able to manage incresingly big volume of data
• Accessibility

• Able to maintain efficiciency in reading and writing data (I/O)
into data storage systems

• Transparency
• In distributed environment, users should be able to access

data over the network as easily as if the data were stored
locally.

• Users should not have to know the physical location of data to
access it.

• Availability
• Fault tolerance
• The number of users, system failures, or other consequences

of distribution shouldnʼt compromise the availability.

6

CPUs:
10GB/s

100MB/s

0.1 msrandom
access

$0.35 perGB

600MB/s

3-12 msrandom
access

$0.025 perGB

1 Gb/s or125 MB/s

Network

0.1Gb/s

Nodesin
another
rack

Nodesin
same
rack

1 Gb/s or125 MB/s

Data I/O landscape

7

Scalable data ingestion and processing

• Data ingestion
• Data from different complementing information systems is to be

combined to gain a more comprehensive basis to satisfy the
need

• How to ingest data efficiently from various, distributed
heterogeneous sources?

• Different data formats
• Different data models and schemas
• Security and privacy

• Data processing
• How to process massive volume of data in a timely fashion?
• How to process massive stream of data in a real-time fashion?
• Traditional parallel, distributed processing (OpenMP, MPI)

• Big learning curve
• Scalability is limited
• Fault tolerence is hard to achive
• Expensive, high performance computing infrastructure

8

Scalable analytic algorithms
• Challenges

• Big volume
• Big dimensionality
• Realtime processing

• Scaling-up Machine Learning algorithms
• Adapting the algorithm to handle Big Data in a single machine.

• Eg. Sub-sampling
• Eg. Principal component analysis
• Eg. feature extraction and feature selection

• Scaling-up algorithms by parallelism
• Eg. k-nn classification based on MapReduce
• Eg. scaling-up support vector machines (SVM) by a divide and-

conquer approach
• Novel realtime processing architecture

• Eg. Mini-batch in Spark streaming
• Eg. Complex event processing in Apache Flink

9

Eg. Curse of dimensionality
• The required number of samples (to achieve the same

accuracy) grows exponentionally with the number of
variables!

• In practice: number of training examples is fixed!
=> the classifier’s performance usually will degrade for a large
number of features!

10

In fact, after a certain point, increasing
the dimensionality of the problem by
adding new features would actually
degrade the performance of classifier.

Utilization and interpretability of big data

• Domain expertise to findout
problems and interprete analytics
results

• Scalable visualization and
interpretability of million data points

• to facilitate their interpretability and
understanding

11

Privacy and security

12

Big data job trends

13

Talent shortage in big data

14

Big data skill set

15

How to land big data related jobs
• Learn to code

• Coursera
• Udacity
• Freecodecamp
• Codecademy

• Math, Stats and machine learning
• Kaggle

• Hadoop, NoSQL, Spark
• Visualization and Reporting

• Tableau
• Pentahoo

• Meetup & Share
• Find a mentor
• Internships, projects

16

Data science method

17Source: Foundational Methodology for Data Science, IBM, 2015

1. Formulate a question

3. Analyze data

4. Product
2. Gather data

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% Answered

Baseline

12/2007

8/2008

5/2009

10/2009

11/2010

12/2008

5/2008

Now Playing in the
Winners Cloud

4/2010

Pr
ec

is
io

n
DeepQA: Incremental Progress in Precision and
Confidence 6/2007-11/2010

18

Cleaning big data: most time-consuming, least
enjoyable data science task

• Data preparation accounts for about 80% of the work of
data scientists

19source: https://www.forbes.com/

Cleaning big data: most time-consuming, least
enjoyable data science task

• 57% of data scientists regard cleaning and organizing
data as the least enjoyable part of their work and 19%
say this about collecting data sets.

20

References
[1] Tiwari, Shashank. Professional NoSQL. John Wiley & Sons, 2011.

[2] Lam, Chuck. Hadoop in action. Manning Publications Co., 2010.

[3] Miner, Donald, and Adam Shook. MapReduce design patterns: building effective algorithms and analytics for Hadoop and other
systems. " O'Reilly Media, Inc.", 2012.

[4] Karau, Holden. Fast Data Processing with Spark. Packt Publishing Ltd, 2013.

[5] Penchikala, Srini. Big data processing with apache spark. Lulu. com, 2018.

[6] White, Tom. Hadoop: The definitive guide. " O'Reilly Media, Inc.", 2012.

[7] Gandomi, Amir, and Murtaza Haider. "Beyond the hype: Big data concepts, methods, and analytics." International Journal of
Information Management 35.2 (2015): 137-144.

[8] Cattell, Rick. "Scalable SQL and NoSQL data stores." Acm Sigmod Record 39.4 (2011): 12-27.

[9] Gessert, Felix, et al. "NoSQL database systems: a survey and decision guidance." Computer Science-Research and Development 32.3-4
(2017): 353-365.

[10] George, Lars. HBase: the definitive guide: random access to your planet-size data. " O'Reilly Media, Inc.", 2011.

[11] Sivasubramanian, Swaminathan. "Amazon dynamoDB: a seamlessly scalable non-relational database service." Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data. ACM, 2012.

[12] Chan, L. "Presto: Interacting with petabytes of data at Facebook." (2013).

[13] Garg, Nishant. Apache Kafka. Packt Publishing Ltd, 2013.

[14] Karau, Holden, et al. Learning spark: lightning-fast big data analysis. " O'Reilly Media, Inc.", 2015.

[15] Iqbal, Muhammad Hussain, and Tariq Rahim Soomro. "Big data analysis: Apache storm perspective." International journal of
computer trends and technology 19.1 (2015): 9-14.

[16] Toshniwal, Ankit, et al. "Storm@ twitter." Proceedings of the 2014 ACM SIGMOD international conference on Management of data.
ACM, 2014.

[17] Lin, Jimmy. "The lambda and the kappa." IEEE Internet Computing 21.5 (2017): 60-66.

21

Online courses
• https://www.coursera.org/learn/nosql-database-

systems
• https://who.rocq.inria.fr/Vassilis.Christophides/Big/index

.htm
• https://www.coursera.org/learn/big-data-

introduction?specialization=big-data
• https://www.coursera.org/learn/big-data-integration-

processing?specialization=big-data
• https://www.coursera.org/learn/big-data-

management?specialization=big-data
• https://www.coursera.org/learn/hadoop
• https://www.coursera.org/learn/scala-spark-big-data

22

https://www.coursera.org/learn/nosql-database-systems
https://who.rocq.inria.fr/Vassilis.Christophides/Big/index.htm
https://www.coursera.org/learn/big-data-introduction?specialization=big-data
https://www.coursera.org/learn/big-data-integration-processing?specialization=big-data
https://www.coursera.org/learn/big-data-management?specialization=big-data
https://www.coursera.org/learn/hadoop
https://www.coursera.org/learn/scala-spark-big-data

Hadoop ecosystem

23

We need a system that scales
• Traditional tools are overwhelmed

• Slow disks, unreliable machines, parallelism is not easy

• 3 challenges
• Reliable storage
• Powerful data processing
• Efficient visualization

24

What is Apache Hadoop?
• Scalable and economical data storage and
processing

• The Apache Hadoop software library is a framework that
allows for the distributed processing of large data sets
across clusters of computers using simple programming
models. It is designed to scale out from single servers to
thousands of machines, each offering local computation and
storage. Rather than rely on hardware to deliver high-
availability, the library itself is designed to detect and handle
failures at the application layer, so delivering a highly-
available service on top of a cluster of computers, each of
which may be prone to failures (commodity hardware).

• Heavily inspired by Google data architecture

25

Hadoop main components
• Storage: Hadoop distributed file system

(HDFS)
• Processing: MapReduce framework
• System utilities:

• Hadoop Common: The common utilities that
support the other Hadoop modules.

• Hadoop YARN: A framework for job scheduling and
cluster resource management.

26

Scalability
• Distributed by design

• Hadoop can run on cluster
• Individual servers within a cluster are called

nodes
• each node may both store and process data

• Scale out by adding more nodes to increase
scalability

• Up to several thousand nodes

27

Fault tolerance
• Cluster of commodity servers

• Hardware failure is the norm rather than the exception
• Built with redundancy

• File loaded into HDFS are replicated across nodes in
the cluster

• If a node failed, its data is re-replicated using one of the
copies

• Data processing jobs are broken into individual tasks
• Each task takes a small amount of data as input
• Parallel tasks execution
• Failed tasks also get rescheduled elsewhere

• Routine failures are handled automatically without any
loss of data

28

Hadoop distributed file system
• Provides inexpensive and reliable storage for massive

amounts of data
• Optimized for big files (100 MB to several TBs file

sizes)
• Hierarchical UNIX style file system

• (e.g., /hust/soict/hello.txt)
• UNIX style file ownership and permissions

• There are also some major deviations from UNIX
• Append only
• Write once read many times

29

HDFS Architecture
• Master/slave architecture
• HDFS master: namenode

• Manage namespace and
metadata

• Monitor datanode

• HDFS slave: datanode
• Handle read/write the actual

data

30

HDFS main design principles
• I/O pattern

• Append only à reduce synchronization

• Data distribution
• File is splitted in big chunks (64 MB)
à reduce metadata size
à reduce network communication

• Data replication
• Each chunk is usually replicated in 3 different nodes

• Fault tolerance
• Data node: re-replication
• Name node

• Secondary namenode
• Enqury data nodes instead of complex checkpointing scheme

31

Data processing: MapReduce
• MapReduce framework is the Hadoop default data

processing engine
• MapReduce is a programming model for data

processing
• it is not a language, a style of processing data created by

Google

• The beauty of MapReduce
• Simplicity
• Flexibility
• Scalability

32

a MR job = {Isolated Tasks}n
• MapReduce divides the workload into multiple
independent tasks and schedule them across cluster
nodes

• A work performed by each task is done in isolation
from one another for scalability reasons
• The communication overhead required to keep the data on the

nodes synchronized at all times would prevent the model from
performing reliably and efficiently at large scale

33

Data Distribution
• In a MapReduce cluster, data is usually managed by a

distributed file systems (e.g., HDFS)
• Move code to data and not data to code

34

Input data: A large file

Node 1

Chunk of input data

Node 2

Chunk of input data

Node 3

Chunk of input data

Keys and Values
• The programmer in MapReduce has to specify two

functions, the map function and the reduce function
that implement the Mapper and the Reducer in a
MapReduce program

• In MapReduce data elements are always structured
as

key-value (i.e., (K, V)) pairs
• The map and reduce functions receive and emit (K, V)

pairs

(K, V)
Pairs

Map
Function

(K’,
V’)

Pairs

Reduce
Function

(K’’,
V’’)
Pairs

Input Splits Intermediate Outputs Final Outputs

35

Partitions
§ A different subset of intermediate key space is

assigned to each Reducer
§ These subsets are known as partitions

Different colors represent
different keys (potentially)
from different Mappers

Partitions are the input to Reducers

36

MapReduce example
• Input: text file containing order ID, employee name,

and sale amount
• Output: sum of all sales per employee

37

Map phase
• Hadoop splits job into many individual map tasks

• Number of map tasks is determined by the amount of input data
• Each map task receives a portion of the overall job input to process
• Mappers process one input record at a time
• For each input record, they emit zero or more records as output

• In this case, the map task simply parses the input record
• And then emits the name and price fields for each as output

38

Map phase

• Hadoop automatically sorts and merges output from all
map tasks

• This intermediate process is known as the shuffle and sort
• The result is supplied to reduce tasks

39

Shuffle & sort
phase

Reduce phase
• Reducer input comes from the shuffle and sort process

• As with map, the reduce function receives one record at a time
• A given reducer receives all records for a given key
• For each input record, reduce can emit zero or more output records

• Our reduce function simply sums total per person
• And emits employee name (key) and total (value) as output

40

Reduce phase

Data flow for the entire MapReduce job

41

Word Count Dataflow

42

MapReduce - Dataflow

43

Map reduce life cycle

44

Hadoop ecosystem
• Many related tools integrate with Hadoop

• Data analysis
• Database integration
• Workflow management

• These are not considered ‘core Hadoop’
• Rather, they are part of the ‘Hadoop ecosystem’
• Many are also open source Apache projects

45

Apache Pig
• Apache Pig builds on Hadoop to offer high level data processing

• Pig is especially good at joining and transforming data

• The Pig interpreter runs on the client machine
• Turns PigLatin scripts into MapReduce jobs
• Submits those jobs to the cluster

46

Apache Hive
• Another abstraction on top of MapReduce

• Reduce development time
• HiveQL: SQL-like language

• The Hive interpreter runs on the client machine
• Turns HiveQL scripts into MapReduce jobs
• Submits those jobs to the cluster

47

Apache Hbase
• HBase is a distributed column-oriented data store built on top of

HDFS
• Is considered as the Hadoop database

• Data is logically organized into tables, rows and columns
• terabytes, and even petabytes of data in a table
• Tables can have many thousands of columns

• Scales to provide very high write throughput
• Hundreds of thousands of inserts per second

• Fairly primitive when compared to RDBMS
• NoSQL : There is no high/level query language
• Use API to scan / get / put values based on keys

48

Apache sqoop
• Sqoop is a tool designed for efficiently

transferring bulk data between Apache
Hadoop and structured datastores such
as relational databases.

• It can import all tables, a single table, or
a portion of a table into HDFS

• Via a Map/only MapReduce job
• Result is a directory in HDFS containing

comma/delimited text files

• Sqoop can also export data from HDFS
back to the database

49

Kafka decouples Data Pipelines

Apache Kafka
Kafka decouple data streams
Producers don’t know about
consumers
Flexible message consumption
Kafka broker delegates log
partition offset (location) to
Consumers (clients)

Producer

Consumer Consumer

Producers

Kafka
Cluster

Consumers

Broker Broker Broker Broker

Producer

Zookeeper

Offsets

Apache Oozie
• Oozie is a workflow scheduler system to manage

Apache Hadoop jobs.
• Oozie Workflow jobs are Directed Acyclical Graphs

(DAGs) of actions.
• Oozie supports many workflow actions, including

• Executing MapReduce jobs
• Running Pig or Hive scripts
• Executing standard Java or shell programs
• Manipulating data via HDFS commands
• Running remote commands with SSH
• Sending e/mail messages

51

Apache Zookeeper
• Apache ZooKeeper is a highly reliable

distributed coordination service
• Group membership
• Leader election
• Dynamic Configuration
• Status monitoring

• All of these kinds of services are used in some
form or another by distributed applications

52

PAXOS algorithm

53

https://www.youtube.com/watch?v=d7nAGI_NZPk

https://www.youtube.com/watch?v=d7nAGI_NZPk

YARN – Yet Another Resource Negotiator

• Nodes have "resources" – memory and CPU cores –
which are allocated to application when requested

• Moving beyond Map Reduce
• MR and non-MR running on the same cluster
• Most jobtracker functions moved to application masters

HADOOP 1.0

HDFS
(redundant, reliable

storage)

MapReduce
(cluster resource management

& data processing)

HDFS
(redundant, reliable storage)

YARN
(cluster resource management)

MapReduce
(data processing)

Others
(data processing)

HADOOP 2.0

54

YARN execution

55

Big data platform: Hadoop ecosystem

56

Big data management

57

Thank you
for your

attention!!!

58

