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Linear regression
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Linear regression: introduction

• Regression problem: learn an unknown function y = f(x) from a given 
training data D = {(x1, y1), (x2, y2), …, (xM, yM)} such that yi @ f(xi) for 
every i

¨ Each observation of x is represented by a vector in an n-dimensional 
space, e.g., xi = (xi1, xi2, …, xin)T. Each dimension represents an 
attribute/feature/variate.

¨ Bold characters denote vectors.

• Linear model: if f(x) is assumed to be of linear form

f(x) = w0 + w1x1 + … + wnxn
¨ w0, w1, …, wn are the regression coefficients/weights. w0 sometimes is 

called “bias”.

• Note: learning a linear function is equivalent to learning the coefficient 
vector w = (w0, w1, …, wn)T.

5

Linear regression: example

• What is the best function?
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#

x y
0.13 -0.91
1.02 -0.17
3.17 1.61
-2.76 -3.31
1.44 0.18
5.28 3.36
-1.74 -2.46
7.93 5.56

... ...



Prediction

• For each observation x = (x1, x2, …, xn)T

¨ The true output: cx
(but unknown for future data)

¨ Prediction by our system:

yx = w0 + w1x1 + … + wnxn

¨ We often expect yx @ cx.

• Prediction for a future observation z = (z1, z2, …, zn)T

¨ Use the learned function to make prediction

f(z) = w0 + w1z1 + … + wnzn
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Learning a regression function

• Learning goal: learn a function f* such that its prediction in the future is 
the best.

¨ Its generalization is the best.

• Difficulty: infinite number of functions
¨ How can we learn? 

¨ Is function f better than g? 

• Use a measure
¨ Loss function is often used to guide learning.
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Loss function (hàm lỗi)

• Definition:
¨ The error/loss of the prediction for an abservation x = (x1, x2, …, xn)T

r(x) = [cx – f(x)]2 = (cx – w0 – w1x1 -… - wnxn)2

¨ The expected loss/risk of f over the whole space:

E = Ex[r(x)] = Ex[cx – f(x)]2

(Ex is the expectation over x)

• The goal of learning is to find f* that minimizes the expected loss:

¨ H is the space of functions of linear form.

• But, we cannot work directly with this problem during the learning 
phase. (why?)
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f⇤ = arg minf2H Ex [r(x)]

Cost, risk

Empirical loss

• We can only observe a set of training data D = {(x1, y1), (x2, y2), …, 
(xM, yM)}, and have to learn f from D.

• Residual sum of squares:

¨
!
" !"" # is an approximation to Ex[r(x)], and is often known as 

Empirical loss/risk (lỗi thực nghiệm).

• %
&!"" # − %! & ' is often known as generalization error of f.
(lỗi tổng quát hoá)

• Many learning algorithms base on this RSS and its variants.
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Methods: ordinary least squares (OLS)
• Given D, we find f* that minimizes RSS:

• This method is often known as ordinary least squares (OLS, bình 
phương tối thiểu).

• Find w* by taking the gradient of RSS and the solving the equation 
RSS’=0. We have:

¨ Where A is the data matrix of size Mx(n+1), whose the ith row is 
Ai = (1, xi1, xi2, …, xin); B-1 is the inversion of matrix B; y = (y1, y2, …, yM)T.

¨ Note: we assume that ATA is invertible (ma trận ATA khả nghịch).
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� Ĉk\�ÿѭӧF�JӑL�Oj EuQK�SKѭѫQJ�WӕL�WKLӇX (least squares).
� 7uP�QJKLӋP�࢝כ EҵQJ�FiFK�Oҩ\�ÿҥR�KjP�FӫD�ܴܵܵ Yj�JLҧL�
SKѭѫQJ�WUuQK�ܴܵܵԢ ൌ Ͳ��7KX�ÿѭӧF�
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� &K~�ê��JLҧ�WKX\ӃW࡭்࡭� WӗQ�WҥL�QJKӏFK�ÿҧR�
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Methods: OLS

• Input: D = {(x1, y1), (x2, y2), …, (xM, yM)}

• Output: w*

• Learning: compute 

¨ Where A is the data matrix of size !×($ + 1), whose the ith row is 
Ai = (1, xi1, xi2, …, xin); B-1 is the inversion of matrix B; y = (y1, y2, …, yM)T.

¨ Note: we assume that ATA is invertible.

• Prediction for a new x:
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Methods: OLS example
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x y
0.13 -1
1.02 -0.17

3 1.61
-2.5 -2
1.44 0.1

5 3.36
-1.74 -2.46
7.5 5.56

-4 -2 0 2 4 6 8
-4

-2

0

2

4

6

f*(x) = 0.81x – 0.78

f*

Methods: limitations of OLS

• OLS cannot work if ATA is not invertible
¨ If some columns (attributes/features) of A are dependent, then A will be 

singular and therefore ATA is not invertible.

• OLS requires considerable computation due to the need of computing 
a matrix inversion.

¨ Intractable for the very high dimensional problems.

• OLS very likely tends to overfitting, because the learning phase just 
focuses on minimizing errors on the training data.
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Methods: Ridge regression (1)
• Given D = {(x1, y1), (x2, y2), …, (xM, yM)}, we solve for:

¨ Where Ai = (1, xi1, xi2, …, xin) is composed from xi; and λ is a regularization 
constant (λ> 0). ( ! is the L2 norm.
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(2)

Methods: Ridge regression (2)

• Problem (2) is equivalent to the following:

!∗ = argmin$ )
%&!

"
*% −,%- '

Subject to ∑(&)* !(' ≤ 0 for some constant t.

• The regularization/penalty term: ! " ""

¨ Limits the magnitute/size of w* (i.e., reduces the search space for f*).

¨ Helps us to trade off between the fitting of f on D and its generalization
on future observations.
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(3)

Methods: Ridge regression (3)

• We solve for w* by taking the gradient of the objective function in (2), 
and then zeroing it. Therefore we obtain:

¨ Where A is the data matrix of size !×($ + 1), whose the ith row is 
Ai = (1, xi1, xi2, …, xin); B-1 is the inversion of matrix B; y = (y1, y2, …, yM)T; 
In+1 is the identity matrix of size n+1.

• Compared with OLS, Ridge can 

¨ Avoid the cases of singularity, unlike OLS. Hence Ridge always works.

¨ Reduce overfitting.

¨ But error in the training data might be greater than OLS.

• Note: the quality of Ridge depends heavily on the choice of the 
hyperparameter λ.
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Ridge regression (2)
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Methods: Ridge regression (4)

• Input: D = {(x1, y1), (x2, y2), …, (xM, yM)} and λ>0

• Output: w*

• Learning: compute 

• Prediction for a new x:

• Note: to avoid some negative effects of the magnitute of y on 
covariates x, one should remove w0 from the penalty term in (2). In 
this case, the solution of w* should be modified slightly.
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Ridge regression (2)
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An example of using Ridge and OLS
• The training set D contains 67 observations on prostate cancer, each 

was represented with 8 attributes. Ridge and OLS were learned from 
D, and then predicted 30 new observations.
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w
Ordinary Least 

Squares Ridge

0 2.465 2.452

lcavol 0.680 0.420

lweight 0.263 0.238

age −0.141 −0.046

lbph 0.210 0.162

svi 0.305 0.227

lcp −0.288 0.000

gleason −0.021 0.040

pgg45 0.267 0.133

Test RSS 0.521 0.492

Effects of λ in Ridge regression

• W* = (w0, S1, S2, S3, S4, S5, S6, AGE, SEX, BMI, BP) changes as 
the regularization constant λ changes.
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LASSO

• Ridge regression use L2 norm for regularization:

#∗ = argmin$ ∑%&'( ,% −.%" " , subject to ∑)&*+ #)" ≤ 1

• Replacing L2 by L1 norm will result in LASSO:

!∗ = argmin$ )
%&!

"
*% −,%- '

Subject to ∑(&)* |!(| ≤ 0
• Equivalently:

(∗ = argmin( 0
)*%

&
1) −2)3 + + 5 3 %

• This problem is non-differentiable à the training algorithm should be 
more complex than Ridge.
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(3)

(4)

LASSO: regularization role

• The regularization types lead to different domains for w.

• LASSO often produces sparse solutions, i.e., many components of w
are zero.

¨ Shinkage and feature selection at the same time
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Figure by Nicoguaro - Own work, CC BY 4.0, 
https://commons.wikimedia.org/w/index.php?curid=58258966

OLS, Ridge, and LASSO
• The training set D contains 67 observations on prostate cancer, each 

was represented with 8 attributes. OLS, Ridge, and LASSO were 
trained from D, and then predicted 30 new observations.
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w
Ordinary Least 

Squares Ridge LASSO

0 2.465 2.452 2.468

lcavol 0.680 0.420 0.533

lweight 0.263 0.238 0.169

age −0.141 −0.046

lbph 0.210 0.162 0.002

svi 0.305 0.227 0.094

lcp −0.288 0.000

gleason −0.021 0.040

pgg45 0.267 0.133

Test RSS 0.521 0.492 0.479

Some weights are 
0 

à some 
attributes may 

not be important

Classification
Random forest
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1. Decision tree
• Decision tree

¨ To represent a function by using a tree.

• Each decision tree can be interpreted as a set of rules of the 
form: IF-THEN

• Decision trees have been used in many 
practical applications.
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Examples of a decision tree (1)
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is absent

is present

“sport”?

“Music”?

is present

InterestedUninterested

“player”?

is present is absentis absent

Interested

is absent

“My God”?

is present

Interested Uninterested

• (…,“sport”,…,“player”,…) → Interested
• (…,“My God”,…) → Interested
• (…,“sport”,…) → Uninterested

Examples of a decision tree (2)
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• (Outlook=Overcast, Temperature=Hot, Humidity=High, 
Wind=Weak) → Yes

• (Outlook=Rain, Temperature=Mild, Humidity=High, Wind=Strong)
→ No

• (Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong)
→ No

Sunny

Outlook=?

Wind=?

Strong

YesNo

Humidity=?

High WeakNormal

Yes

Rain

No

Overcast

Yes

Classification problem

• Data representation:
¨ Each observation is represented by n attributes/features, e.g., 

xi = (xi1, xi2, …, xin)T. 

¨ Each attribute is nominal/categorical, i.e., represents names, 
labels or categories, e.g., 
$!" ∈ ℎ'(ℎ, *+,-./ , $!# ∈ -./0, #0-./0, +1ℎ0,

¨ There is a set C of predefined labels.

• We have to learn a function from a training dataset: 
D = {(x1, y1), (x2, y2), …, (xM, yM)}
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Tree representation (1)
• Each internal node represents an attribute for testing the 

incoming data.
• Each branch/subtree of a node corresponds to a value of the 

attribute of that node.
• Each leaf node represents a class label.
• Once a tree has been learned, we can predict the label for a new 

instance by using its attributes to travel from the root downto a 
leaf.

¨ The label of the leaf will be used to assign to the new instance.
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Tree representation (2)
• Each path from the root to a leaf is a conjunction/AND of the 

attribute tests.
• A decision tree itself is a disjunction/OR of those conjunctions.
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Sunny

Outlook=?

Wind=?

Strong

YesNo

Humidity=?

High WeakNormal

Yes

Rain

No

Overcast

Yes



Representation by a disjunction
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is absent

is present

“sport”?

“Music”?

is present

InterestedUninterested

“player”?

is present is absentis absent

Interested

is absent

“My God”?

is present

Interested Uninterested

[(“sport” is present) Ù (“player” is present)] Ú

[(“sport” is absent) Ù (“Music” is present)] Ú

[(“sport” is absent) Ù (“Music” is absent) Ù (“My God” is present)]

2. Learning a decision tree by ID3
• ID3 (Iterative Dichotomiser 3) is a greedy algorithm which was 

proposed by Ross Quinlan in 1986.
• It uses the top-down scheme.
• At each node N, select a test attribute A which can help us best 

do classification for the data in N.
¨ Generate a branch for each value of A, and then separate the data 

into its branches accordingly.

• Grow the tree until:
¨ It classifies correctly all the training data; or

¨ All the attributes are used.

• Note: each attribute can only appear at most once in any path of 
the tree.
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The ID3 algorithm
ID3_alg(Training_Set, Class_Labels, Attributes)
Generate the Root of the tree
If all of Training_Set belong to class c, then Return Root as leaf with label c
If Attributes is empty, then 

Return Root as leaf with label c = Majority_Class_Label(Training_Set)
A ← a set of Attributes that are best discriminative for Training_Set
Let A be the test attributes of Root
For each value v of A

Generate a branch of Root which corresponds with v.
Determine Training_Setv = { x in Training_Set | xA = v}
If (Training_Setv is empty) Then

Generate a leaf with class label c = Majority_Class_Label(Training_Set) 
Else

Generate a subtree by ID3_alg(Training_Setv, Class_Labels, Attributes \{A})
Return Root
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How to choose the test attributes?
• At each node, how can we choose a set of test attributes?

¨ These attributes should be discriminative, i.e., can help us classify 
well the data inside that node.

• How to know an attribute to be discriminative?
• Ex: assuming 2 classes in the data, which of A1 and A2 should be 

selected as the test attribute?

• Information gain can help.
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A1=?

v12
v11 v13

(c1: 35, c2: 25)

c1: 21
c2: 9

c1: 5
c2: 5

c1: 9
c2: 11

A2=?
v21 v22

(c1: 35, c2: 25)

c1: 8
c2: 19

c1: 27
c2: 6

Information gain: entropy
• Entropy measures the impurity/inhomogeneity of a set.

• Entropy of a set S with c classes can be defined as:

¨ Where pi is the proportion of instances with class label i in S; and 
0.log20 = 0 as a convention; p1+p2+…+pc = 1

• For 2 classes: !"#$%&'()) = − &1log2&1 − &2log2&2
• Meanings of entropy in Information Theory:

¨ Entropy shows the number of bits on average to encode a class of S.

¨ Entropy of a message measures the average amount of information
contained in that message.

¨ Entropy of a random variable x measures the unpredictability of x.
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Entropy(S) = �
Pc

i=1 pi log2 pi

Information gain: entropy example

• S consists of 14 examples for which 9 belong to class c1 and 5 
belong to class c2.

• So the entropy of S is:
Entropy(S) 
= -(9/14).log2(9/14) -(5/14).log2(5/14) 
≈ 0.94

• Entropy = 0 if all examples in S have the same label.
• Entropy = 1 if the two classes in S are equal in size.
• Otherwise, entropy will always belong to (0, 1).
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Information gain
• Information gain of an attribute in S:

¨ Measures the reduction of entropy if we divide S into subsets according to 
that attribute.

• Information gain of attribute A in S is defined as:

¨ Where Values(A) is the set of all values of A, and 
Sv = {x | x in S, and xa = v}

• The second term in Gain(S,A) measures the information remained 
when S is divided into subsets according to the values of A.

• Meaning of Gain(S,A): the average amount of information is lost when 
dividing S according to A.
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Gain(S, A) = Entropy(S)�
P

v2V alues(A)

|Sv|
|S| Entropy(Sv)

Information gain: example (1)
• A set S of observations about a person playing tennis.
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YesStrongHighMildOvercastD12

YesWeakNormalHotOvercastD13

Day Outlook Temperature Humidity Wind Play Tennis
D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D14 Rain Mild High Strong No

[Mitchell, 1997]

Information gain: example (2)
• What is Gain(S, Wind)?
• Wind has two values: Strong & Weak

• S = {9 examples with label Yes, 5 examples with label No}
• SWeak = {6 examples with label Yes and 2 examples with label No, 

having Wind=Weak}

• SStrong = {3 examples with label Yes, 3 examples with label No, having 
Wind=Strong}

• So:
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Information Gain: 9t�Gͥ

17

�+m\�WtQK�JLi�WUӏ�,QIRUPDWLRQ�*DLQ�FӫD�WKXӝF�WtQK�Wind ÿӕL�YӟL�WұS�KӑF�S
± Gain(S,Wind)?

� 7KXӝF�WtQK�Wind Fy���JLi�WUӏ�Fy�WKӇ���Weak Yj�Strong
� S  �^��Yt�Gө�OӟS�Yes Yj���Yt�Gө�OӟS�No}
� Sweak  �^��Yt�Gө�OӟS�Yes Yj���Yt�Gө�OӟS�No Fy�JLi�WUӏ�Wind=Weak}
� Sstrong  �^��Yt�Gө�OӟS�Yes Yj���Yt�Gө�OӟS�No Fy�JLi�WUӏ�Wind=Strong}
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ID3: example (1)
• At the root, which one of {Outlook, Temperature, Humidity, Wind} 

should be the test attribute?
¨ Gain(S, Outlook) = ... = 0.246

¨ Gain(S, Temperature) = ... = 0.029

¨ Gain(S, Humidity) = ... = 0.151

¨ Gain(S, Wind) = ... = 0.048

• So, Outlook is selected as the test attribute.
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Outlook=?

Node1

OvercastSunny Rain

S={9+, 5-}

SSunny={2+, 3-} SOvercast={4+, 0-} SRain={3+, 2-}

Yes Node2

ID3: example (2)
• At Node1, which one of 

{Temperature, Humidity, Wind} 
should be the test attribute? 

¨ Note: Outlook is left out

¨ Gain(SSunny, Wind) = ... = 0.019

¨ Gain(SSunny, Temperature) =...= 0.57

¨ Gain(SSunny, Humidity) = ... = 0.97

• So, Humidity is selected to 
divide Node1.
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Outlook=?

Humidity=?

Overcast
Sunny

Rain

S={9+, 5-}

SSunny= 
{2+, 3-}

SOvercast=
{4+, 0-} SRain= 

{3+, 2-}

Yes Node2

Node3 Node4

SHigh= 
{0+, 3-}

SNormal= 
{2+, 0-}

High Normal

ID3: searching scheme (1)
• ID3 searches for a tree that fits well with the training data.

¨ By growing the tree gradually.

• Information Gain decides the search direction of ID3.
• ID3 just searches for only one tree.
• ID3 never backtracks, as a consequence:

¨ It can find a local optimal solution/tree.

¨ Once an attribute has been selected, ID3 never rethinks of this 
choice.
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ID3: searching scheme (2)

• For a training dataset, there might be many trees that fit well with 
it.

¨ Which tree will be selected by ID3?
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Weak

Sunny

Outlook=?

Wind=?

Strong

YesNo

Humidity=?

High Normal

Yes

Rain

No

Overcast

Yes

Sunny

Outlook=?

Wind=?

Strong

YesNo

Temperature=?

Hot WeakMild

Yes

Rain

No

Overcast

Yes

Cool

Humidity=?

High

Yes

Normal

No

ID3: searching scheme (3)
• ID3 selects the first tree that fits the training data,

¨ Because it never reconsiders its choices when growing a tree.

• So, the searching scheme of ID3:
¨ Prefers simple trees.
¨ Prefers trees in which the attributes with higher information gain will 

be placed closer to the roots.
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3. Some issues of ID3

• The learnt trees may overfit the training data.
• How to work with real attributes?

¨ Many applications have real inputs.

• Is there any better measure than information gain?
• How to deal with missing values?

¨ Missing-value is an inherent problem in many practical 
applications.

• How to enclose the cost of attributes in ID3? 
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Overfitting in ID3 (2)
• An example: continuing to grow the tree can improve the 

accuracy on the training data, but perform badly on the test data.
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[Mitchell, 1997]

Overfitting: solutions
• 2 solutions:

¨ Stop learning early: prevent the tree before it fits the training data 
perfectly.

¨ Prune the full tree: grow the tree to its full size, and then post prune 
the tree.

• It is hard to decide when to stop learning.
• Post-pruning the tree empirically results in better performance. 

But 
¨ How to decide the good size of a tree? 
¨ When to stop pruning?

• We can use a validation set to do pruning, such as, reduced-
error pruning, and rule-post pruning.
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ID3: attribute selection
• Information gain:

¨ Prefers the attribute that has more unique values.
¨ Attributes with more unique values will be placed closer to the root 

than the other attribute.

• We can use some other measures, such as Gain Ratio
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ID3: missing or real values
• How to work with real attributes?

¨ Real attributes/features are popular in practice.
¨ One way is to discretization, i.e., transforming a real attribute into a 

discrete one by dividing the domain of that attribute into a set of 
intervals.
Ex: [0, 1]  à {[0, 0.25); [0.25, 0.5); [0.5, 0.75); [0.75, 1]}

• How to deal with missing values?
¨ Missing values are inherent in practical applications.
¨ An observation x may not have a value xA.

¨ Solution 1: fill in xA as the most popular value of A in the training 
data.

¨ Solution 2: fill in xA as the most popular value of A in the training 
data which belong to the same class with x.
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5. Random forests
• Random forests (RF) is a method by Leo Breiman (2001) for 

both classification and regression.
• Main idea: prediction is based on combination of many decision 

trees, by taking the average of all individual predictions.
• Each tree in RF is simple but random.
• Each tree is grown differently, 

depending on the choices of 
the attributes and training data.
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5. Random forests
• RF currently is one of the most popular and accurate methods

[Fernández-Delgado et al., 2014]

¨ It is also very general.

• RF can be implemented easily and efficiently.
• It can work with problems of very high dimensions, without 

overfitting J
• However, little is known about its theoretical properties L
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5. RF: three basic ingredients
• Randomization and no pruning:

¨ For each tree and at each node, we select randomly a subset of 
attributes.

¨ Find the best split, and then grow appropriate subtrees.
¨ Every tree will be grown to its largest size without pruning.

• Combination: each prediction later is made by taking the 
average of all predictions of individual trees.

• Bagging: the training set for each tree is generated by sampling 
(with replacement) from the original data.
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Three basic ingredients

1-Randomization and no-pruning
. For each tree, select at random, at each node, a small group of

input coordinates to split.

. Calculate the best split based on these features and cut.

. The tree is grown to maximum size, without pruning.

G. Biau (UPMC) 38 / 114

5. RF: algorithm
• Input: training data D
• Learning: grow K trees as follows

¨ Generate a training set Di by sampling with replacement from D.

¨ Learn the ith tree from Di:
¨ At each node:

² Select randomly a subset S of attributes.

² Split the node into subtrees according to S.

¨ Grow this tree upto its largest size without pruning.

• Prediction: taking the average of all predictions from the 
individual trees.

54

5. RF: practical performance
• RF is extensively compared with other methods

¨ By Fernández-Delgado et al. (2014).
¨ Using 55 different problems.

¨ Using average accuracy (μP) as a measure.
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Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?

No. Classifier µC No. Classifier µC

1 parRF t 69.9 11 nnet t 67.7

2 rf t 69.6 12 dkp C 67.6

3 rforest R 69.3 13 RRFglobal t 67.4

4 C5.0 t 69.0 14 Bagging LibSVM w 67.3

5 RotationForest w 68.6 15 Decorate w 67.1

6 svm C 68.4 16 knn t 67.1

7 mlp t 68.4 17 Bagging REPTree w 67.0

8 RRF t 68.1 18 elm m 67.0

9 LibSVM w 67.8 19 pda t 67.0

10 avNNet t 67.8 20 RandomCommittee w 66.9

No. Classifier µP No. Classifier µP

1 rf t 91.1 11 Bagging LibSVM w 89.9

2 parRF t 91.1 12 RandomCommittee w 89.9

3 svm C 90.7 13 Bagging RandomTree w 89.8

4 RRF t 90.6 14 MultiBoostAB RandomTree w 89.8

5 RRFglobal t 90.6 15 MultiBoostAB LibSVM w 89.8

6 LibSVM w 90.6 16 MultiBoostAB PART w 89.7

7 RotationForest w 90.5 17 Bagging PART w 89.7

8 C5.0 t 90.5 18 AdaBoostM1 J48 w 89.5

9 rforest R 90.3 19 Bagging REPTree w 89.5

10 treebag t 90.2 20 MultiBoostAB J48 w 89.4

No. Classifier µD No. Classifier µD

1 rf t 82.1 11 MultiBoostAB LibSVM w 79.7

2 rforest R 81.8 12 LibSVM w 79.6

3 svm C 81.6 13 RandomCommittee w 79.5

4 parRF t 81.6 14 dkp C 79.5

5 RRF t 80.8 15 nnet t 79.3

6 RotationForest w 80.3 16 elm kernel m 79.2

7 C5.0 t 80.2 17 avNNet t 79.2

8 mlp t 80.0 18 treebag t 79.0

9 Bagging LibSVM w 80.0 19 MAB MLP w 78.8

10 RRFglobal t 79.8 20 knn R 78.7

Table 10: Twenty best classifiers depending on the data set complexity and population.
Up: average accuracy µC (in %) weighting each data set decreasingly with its
complexity. Middle: accuracy µP weighting the data sets increasingly with
#patterns. Down: average accuracy µD weighted decreasingly with #patterns.

(upper part) shows the accuracy µL for the 20 best classifiers. The best classifiers are svm C
and rf t (with the same accuracy), followed by rforest t, Bagging LibSVM w, parRF t and
others, only 1% below the bests. There are 4 Random Forests and 2 SVMs in the top-10.
The Bagging LibSVM w, MultiBoostAB LibSVM w and MultiBoostAB Multilayer Percep-
tron w ensembles are also included in the top-10. The best neural networks are dkp C (9th
position), MultilayerPerceptron w and elm m. Two DA classifiers (rda R and hdda R) and
two NN classifiers (knn R and IBk w) are included. With respect to the number of in-
puts, the weighted average accuracy µI according to the #inputs N I

i can be calculated
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