

# Introduction to **Data Science** (IT4142E)

## Contents

- Lecture 1: Overview of Data Science
- □ Lecture 2: Data crawling and preprocessing
- □ Lecture 3: Data cleaning and integration
- Lecture 4: Exploratory data analysis
- Lecture 5: Data visualization
- Lecture 6: Multivariate data visualization
- □ Lecture 7: Machine learning
- Lecture 8: Big data analysis

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG -

- □ Lecture 9: Capstone Project guidance
- □ Lecture 10+11: Text, image, graph analysis
- Lecture 12: Evaluation of analysis results

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG -

Linear regression

#### Linear regression: introduction

- Regression problem: learn an unknown function y = f(x) from a given training data  $\mathbf{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_M, y_M)\}$  such that  $y_i \cong f(\mathbf{x}_i)$  for every i
  - Each observation of x is represented by a vector in an n-dimensional space, e.g.,  $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{in})^T$ . Each dimension represents an attribute/feature/variate.
  - Bold characters denote vectors.
- · Linear model: if f(x) is assumed to be of linear form

 $f(\mathbf{x}) = w_0 + w_1 x_1 + ... + w_n x_n$ 

- ${\scriptstyle \Box} \ w_0, w_1, \, ..., \, w_n$  are the regression coefficients/weights.  $w_0$  sometimes is called "bias".
- · Note: learning a linear function is equivalent to learning the coefficient vector  $\mathbf{w} = (w_0, w_1, ..., w_n)^T$ . SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

#### Linear regression: example

What is the best function?

| x     | У     |
|-------|-------|
| 0.13  | -0.91 |
| 1.02  | -0.17 |
| 3.17  | 1.61  |
| -2.76 | -3.31 |
| 1.44  | 0.18  |
| 5.28  | 3.36  |
| -1.74 | -2.46 |
| 7.93  | 5.56  |
|       |       |





## Loss function (hàm lỗi)

#### • Definition:

- $_{\square}$  The error/loss of the prediction for an abservation  $\boldsymbol{x}$  =  $(x_1,\,x_2,\,...,\,x_n)^{T}$  $r(\mathbf{x}) = [c_x - f(\mathbf{x})]^2 = (c_x - w_0 - w_1 x_1 - \dots - w_n x_n)^2$
- □ The expected loss/risk of f over the whole space:
- $E = E_x[r(x)] = E_x[c_x f(x)]^2$
- $(\mathbf{E}_x \text{ is the expectation over } \mathbf{x})$

- The goal of learning is to find f\* that minimizes the expected loss:
  - $f^* = \arg\min_{f \in H} \boldsymbol{E}_x [r(\boldsymbol{x})]$
  - $\hfill\square$  H is the space of functions of linear form.
- But, we cannot work directly with this problem during the learning phase. (why?)

#### **Empirical loss**

- We can only observe a set of training data  $\mathbf{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ...,$  $(\mathbf{x}_{M}, y_{M})$ , and have to learn f from **D**.
- · Residual sum of squares:

$$RSS(f) = \sum_{i=1}^{M} (y_i - f(\mathbf{x}_i))^2 = \sum_{i=1}^{M} (y_i - w_0 - w_1 \mathbf{x}_{i1} - \dots - w_n \mathbf{x}_{in})^2$$

- $\Box \frac{1}{M}RSS(f)$  is an approximation to  $\mathbf{E}_{\mathbf{x}}[\mathbf{r}(\mathbf{x})]$ , and is often known as Empirical loss/risk (lỗi thực nghiệm).
- $\left|\frac{1}{n}RSS(f) E_x[r(x)]\right|$  is often known as generalization error of f. . (lỗi tổng quát hoá)
- Many learning algorithms base on this RSS and its variants.

## Methods: ordinary least squares (OLS)

• Given **D**, we find f\* that minimizes RSS:  $= \arg \min P(C(f))$ 

$$f = \arg \liminf_{f \in H} \operatorname{KSS}(f)$$

$$\Leftrightarrow \boldsymbol{w}^* = \arg\min_{\boldsymbol{w}} \sum_{i=1}^{\infty} (y_i - w_0 - w_1 x_{i1} - \dots - w_n x_{in})^2 \qquad (1)$$

- This method is often known as ordinary least squares (OLS, binh phương tối thiểu).
- Find  $\bm{w}^{\star}$  by taking the gradient of RSS and the solving the equation RSS'=0. We have:

$$\boldsymbol{w}^* = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{y}$$

- $\label{eq:constraint} \begin{array}{l} & \mbox{Where } \bm{A} \mbox{ is the data matrix of size } M_x(n+1), \mbox{ whose the } i^{j_1} \mbox{ row is } \\ & \bm{A}_i = (1, x_{i_1}, x_{i_2}, ..., x_{j_n}); \mbox{ $B$}^{-1} \mbox{ is the inversion of matrix $B$; $\bm{y} = (y_1, y_2, ..., y_{j_n})^T$.} \end{array}$
- Note: we assume that A<sup>T</sup>A is invertible (ma trận A<sup>T</sup>A khả nghịch).

Methods: OLS

- Input:  $\mathbf{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_M, y_M)\}$
- Output: w\*

11

· Learning: compute

$$\boldsymbol{w}^* = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{y}$$

- Where **A** is the data matrix of size  $M \times (n + 1)$ , whose the i<sup>th</sup> row is  $\mathbf{A}_{i} = (1, x_{i1}, x_{i2}, ..., x_{in}); \mathbf{B}^{-1}$  is the inversion of matrix  $\mathbf{B}; \mathbf{y} = (y_{1}, y_{2}, ..., y_{M})^{T}$ .
- Note: we assume that A<sup>T</sup>A is invertible.

• Prediction for a new x:

$$y_x = w_0^* + w_1^* x_1 + \dots + w_n^* x_n$$



#### Methods: OLS example



#### Methods: limitations of OLS

- OLS cannot work if ATA is not invertible
  - □ If some columns (attributes/features) of A are dependent, then A will be singular and therefore **A**<sup>T</sup>**A** is not invertible.
- · OLS requires considerable computation due to the need of computing a matrix inversion.
  - Intractable for the very high dimensional problems.
- · OLS very likely tends to overfitting, because the learning phase just focuses on minimizing errors on the training data.



#### Methods: Ridge regression (1)



CHÊ THÔNG TIN VÀ TRUYỀN THÔN

overfitting

#### Methods: Ridge regression (2)

· Problem (2) is equivalent to the following:

$$w^* = \arg\min_{\boldsymbol{w}} \sum_{i=1}^{m} (y_i - A_i \boldsymbol{w})^2$$
(3)

Subject to  $\sum_{j=0}^{n} w_j^2 \leq t$  for some constant *t*.

- The regularization/penalty term:  $\lambda \| \boldsymbol{w} \|_2^2$ 
  - $\hfill\square$  Limits the magnitute/size of  $\bm{w}^{\star}$  (i.e., reduces the search space for f^).
  - $\hfill\square$  Helps us to trade off between the fitting of f on  $\boldsymbol{D}$  and its generalization on future observations



#### Methods: Ridge regression (3)

• We solve for w\* by taking the gradient of the objective function in (2), and then zeroing it. Therefore we obtain:

#### $\boldsymbol{w}^* = (\boldsymbol{A}^T \boldsymbol{A} + \lambda \boldsymbol{I}_{n+1})^{-1} \boldsymbol{A}^T \boldsymbol{y}$

- Where **A** is the data matrix of size  $M \times (n + 1)$ , whose the i<sup>th</sup> row is  $A_i = (1, x_1, x_2, ..., x_{in})$ ;  $B^{-1}$  is the inversion of matrix B;  $y = (y_1, y_2, ..., y_M)^T$ ;  $I_{n+1}$  is the identity matrix of size n+1.
- · Compared with OLS, Ridge can
  - a Avoid the cases of singularity, unlike OLS. Hence Ridge always works.
  - Reduce overfitting.
  - $\hfill\square$  But error in the training data might be greater than OLS.
- Note: the quality of Ridge depends heavily on the choice of the

#### hyperparameter $\lambda$ .

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG -

17

15

#### Methods: Ridge regression (4)

- Input:  $\mathbf{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_M, y_M)\}$  and  $\lambda > 0$
- Output: w\*
- · Learning: compute

 $\boldsymbol{w}^* = (\boldsymbol{A}^T \boldsymbol{A} + \lambda \boldsymbol{I}_{n+1})^{-1} \boldsymbol{A}^T \boldsymbol{y}$ 

• Prediction for a new x:

 $y_x = w_0^* + w_1^* x_1 + \dots + w_n^* x_n$ 

· Note: to avoid some negative effects of the magnitute of y on covariates  $\mathbf{x}_i$  one should remove  $w_0$  from the penalty term in (2). In this case, the solution of  $\mathbf{w}^*$  should be modified slightly.

#### An example of using Ridge and OLS

• The training set **D** contains 67 observations on prostate cancer, each was represented with 8 attributes. Ridge and OLS were learned from **D**, and then predicted 30 new observations.

|       |                                 | Ordinary Least | Pidao  |
|-------|---------------------------------|----------------|--------|
|       | W                               | Squares        | Ridge  |
|       | 0                               | 2.465          | 2.452  |
|       | Icavol                          | 0.680          | 0.420  |
|       | lweight                         | 0.263          | 0.238  |
|       | age                             | -0.141         | -0.046 |
|       | lbph                            | 0.210          | 0.162  |
|       | svi                             | 0.305          | 0.227  |
|       | lcp                             | -0.288         | 0.000  |
|       | gleason                         | -0.021         | 0.040  |
|       | pgg45                           | 0.267          | 0.133  |
|       | Test RSS                        | 0.521          | 0.492  |
| SOICT | VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRI | JYÉN THÔNG     |        |

#### Effects of $\lambda$ in Ridge regression

 W<sup>\*</sup> = (w<sub>0</sub>, S1, S2, S3, S4, S5, S6, AGE, SEX, BMI, BP) changes as the regularization constant λ changes.



## LASSO

- Ridge regression use L<sup>2</sup> norm for regularization:  $w^* = \arg \min_{w} \sum_{i=1}^{M} (y_i - A_i w)^2$ , subject to  $\sum_{j=0}^{n} w_j^2 \le t$  (3)
- Replacing L<sup>2</sup> by L<sup>1</sup> norm will result in LASSO:

 $w^* = \arg\min_{w}$ 

$$w^* = \arg\min_{\boldsymbol{w}} \sum_{i=1}^{m} (y_i - \boldsymbol{A}_i \boldsymbol{w})^2$$

t

 $-A_i w)^2 + \lambda \|w\|_1$ 

Subject to 
$$\sum_{j=0}^{n} |w_j| \le$$

Equivalently:

(4)

21

• This problem is non-differentiable → the training algorithm should be more complex than Ridge.

 $(y_i)$ 



- The regularization types lead to different domains for w.
- LASSO often produces  $\ensuremath{\textbf{sparse}}$  solutions, i.e., many components of  $\ensuremath{\textbf{w}}$  are zero.





## OLS, Ridge, and LASSO

• The training set **D** contains 67 observations on prostate cancer, each was represented with 8 attributes. OLS, Ridge, and LASSO were trained from **D**, and then predicted 30 new observations. Ordinary Least Squares w Ridge LASSC 0 2.465 2.452 2.468 0.420 Icavol 0.680 0.533 0.263 0.238 0.169 lweight Some weights are age -0.141 -0.046 0 → some attributes may lbph 0.210 0.162 0.002 0.305 0.227 0.094 svi not be importar lcp -0.288 0.000 -0.021 0.040 gleason pgg45 0.267 0.133 Test RSS 0.521 0.492 0.479 SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 23

# Classification

Random forest

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

## 1. Decision tree

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THỜ

#### Decision tree

□ To represent a function by using a tree.

- · Each decision tree can be interpreted as a set of rules of the form: IF-THEN
- · Decision trees have been used in many practical applications.









- (Outlook=Overcast, Temperature=Hot, Humidity=High, Wind=Weak) → Yes
- (Outlook=Rain, Temperature=Mild, Humidity=High, Wind=Strong)  $\rightarrow No$
- (Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong)  $\rightarrow No$

## **Classification problem**

- · Data representation:
  - Each observation is represented by n attributes/features, e.g.,  $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{in})^T$ .
  - □ Each attribute is nominal/categorical, i.e., represents names,  $\begin{array}{ll} \mbox{labels or categories, e.g.,} \\ x_{i1} \in \{high, normal\}, & x_{i2} \in \{male, female, other\} \end{array}$
  - There is a set C of predefined labels.
- We have to learn a function from a training dataset:  $\mathbf{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_M, y_M)\}$



## Tree representation (1)

- · Each internal node represents an attribute for testing the incoming data.
- · Each branch/subtree of a node corresponds to a value of the attribute of that node.
- · Each leaf node represents a class label.
- Once a tree has been learned, we can predict the label for a new instance by using its attributes to travel from the root downto a leaf.
  - The label of the leaf will be used to assign to the new instance.

## Tree representation (2)

- · Each path from the root to a leaf is a conjunction/AND of the attribute tests.
- A decision tree itself is a disjunction/OR of those conjunctions.





SOICT

#### Representation by a disjunction "sport"? absent is prese "player"? "Music"? is present is absent absent is present "My God"? Interested Interested Uninterested present absent Interested Uninterested [("sport" is present) \land ("player" is present)] 🗸 [("sport" is absent) \ ("Music" is present)] [("sport" is absent) $\land$ ("Music" is absent) $\land$ ("My God" is present)] SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

## 2. Learning a decision tree by ID3

- ID3 (Iterative Dichotomiser 3) is a greedy algorithm which was proposed by Ross Quinlan in 1986.
- · It uses the top-down scheme
- · At each node N, select a test attribute A which can help us best do classification for the data in N.
  - □ Generate a branch for each value of A, and then separate the data into its branches accordingly.
- · Grow the tree until:
  - □ It classifies correctly all the training data; or
  - □ All the attributes are used.
- Note: each attribute can only appear at most once in any path of the tree.

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 32

## The ID3 algorithm

ID3\_alg(Training\_Set, Class\_Labels, Attributes) Generate the Root of the tree If all of Training Set belong to class c, then Return Root as leaf with label c If Attributes is empty, then Return Root as leaf with label c = Majority\_Class\_Label(Training\_Set)  $A \leftarrow a$  set of Attributes that are best discriminative for Training Set Let A be the test attributes of Root For each value v of A Generate a branch of Root which corresponds with v. Determine Training\_Set<sub>v</sub> = { x in *Training\_Set* | x<sub>A</sub> = v} If (Training Set, is empty) Then Generate a leaf with class label c = Majority\_Class\_Label(Training\_Set) Else Generate a subtree by ID3\_alg(Training\_Set,, Class\_Labels, Attributes \{A}) Return Root SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

## How to choose the test attributes?

- At each node, how can we choose a set of test attributes? D These attributes should be *discriminative*, i.e., can help us classify well the data inside that node.
- · How to know an attribute to be discriminative?
- Ex: assuming 2 classes in the data, which of  $A_1$  and  $A_2$  should be selected as the test attribute?





· Information gain can help

33

35



## Information gain: entropy

- · Entropy measures the impurity/inhomogeneity of a set.
- Entropy of a set S with c classes can be defined as:

 $Entropy(S) = -\sum_{i=1}^{c} p_i \log_2 p_i$ 

- D Where p<sub>i</sub> is the proportion of instances with class label i in S; and  $0.\log_2 0 = 0$  as a convention;  $p_1+p_2+...+p_c = 1$
- For 2 classes:  $entropy(S) = -p_1 \log_2 p_1 p_2 \log_2 p_2$
- Meanings of entropy in Information Theory:
  - Entropy shows the number of bits on average to encode a class of S.
  - Entropy of a message measures the average amount of information contained in that message.
  - □ Entropy of a random variable x measures the *unpredictability* of x.

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

## Information gain: entropy example

- S consists of 14 examples for which 9 belong to class c1 and 5 belong to class c2.
- So the entropy of S is: Entropy(S) = -(9/14).log<sub>2</sub>(9/14) -(5/14).log<sub>2</sub>(5/14) ≈ 0.94
- Entropy(S) 0.5 p<sub>1</sub>
- Entropy = 0 if all examples in S have the same label.
- Entropy = 1 if the two classes in S are equal in size.
- Otherwise, entropy will always belong to (0, 1).

#### Information gain

- Information gain of an attribute in S:
  - $\hfill\square$  Measures the reduction of entropy if we divide S into subsets according to that attribute.
- Information gain of attribute A in S is defined as:

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

- □ Where Values(A) is the set of all values of A, and  $S_v = \{x \mid x \text{ in } S, \text{ and } x_a = v\}$
- The second term in Gain(S,A) measures the *information remained* when S is divided into subsets according to the values of A.
- Meaning of Gain(S,A): the average amount of information is lost when dividing S according to A.

## Information gain: example (1)

• A set S of observations about a person playing tennis.

| Day          | Outlook            | Temperature             | Humidity      | Wind   | Play Tennis   |
|--------------|--------------------|-------------------------|---------------|--------|---------------|
| D1           | Sunny              | Hot                     | High          | Weak   | No            |
| D2           | Sunny              | Hot                     | High          | Strong | No            |
| D3           | Overcast           | Hot                     | High          | Weak   | Yes           |
| D4 Rain      |                    | Mild                    | High          | Weak   | Yes           |
| D5           | Rain               | Cool                    | Normal        | Weak   | Yes           |
| D6           | Rain               | Cool                    | Normal        | Strong | No            |
| D7           | Overcast           | Cool                    | Normal        | Strong | Yes           |
| D8           | Sunny              | Mild                    | High          | Weak   | No            |
| D9           | Sunny              | Cool                    | Normal        | Weak   | Yes           |
| D10          | Rain               | Mild                    | Normal        | Weak   | Yes           |
| D11          | Sunny              | Mild                    | Normal Strong |        | Yes           |
| D12          | Overcast           | Mild                    | High          | Strong | Yes           |
| D13          | Overcast           | Hot                     | Normal        | Weak   | Yes           |
| D14          | Rain               | Mild                    | High          | Strong | No            |
| 22)<br>ЭСТ М | ÊN CÔNG NGHỆ THÔNG | g tin và truyền thông 🗕 |               |        | [Mitchell, 19 |

## Information gain: example (2)

• What is Gain(S, Wind)?

- · Wind has two values: Strong & Weak
- S = {9 examples with label Yes, 5 examples with label No}
- S<sub>Weak</sub> = {6 examples with label Yes and 2 examples with label No, having Wind=Weak}
- S<sub>Strong</sub> = {3 examples with label Yes, 3 examples with label No, having Wind=Strong}
- So:  $Gain(S, Wind) = Entropy(S) - \sum_{v \in \{Strong, Weak\}} \frac{|S_v|}{|S|} Entropy(S_v)$   $= Entropy(S) - \frac{8}{14} Entropy(S_{Weak}) - \frac{6}{14} Entropy(S_{Strong})$   $= 0.94 - \frac{8}{14} * 0.81 - \frac{6}{14} * 1 = 0.048$  V = 0.94  $V = 0.94 - \frac{8}{14} * 0.81 - \frac{6}{14} * 1 = 0.048$

## ID3: example (1)

- At the root, which one of {Outlook, Temperature, Humidity, Wind} should be the test attribute?
  - □ Gain(S, **Outlook**) = ... = **0.246**
  - Gain(S, Temperature) = ... = 0.029
  - Gain(S, Humidity) = ... = 0.151
  - □ Gain(S, Wind) = ... = 0.048
- · So, Outlook is selected as the test attribute.



## ID3: example (2)

- At Node1, which one of {Temperature, Humidity, Wind} should be the test attribute?
  - Note: Outlook is left out
  - $\square$  Gain(S<sub>Sunny</sub>, Wind) = ... = 0.019
  - Gain(S<sub>Sunny</sub>, Temperature) =...= 0.57
  - $\square$  Gain(S<sub>Sunny</sub>, Humidity) = ... = 0.97
- So, Humidity is selected to divide Node1.



41

## ID3: searching scheme (1)

- ID3 searches for a tree that fits well with the training data.
   By growing the tree gradually.
- Information Gain decides the search direction of ID3.
- ID3 just searches for only one tree.
- ID3 never backtracks, as a consequence:
  - □ It can find a local optimal solution/tree.
  - $\hfill\square$  Once an attribute has been selected, ID3 never rethinks of this choice.

## ID3: searching scheme (2)

- · For a training dataset, there might be many trees that fit well with it.
  - Which tree will be selected by ID3?



## ID3: searching scheme (3)

- · ID3 selects the first tree that fits the training data,
  - Because it never reconsiders its choices when growing a tree.
- · So, the searching scheme of ID3:
  - Prefers simple trees.
  - Prefers trees in which the attributes with higher information gain will be placed closer to the roots.



#### 3. Some issues of ID3

- · The learnt trees may overfit the training data.
- · How to work with real attributes? Many applications have real inputs.
- · Is there any better measure than information gain?
- · How to deal with missing values? In Missing-value is an inherent problem in many practical applications.
- · How to enclose the cost of attributes in ID3?



An example: continuing to grow the tree can improve the accuracy on the training data, but perform badly on the test data.



#### **Overfitting: solutions**

- 2 solutions:
  - □ Stop learning early: prevent the tree before it fits the training data perfectly.
  - □ Prune the full tree: grow the tree to its full size, and then post prune the tree.
- · It is hard to decide when to stop learning.
- Post-pruning the tree empirically results in better performance. But
  - B How to decide the good size of a tree?
  - When to stop pruning?
- · We can use a validation set to do pruning, such as, reducederror pruning, and rule-post pruning.

# 



48

## **ID3: attribute selection**

- Information gain:
  - Prefers the attribute that has more unique values.
  - Attributes with more unique values will be placed closer to the root than the other attribute.
- We can use some other measures, such as Gain Ratio

 $\begin{aligned} GainRatio(S,A) &= \frac{Gain(S,A)}{SplitInformation(S,A)}, \\ SplitInformation(S,A) &= -\sum_{v \in Values(A)} \frac{|S_v|}{|S|} \log_2 \frac{|S_v|}{|S|} \end{aligned}$ 

## ID3: missing or real values

- · How to work with real attributes?
  - Real attributes/features are popular in practice.
  - One way is to discretization, i.e., transforming a real attribute into a discrete one by dividing the domain of that attribute into a set of intervals.
  - $\mathsf{Ex:} \ [0, 1] \ \rightarrow \{[0, 0.25); [0.25, 0.5); [0.5, 0.75); [0.75, 1]\}$
- How to deal with missing values?
  - $\hfill\square$  Missing values are inherent in practical applications.
  - $\hfill\square$  An observation  $\boldsymbol{x}$  may not have a value  $x_A.$
  - $\hfill Solution 1:$  fill in  $x_A$  as the most popular value of A in the training data.

### 5. Random forests

- Random forests (RF) is a method by Leo Breiman (2001) for both classification and regression.
- Main idea: prediction is based on combination of many decision trees, by *taking the average of all individual predictions*.
- Each tree in RF is simple but random.
  Each tree is grown differently, depending on the choices of the attributes and training data.



#### 5. Random forests

- RF currently is one of the most popular and accurate methods [Femández-Delgado et al., 2014]
  - It is also very general.
- RF can be implemented easily and efficiently.
- It can work with problems of very high dimensions, without overfitting  $\textcircled{}{}$
- However, little is known about its theoretical properties 🐵



# 

## 5. RF: three basic ingredients

ÔNG TIN VÀ TRUYỂN THÔNG

- Randomization and no pruning:
  - For each tree and at each node, we select randomly a subset of attributes.
  - $\hfill\square$  Find the best split, and then grow appropriate subtrees.
  - □ Every tree will be grown to its largest size without pruning.
- **Combination:** each prediction later is made by taking the average of all predictions of individual trees.
- **Bagging:** the training set for each tree is generated by sampling (with replacement) from the original data.



## 5. RF: algorithm

- Input: training data D
- Learning: grow K trees as follows
  - $\hfill\square$  Generate a training set  $\mathsf{D}_i$  by sampling with replacement from D.
  - □ Learn the i<sup>th</sup> tree from D<sub>i</sub>:
    - At each node:
      - Select randomly a subset S of attributes.
      - $_{\ast}~$  Split the node into subtrees according to S.
    - Grow this tree upto its largest size without pruning.
- **Prediction**: taking the average of all predictions from the individual trees.

## 5. RF: practical performance

- · RF is extensively compared with other methods
  - By Fernández-Delgado et al. (2014).
  - Using 55 different problems.

 ${\scriptstyle \Box}$  Using average accuracy  $(\mu^{P})$  as a measure.

|         | No. | Classifier       | $\mu^P$ | No. | Classifier                | $\mu^P$ |
|---------|-----|------------------|---------|-----|---------------------------|---------|
|         | 1   | rf_t             | 91.1    | 11  | Bagging_LibSVM_w          | 89.9    |
|         | 2   | parRF_t          | 91.1    | 12  | RandomCommittee_w         | 89.9    |
|         | 3   | svm_C            | 90.7    | 13  | Bagging_RandomTree_w      | 89.8    |
|         | 4   | RRF_t            | 90.6    | 14  | MultiBoostAB_RandomTree_w | 89.8    |
|         | 5   | RRFglobal_t      | 90.6    | 15  | MultiBoostAB_LibSVM_w     | 89.8    |
|         | 6   | LibSVM_w         | 90.6    | 16  | MultiBoostAB_PART_w       | 89.7    |
|         | 7   | RotationForest_w | 90.5    | 17  | Bagging_PART_w            | 89.7    |
|         | 8   | C5.0_t           | 90.5    | 18  | AdaBoostM1_J48_w          | 89.5    |
|         | 9   | rforest_R        | 90.3    | 19  | Bagging_REPTree_w         | 89.5    |
|         | 10  | treebag_t        | 90.2    | 20  | MultiBoostAB_J48_w        | 89.4    |
|         |     |                  |         |     |                           |         |
| Max and |     |                  |         |     |                           |         |

