

HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY



HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

# Introduction to Data Science (IT4142E)

### Contents

- □ Lecture 1: Overview of Data Science
- Lecture 2: Data crawling and preprocessing
- Lecture 3: Data cleaning and integration
- Lecture 4: Exploratory data analysis
- Lecture 5: Data visualization
- Lecture 6: Multivariate data visualization
- □ Lecture 7: Machine learning
- Lecture 8: Big data analysis
- Lecture 9: Capstone Project guidance
- □ Lecture 10+11: Text, image, graph analysis
- Lecture 12: Evaluation of analysis results



# 1. Assessing performance (1)

- How can we make a reliable assessment on the performance of an ML method?
  - Note that performance of a method often improves as more data are available.
  - An assessment is more reliable as more data are used to test prediction.
- How to choose a good value for a parameter in an ML method?
- The performance of a method depends on many factors:
  - □ Class distribution
  - Training size
  - □ Representativeness of training data over the whole space,...



# **Assessing performance (2)**

- Theoretical evaluation: study some theoretical properties of a method/model with some explicit mathematical proofs.
  - Learning rate?
  - How many training instances are enough?
  - □ What is the expected accuracy of prediction?
  - Noise-resistance? ...
- *Experimental evaluation:* observe the performance of a method in practical situations, using some datasets and a performance measure. Then make a summary from those experiments.
- We will discuss experimental evaluation in this lecture.



# **Assessing performance (3)**

- **Model assessment:** we need to evaluate the performance of a method/model, only based on a given observed dataset D.
- Evaluation:
  - □ Should be done automatically,
  - Does not need any help from users.
- Evaluation strategies:
  - □ To obtain a reliable assessment on performance.
- Evaluation measures:
  - □ To measure performance quantitatively.



# 2. Some evaluation techniques

- Hold-out
- Stratified sampling
- Repeated hold-out
- Cross-validation
  - □ K-fold
  - Leave-one-out
- Bootstrap sampling



# Hold-out (random splitting)

- The observed dataset D is randomly splitted into 2 non-overlapping subsets:
  - $\square$  D<sub>train</sub>: used for training
  - $\square$  D<sub>test</sub>: used to test performance



- Note that:
  - $\square$  No instance of D<sub>test</sub> is used in the training phase.
  - $\hfill\square$  No instance of  $D_{train}$  is used in the test phase.
- Popular split:  $|D_{train}| = (2/3).|D|$ ,  $|D_{test}| = (1/3).|D|$
- This technique is suitable when D is of large size.



# **Stratified sampling**

• For small or imbalanced datasets, random splitting might result in a training dataset which are not representative.

 $\square$  A class in D<sub>train</sub> might be empty or have few instances.

- We should split D so that the class distribution in D<sub>train</sub> is similar with that in D.
- Stratified sampling fulfills this need:

 We randomly split each class of D into 2 parts: one is for D<sub>train</sub>, and the other is for D<sub>test</sub>.



• Note that this technique cannot be applied to regression and unsupervised learning.



### **Repeated hold-out**

- We can do hold-out many times, and then take the average result.
  - Repeat hold-out n times. The i<sup>th</sup> time will give a performance result p<sub>i</sub>. The training data for each hold-out should be different from each other.
  - □ Take the average  $p = mean(p_1, ..., p_n)$  as the final quality.
- Advantages?
- Limitations?



# **Cross-validation**

- In repeated hold-out: there are overlapping between two training/testing datasets. It might be redundant.
- K-fold cross-validation:
  - □ Split D into K equal parts which are non-overlapping.
  - Do K runs (folds): at each run, one part is used for testing and the remaining parts are used for training.
  - □ Take the average as the final quality from K individual runs.
- Popular choices of K: 10 or 5
- It is useful to combine this technique with stratified sampling.
- This technique is suitable for small/average datasets.



#### Leave-one-out cross-validation

- It is K-fold cross-validation when K = |D|.
  - $\hfill\square$  Each testing set consists of only one instance from D.
  - □ The remaining is for training.
- So all observed instances are exploited as much as possible.
- No randomness appears.
- But it is expensive, and hence is suitable with small datasets.



# **Bootstrap sampling**

- Previous methods do not allow repetitions of an instance in any training part.
- Bootstrap sampling:
  - Assume D having n instances.
  - Build D<sub>train</sub> by randomly sampling (with replacement/repetition) n instances from D.
  - $\hfill\square$   $D_{train}$  is used for the training phase.

$$\square$$
 D<sub>test</sub> = D\D<sub>train</sub> is used for testing quality.

□ Note that  $D_{test} = \{z \in D: z \notin D_{train}\}$ 

- It can be shown that D<sub>train</sub> contains nearly 63.2% different instances of D. 36.8% of D are used for testing.
- This technique is suitable for small datasets.



# 3. Model selection

- An ML method often has a set of hyperparameters that require us to select suitable values a priori.
  - $\square$  Ridge regression:  $\lambda$
  - □ Linear SVM: C
- How to choose a good value?
- **Model selection:** given a dataset D, we need to choose a good setting of the hyperparameters in method (model) A such that the function learned by A generalizes well.
- A validation set T<sub>valid</sub> is often used to find a good setting.
   It is a subset of D.
  - □ A good setting should help the learned function predicts well on  $T_{valid}$ . → we are approximating the generalization error on the whole data space by just using small  $T_{valid}$ .



# Model selection: using hold-out

- Given an observed dataset D, we can select a good value for hyperparameter λ as follows:
  - $\square$  Select a finite set S which contains all potential values of  $\lambda$ .
  - □ Select a performance measure *P*.
  - □ Randomly split D into 2 non-overlapping subsets: D<sub>train</sub> and T<sub>valid</sub>
  - □ For each  $\lambda \in S$ : train the system given  $D_{train}$  and  $\lambda$ . Measure the quality on  $T_{valid}$  to get  $P_{\lambda}$ .
  - □ Select the best  $\lambda^*$  which corresponds to the best  $P_{\lambda}$ .
- It is often beneficial to learn again from D given  $\lambda^*$  to get a better function.
- Hold-out can be replaced with other techniques e.g., sampling, crossvalidation.



#### **Example: select parameters**

Random forest for news classification

Parameter: n\_estimates (number of trees)

- Dataset: 1135 news, 10 classes, vocabulary of 25199 terms
- 10-fold cross-validation is used







# 4. Model assessment and selection

- Given an observed dataset D, we need to select a good value for hyperparameter λ and evaluate the overall performance of a method A:
  - <sup>□</sup> Select a finite set S which contains all potential values of  $\lambda$ .
  - □ Select a performance measure P.
  - □ Split D into 3 non-overlapping subsets: D<sub>train</sub>, T<sub>valid</sub> and T<sub>test</sub>
  - □ For each  $\lambda \in S$ : train the system given  $D_{train}$  and  $\lambda$ . Measure the quality on  $T_{valid}$  to get  $P_{\lambda}$ .
  - □ Select the best  $\lambda^*$  which corresponds to the best  $P_{\lambda}$ .
  - $_{\Box}~$  Train the system again from  $D_{train} \cup T_{valid}$  given  $\lambda^{*}.$
  - $\hfill\square$  Test performance of the system on  $T_{test}$ .
- Hold-out can be replaced with other techniques.



# **5. Performance measures**

Accuracy (độ chính xác)

Percentage of correct predictions on testing data.

• Efficiency (tính hiệu quả)

□ The cost in time and storage when learning/prediction.

Robustness (khả năng chống nhiễu)

□ The ability to reduce possible affects by noises/errors/missings.

Scalability (tính khả mở)

 $\hfill\square$  The relation between the performance and training size.

Complexity (độ phức tạp)

□ The complexity of the learned function.



#### Accuracy

• Classification:

 $Accuracy = \frac{number of correct predictions}{Total number of predictions}$ 

• Regression: (MAE – mean absolute error)

$$MAE = \frac{1}{|D_{test}|} \sum_{x \in D_{test}} |o(x) - y(x)|$$

o(x) is the prediction for an instance x.
y(x) is the true value.



# Precision and Recall (1)

- These two measures are often used for classification
- **Precision** for class c<sub>i</sub>:

 Percentage of correct instances, among all that are assigned to c<sub>i</sub>.

- **Recall** for class c<sub>i</sub>:
  - Percentage of instances in c<sub>i</sub> that are correctly assigned to c<sub>i</sub>.

 $Precision(c_i) = \frac{TP_i}{TP_i + FP_i}$ 

$$Recall(c_i) = \frac{TP_i}{TP_i + FN_i}$$

- *TP<sub>i</sub>*: the number of instances that are assigned correctly to class c<sub>i</sub>.
- *FP<sub>i</sub>*: the number of instances that are assigned incorrectly to class c<sub>i</sub>.
- FN<sub>i</sub>: the number of instances inside c<sub>i</sub> that are assigned incorrectly to another class.
- TN<sub>i</sub>: the number of instances outside c<sub>i</sub> that are not assigned to class c<sub>i</sub>.

# Precision and Recall (1)

- These two measures are often used in information retrieval and classification
- **Precision** for class c<sub>i</sub>:

 Percentage of correct instances, among all that are assigned to c<sub>i</sub>.

• **Recall** for class c<sub>i</sub>:

 Percentage of instances in c<sub>i</sub> that are correctly assigned to c<sub>i</sub>.  $Precision(c_i) = \frac{TP_i}{TP_i + FP_i}$ 

$$Recall(c_i) = \frac{TP_i}{TP_i + FN_i}$$



# Precision and Recall (2)

- To give an overall summary, we can take an average from individual classes.
- Micro-averaging:



• Macro-averaging:





# $\mathbf{F}_1$

- Precision and recall provide us different views on the performance of a classifier.
- F<sub>1</sub> can provide us a unified view.
- F<sub>1</sub> is the *harmonic mean* of precision and recall, and is computed as:

$$F_{1} = \frac{2.Precision.Recall}{Precision + Recall} = \frac{2}{\frac{1}{\frac{1}{Precision} + \frac{1}{Recall}}}$$

□  $F_1$  tends to be close to the smaller value from {precision, recall} □ Large  $F_1$  implies that both precision and recall are large.

#### **Example: compare 2 methods**

- Methods: Random forest vs Support vector machines (SVM)
- Parameter selection: 10-fold cross-validation
  - Random forest: n\_estimate = 250
  - $\square$  SVM: regularization constant C = 1



VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

# Example: effect of data size

#### • SVM

#### Parameter: size of training data

- Dataset: 1135 news, 10 classes, vocabulary of 25199 terms
- 10-fold cross-validation is used





### **Example: effect of parameters**

 SVM for news classification

#### Parameter C changes

- Dataset: 1135 news, 10 classes, vocabulary of 25199 terms
- 10-fold cross-validation is used







VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attentions!

