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1. Assessing performance (1)

 How can we make a reliable assessment on the performance of
an ML method?

o Note that performance of a method often improves as more data
are available.

o An assessment is more reliable as more data are used to test
prediction.

* How to choose a good value for a parameter in an ML method?
« The performance of a method depends on many factors:

o Class distribution

o Training size

o Representativeness of training data over the whole space,...

VIEN CONG NGHE THONG TIN VA TRUYEN THONG




Assessing performance (2)

* Theoretical evaluation: study some theoretical properties of a
method/model with some explicit mathematical proofs.

o Learning rate?
o How many training instances are enough?
o What is the expected accuracy of prediction?

o Noise-resistance? ...

» Experimental evaluation: observe the performance of a method
in practical situations, using some datasets and a performance
measure. Then make a summary from those experiments.

* We will discuss experimental evaluation in this lecture.
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Assessing performance (3)

Model assessment: we need to evaluate the performance of a
method/model, only based on a given observed dataset D.

Evaluation:
o Should be done automatically,

o Does not need any help from users.

Evaluation strategies:

o To obtain a reliable assessment on performance.

Evaluation measures:

o To measure performance quantitatively.
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2. Some evaluation techniques

Hold-out
Stratified sampling

Repeated hold-out

Cross-validation
o K-fold

o Leave-one-out

Bootstrap sampling
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Hold-out (random splitting)

* The observed dataset D is randomly splitted into
2 non-overlapping subsets:

o Dyaine Used for training

o Diest: Used to test performance

* Note that:
o No instance of D is used in the training phase.
o No instance of D,,,;, is used in the test phase.

* Popular split: [Dygin| = (2/3).D],  |Diestl = (1/3).|D|
 This technique is suitable when D is of large size.
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Stratified sampling

For small or imbalanced datasets, random splitting might result
In a training dataset which are not representative.

o Aclass in Dy, might be empty or have few instances.

We should split D so that the class distribution in D, IS Similar
with that in D.

Stratified sampling fulfills this need:

o We randomly split each class of D into 2 parts: one is for D, and
the other is for D,.;.

o for each class:

Note that this technique cannot be applied to regression and
unsupervised learning.
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Repeated hold-out

« We can do hold-out many times, and then take the average
result.

o Repeat hold-out n times. The it" time will give a performance result
p;. The training data for each hold-out should be different from each

other.
o Take the average p = mean(p,,..., p,) as the final quality.

« Advantages?
 Limitations?
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Cross-validation

In repeated hold-out: there are overlapping between two
training/testing datasets. It might be redundant.

K-fold cross-validation:
o Split D into K equal parts which are non-overlapping.

o Do K runs (folds): at each run, one part is used for testing and the
remaining parts are used for training.

o Take the average as the final quality from K individual runs.

* Popular choices of K: 10 or 5
* It is useful to combine this technique with stratified sampling.
 This technique is suitable for small/average datasets.
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Leave-one-out cross-validation

It is K-fold cross-validation when K = |D|.
o Each testing set consists of only one instance from D.

o The remaining is for training.

No randomness appears.
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Bootstrap sampling

* Previous methods do not allow repetitions of an instance in any
training part.

» Bootstrap sampling:
o Assume D having n instances.

o Build Dy, by randomly sampling (with replacement/repetition) n
instances from D.

o Dyain is Used for the training phase.
0 Diest = D\Dyrain IS Used for testing quality.
o Notethat D,,,, = {z€ D: z € D, 4}

* It can be shown that D;,,;,, contains nearly 63.2% different
instances of D. 36.8% of D are used for testing.

 This technique is suitable for small datasets.
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3. Model selection

* An ML method often has a set of hyperparameters that require
us to select suitable values a priori.

o Ridge regression: A
o Linear SVM: C
How to choose a good value?

Model selection: given a dataset D, we need to choose a good
setting of the hyperparameters in method (model) A such that
the function learned by A generalizes well.

A validation set T, ;4 is Often used to find a good setting.

o It is a subset of D.

o A good setting should help the learned function predicts well on
T,qig- = We are approximating the generalization error on the whole
data space by just using small T, iq.
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Model selection: using hold-out

« Given an observed dataset D, we can select a good value for
hyperparamerter A as follows:

o Select a finite set S which contains all potential values of A.

o Select a performance measure P.

o Randomly split D into 2 non-overlapping subsets: D;,.;, and T, 4

o Foreach A € S: train the system given D,,.;, and A. Measure the
quality on T, to get P,.
o Select the best A* which corresponds to the best P,.

* It is often beneficial to learn again from D given A* to get a better
function.

» Hold-out can be replaced with other techniques e.g., sampling, cross-
validation.

T VIEN CONG NGHE THONG TIN VA TRUYEN THONG

15




Example: select parameters

Random forest for news classification

o Parameter: n_estimates (number of trees)

« Dataset: 1135 news, 10 classes, vocabulary of 25199 terms
« 10-fold cross-validation is used
Random forest - n_estimators
LEE —e— n_estimators = 20
— DQC gié —8— n_estimators = 100
Ddi sé'ng - X3 héi 0.9 4 —8— n_estimators = 250
Giai tri
Khoa hoc - Céng nghé 0.8 - =
Kinh té > e
Phap luat g 0.7
Surc khée <
Thé thao 0.6 -
Thai su
Tin khac 0.5 1
o4 200 400 600 800 1000
L Training examples
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4. Model assessment and selection

« Given an observed dataset D, we need to select a good value

for hyperparamerter A and evaluate the overall performance of a
method A:

o Select a finite set S which contains all potential values of A.

o Select a performance measure P.

o Split D into 3 non-overlapping subsets: D;..i,, T, .iq @nd Tiost

o Foreach A € S: train the system given D,,.;, and A. Measure the
quality on T, to get P,.

o Select the best A* which corresponds to the best P,.

o Train the system again from Dy, U T4 given A*.
o Test performance of the system on T,,.

* Hold-out can be replaced with other techniques.
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5. Performance measures

« Accuracy (d6 chinh xac)

o Percentage of correct predictions on testing data.

Efficiency (tinh hiéu qua)

o The cost in time and storage when learning/prediction.

Robustness (kha nang chdng nhiéu)

o The ability to reduce possible affects by noises/errors/missings.

Scalability (tinh kha m&)

o The relation between the performance and training size.

Complexity (dd phirc tap)

o The complexity of the learned function.
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Accuracy

» Classification:

number of correct predictions

Accuracy = Total number of predictions

* Regression: (MAE — mean absolute error)

MAE = " —Yep,,., 10@) — (@)

|Dtestl
o 0(x) is the prediction for an instance x.

o Y(X) is the true value.
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Precision and Recall (1)

* These two measures are often used for classification
* Precision for class c;:

: - TP
o Percentage of correct instances, Precision(c;) = ’
among all that are assigned to c.. TP + FF,
* Recall for class c;:
o Percentage of instances in ¢; that Recall(c.) = 1P
are correctly assigned to c;. AN = e N

TP;: the number of instances that are assigned correctly to class c;.
® FP;: the number of instances that are assigned incorrectly to class c;.
®m FN;: the number of instances inside c; that are assigned incorrectly to another class.

= TN;: the number of instances outside ¢; that are not assigned to class c;.
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Precision and Recall (1)

* These two measures are often used in information retrieval and
classification

* Precision for class c;:

o Percentage of correct instances, Precision(c,) = TH
among all that are assigned to c.. TP + FP
* Recall for class c;:
o Percentage of instances in ¢, that
are correctly assigned to c.. P

Recall(c;) =

TP + FN,
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Precision and Recall (2)

To give an overall summary, we can take an average from
individual classes.

Micro-averaging:

| €]
STP 2TE
Precision = il Recall = 5 =l
(TP, +FF,) Y (TP +FN,)
i=l i=1
« Macro-averaging:
| ]
Y Precision(c,) N Recall(c,)
Precision = =1 Recall = =
€] C
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F,

* Precision and recall provide us different views on the
performance of a classifier.

* F, can provide us a unified view.

 F, is the harmonic mean of precision and recall, and is computed
as:

2 .Precision.Recall 2
F = _

Precision + Recall 1 + 1

Precision Recall
o F, tends to be close to the smaller value from {precision, recall}

o Large F, implies that both precision and recall are large.
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Accuracy

Example: compare 2 methods

* Methods: Random forest vs Support vector machines (SVM)

« Parameter selection: 10-fold cross-validation

o Random forest: n_estimate = 250

o SVM: regularization constant C = 1

Learning Curves SVM, Linear kernel, change C

1.0 4
0.8 1
2

0.6

0.4 1
- C=0.1

0.2 4 -e- C=1.0
- C=20
- C=5.0
—e— C=10.0

0-0 T T T T T

200 400 600 800 1000

Training examples
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0.70 +

0.65 A
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SVM vs Random forest

—e— SVM
—®— Random forest

200 400 600 800 1000
Training examples
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Example: effect of data size
« SVM

o Parameter: size of

training data Learning Curves SVM, Linear kernel, C=1.0, change data size
1.00 - :
. —8— max size = 1135
» Dataset: 7135 news, 10 | Ml
classes, vocabulary of 0.95 1 —e— max size = 681
25199 terms —8— max size = 454
0.90 A
» 10-fold cross-validation o
>
is used 00
2
0.75 -
0.70 -
0.65 A
0.60

200 400 600 800 1000
Training examples
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Example: effect of parameters

« SVM for news
classification

Learning Curves SVM, Linear kernel, change C

o Parameter C changes L

 Dataset: 1735 news, 10 . = =t
classes, vocabulary of 8]
25199 terms
- 10-fold cross-validationis 7"
used S
g
0.4 4
—o—
0.2 .n
—o—
¢= -@= C=50
—o— C=10.0
0.0 T T T T T
200 400 600 800 1000

Training examples
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