
1

Introduction to
Data Science

(IT4142E)

2

Contents
q Lecture 1: Overview of Data Science
q Lecture 2: Data crawling and preprocessing
q Lecture 3: Data cleaning and integration
q Lecture 4: Exploratory data analysis
q Lecture 5: Data visualization
q Lecture 6: Multivariate data visualization
q Lecture 7: Machine learning
q Lecture 8: Big data analysis
q Lecture 9: Capstone Project guidance
q Lecture 10+11: Text, image, graph analysis
q Lecture 12: Evaluation of analysis results

3

4

Links and hypertext
• Questions

• Do the links represent authority to some pages? Is this useful for ranking?
• How likely is a page, pointed to by the SOICT home page, about Math?

• Application areas
• The Web
• Email
• Social networks, …

5

Links are everywhere
• Powerful sources of authenticity and authority

• Mail spam – which email accounts are spammers?
• Host quality – which hosts are “bad”?
• Phone call logs, …

• The Good, The Bad and The Unknown

?

?

?

?Good Bad

(Some slides came from Chris
Manning and Pandu Nayak)

6

Example: Good/Bad/Unknown
• The Good, The Bad and The Unknown

• Good nodes won’t point to Bad nodes
• All other combinations are plausible

?

?

?

?Good Bad

7

Simple iterative logic

?

?

?

?Good Bad

• Good nodes won’t point to Bad nodes
• If you point to a Bad node, you’re Bad
• If a Good node points to you, you’re Good

8

Simple iterative logic

?

?Good Bad

• Good nodes won’t point to Bad nodes
• If you point to a Bad node, you’re Bad
• If a Good node points to you, you’re Good

9

Simple iterative logic

Good Bad

• Good nodes won’t point to Bad nodes
• If you point to a Bad node, you’re Bad
• If a Good node points to you, you’re Good

10

Many needs for link analysis
n Community detection in

social networks
n Detect user groups, each

contains some users with
similar behaviors/interest

n Shoppers’ affinity
n Consumers whose friends

spend a lot, spend a lot
themselves

n Citation analysis
n Detect influential research

from citation

n …

STATISTICS

The reusable holdout: Preserving
validity in adaptive data analysis
Cynthia Dwork,1* Vitaly Feldman,2* Moritz Hardt,3* Toniann Pitassi,4*
Omer Reingold,5* Aaron Roth6*

Misapplication of statistical data analysis is a common cause of spurious discoveries in
scientific research. Existing approaches to ensuring the validity of inferences drawn from data
assume a fixed procedure to be performed, selected before the data are examined. In common
practice, however, data analysis is an intrinsically adaptive process, with new analyses
generated on the basis of data exploration, as well as the results of previous analyses on the
same data.We demonstrate a new approach for addressing the challenges of adaptivity based
on insights from privacy-preserving data analysis. As an application, we show how to safely
reuse a holdout data set many times to validate the results of adaptively chosen analyses.

T
hroughout the scientific community there
is a growing recognition that claims of sta-
tistical significance in published research
are frequently invalid. There has been a great
deal of effort to understand and propose

mitigations for this problem, largely focusing
on statistical methods for controlling the false
discovery rate in multiple hypothesis testing (1).
However, the statistical inference theory surround-
ing this body of work assumes that a fixed proce-
dure is performed, selected before the data are
gathered. In contrast, the practice of data analy-
sis in scientific research is, by nature, an adaptive
process in which new analyses are chosen on the
basis of data exploration and previous analyses
of the same data.
It is now well understood that adapting the

analysis to data results in an implicit multiple
comparisons problem that is not captured in
the reported significance levels of standard sta-
tistical procedures or by existing techniques for
controlling the false discovery rate. This prob-
lem, in some contexts referred to as “p-hacking”
or “researcher degrees of freedom,” is one of the
primary explanations as to why research find-
ings are frequently false (2–4).
The traditional perspective on adaptivity

makes it necessary to explicitly account for all
of the possible ways to perform the analysis to
provide validity guarantees for the adaptive
analysis. Although this approach might be pos-
sible in simpler studies, it is technically challeng-
ing and often impractical in more complicated
analyses (4). Numerous techniques have been
developed by statisticians to address common
special cases of adaptive data analysis. Most

of these methods focus on a single round of
adaptivity—such as variable selection followed by
regression on selected variables or model selec-
tion followed by testing—and are optimized for
specific inference procedures [the literature is
too vast to adequately cover here, but see chapter
7 in (5) for a starting point]. There are also pro-
cedures for controlling false discovery in a se-
quential setting where tests arrive one-by-one
(6–8). However, these results crucially depend on
all tests maintaining their statistical properties
despite being sequentially chosen—an assump-
tion that is often difficult to justify in a complex
adaptive analysis.
One proposed approach for avoiding the is-

sue of adaptivity is preregistration; that is, de-
fining the entire data analysis protocol ahead of
time, thus forcing the analysis to be nonadaptive.
A recent open letter (9) with more than 80 sig-
natories calls for preregistration in science. Al-
though safe, this proposal can be burdensome on
the researcher andmay limit the kind of analysis
he or she can perform (4). As a result, this meth-
od has had difficulty gaining momentum in prac-
tice. A more popular approach for avoiding
problems of this type is to validate data-dependent
hypotheses or statistics on a holdout set. The
data analyst starts by partitioning data samples
randomly into training data and holdout data.
The analyst interacts with the training set to ob-
tain a data statistic of interest: for example, cor-
relation between certain traits or the accuracy of
a predictive model. The statistic is then validated
by computing its value on the holdout set. Because
the holdout was drawn from the same data dis-
tribution independently of the statistic, standard
statistical inference procedures can safely be used.
A major drawback of this basic approach is

that the holdout set, in general, is not reusable.
If the analyst uses the outcome of the valida-
tion to select an additional data statistic, that
statistic is no longer independent of the holdout
data, and further use of the holdout set for val-
idation can lead to incorrect statistical inference.
To preserve statistical validity, the only known
safe approach is to collect new data for a fresh
holdout set. This conservative approach is very

costly and thus is frequently abused, resulting in
overfitting to the holdout set (10–12).
In this work we describe a general method,

together with a specific instantiation for reusing
a holdout set while maintaining the statistical
guarantees of fresh data. The analyst is given un-
fettered access to the training data set but can
only access the holdout set via an algorithm
(equivalently, a mechanism) that allows the ana-
lyst to validate statistics on the holdout set. Armed
with such a mechanism, the analyst is free to ex-
plore the (training) data ad libitum, generating
and computing statistics, validating them on the
holdout, and repeating this procedure, as well as
sharing outcomes with other analysts who may
also use the same holdout set.
The crucial idea behind our reusable holdout

method comes fromdifferential privacy—a notion
of privacy preservation in data analysis intro-
duced in computer science (13). Roughly speak-
ing, differential privacy ensures that the probability
of observing any outcome from an analysis is
essentially unchanged by modifying any single
data set element. Such a condition is often called
a stability guarantee. An important line of work
establishes connections between the stability of a
learning algorithm and its ability to generalize
(14–16). It is known that certain stability notions
are necessary and sufficient for generalization.
Unfortunately, the stability notions considered in
these prior works do not compose in the sense
that running multiple stable algorithms sequen-
tially and adaptively may result in a procedure
that is not stable. Differential privacy is stronger
than these previously studied notions of stability
and, in particular, possesses strong adaptive com-
position guarantees.
In a nutshell, the reusable holdoutmechanism

is simply this: access the holdout set only via a
differentially private mechanism. The intuition
is that if we can learn about the data set in ag-
gregate while provably learning very little about
any individual data element, then we can control
the information leaked and thus prevent over-
fitting.More specifically,we introduce anewnotion
of maximum information that controls overfit-
ting and can be bounded using differential pri-
vacy [for an overview, see section 1 of (17)]. We
present an implementation of the reusable hold-
out, called Thresholdout, and show that it provably
validates a large number of adaptively chosen
statistics. We then use a simple classification al-
gorithm on synthetic data to illustrate the prop-
erties of Thresholdout. The classifier produced
by the algorithm overfits the data when the hold-
out set is reused naively but does not overfit if
used with our reusable holdout.
We operate in a standard setting: an analyst is

given a data set S ¼ ðx1;…; xnÞ of n samples
drawn randomly and independently from some
unknown distribution P over a discrete universe
X of possible data points. Although our approach
can be applied more generally, we focus here on
validating statistics that can be expressed as the
mean of some arbitrary function f : X→½0; 1% on
the data set ES ½f% ¼ 1

n∑
n
i¼1fðxiÞ [for additional

details, see section 1.1 of (17)]. Such statistics are

636 7 AUGUST 2015 • VOL 349 ISSUE 6248 sciencemag.org SCIENCE

1Microsoft Research, Mountain View, CA 94043, USA. 2IBM
Almaden Research Center, San Jose, CA 95120, USA.
3Google Research, Mountain View, CA 94043, USA.
4Department of Computer Science, University of Toronto,
Toronto, Ontario M5S 3G4, Canada. 5Samsung Research
America, Mountain View, CA 94043, USA. 6Department of
Computer and Information Science, University of
Pennsylvania, Philadelphia, PA 19104, USA.
*Corresponding author. E-mail: dwork@microsoft.com (C.D.);
vitaly@post.harvard.edu (V.F.); m@mrtz.org (M.H.);
toni@cs.toronto.edu (T.P.); omer.reingold@gmail.com (O.R.);
aaroth@cis.upenn.edu (A.R.)

RESEARCH | REPORTS

on July 1, 2021

http://science.sciencem
ag.org/

D
ow

nloaded from

Cite (refer to) other
research papers

11

Links and graphs
n Vertex (node): an entity of interest

n E.g.: a user, a document, a web page, an organization, …

n Edge: the (directed) link from one vertex to one another
n Graph: 𝐺 = (𝑉, 𝐸)

n V: a set of nodes
n E: a set of edges that connect some nodes in V

12

The Web as a Directed Graph

Hypothesis: A hyperlink between pages denotes a conferral of authority
(quality signal)

Page A
hyperlink Page B

13

Popular tasks in Link Analysis
n Vertex ranking
n Community detection
n Node classification
n Link prediction

Centrality analysis

14

15

Centrality
n What are important vertices?

n Need a measure

n What characterizes an important vertex?
n Centrality

n Applications:
n Identify the most influential person(s)

in a social network
n Identify key infrastructure nodes on the

Internet or urban networks
n Identify super-spreaders of disease
n …

16

Graph

`

a) Undirected graph b) Directed graph

17

Adjacency matrix

a i, j = +
1 if edge (i,j) exists
2 if 𝑖 = 𝑗 and there exists a loop at node i
0 otherwise

`

18

Vertex degree

n di(i) = number of edges to i
n do(i) = number of edges from i

19

Weighted graph
n Each edge has a weight
n The whole graph can be represented by a weight matrix A

n 𝑎(𝑖, 𝑗) = 0 means no edge from node i to node j
n 𝑎(𝑖, 𝑗) ≠ 𝑎(𝑗, 𝑖) sometimes

20

Dijkstra algorithm
n Find shortest path from s to other vertices
n d(v): Distance from s to v
1. d(s) = 0; d(v) = ∞ for all vertices 𝑣 ≠ 𝑠
2. Enqueue all vertices v to priority queue Q
3. Dequeue u from Q and update all d(v) (if necessary) for each v

adjacent to u
Return to step 2 until Q is empty

21

Example

22

Example (cont)

`

Q

23

Example (cont)

Q

24

Example (cont)

Q

25

Example (cont)

Q

26

Example (cont)

Q

27

Example (cont)

𝑄 = ∅

28

Closeness centrality
n Once we know how to compute the (shortest) distance from

node i to node j (e.g., by using Dijkstra algorithm)
n d(i,j): shortest distance from i to j
n n: the total number of nodes in our graph

n We can measure the centrality of node i by

𝐶! 𝑖 =
𝑛 − 1

∑"#$% 𝑑(𝑖, 𝑗)
n reciprocal of the farness
n inverse of the average of distance from node i to any other nodes

29

Betweenness centrality

CB(1) = 15,
CB(2) = CB(3) = CB(4) = 0
CB(5) = CB(6) = CB(7) = 0

n Betweenness centrality of node i is defined by

𝐶& 𝑖 = F
"'(')

𝑝"((𝑖)
𝑝"(

n 𝑝!" 𝑖 : number of shortest paths from j to k that pass i
n 𝑝!": number of shortest paths from node j to node k

n Indicate the number of times a node acts as a bridge along the
shortest path between two other nodes

n Higher implies probably more important

30

Degree prestige
n Degree prestige use the degree of a node to see importance

𝑃* 𝑗 =
𝑑)(𝑗)
𝑛 − 1

n 𝑑#(𝑗): number of edges to node j
n Higher implies probably more important

31

Proximity prestige

𝑃+ 𝑖 =
1

𝑛 − 1
,!

∑"∈,!
.(),")
,!

n Ii: set of vertices that could reach i
n | Ii |: number of elements in Ii

PageRank
for ranking

32

33

PageRank
n PageRank was developed by Larry Page and Sergey Brin in

1996,
n (Probably) One main component of Google search engine

n Ranking is based on the whole structure of the graph
n Popularity of a web site hides in how many other sites had linked to it

n For large graph, ranking is approximated by iterative ‘random
walk’

Pagerank scoring
• Imagine a user doing a random walk on web pages:

• Start at a random page
• At each step, go out of the

current page along one of
the links on that page, equiprobably

• “In the long run” each page has a long-term visit rate
à use this as the page’s score.

1/3
1/3
1/3

Sec. 21.2

34

Not quite enough

• The web is full of dead-ends.
• Random walk can get stuck in dead-ends.
• Makes no sense to talk about long-term visit rates.

??

Sec. 21.2

35

Teleporting
• At a dead end, jump to a random web page.
• At any non-dead end, with probability 10%, jump to a

random web page.
• With remaining probability (90%), go out on a random link.
• 10% - a parameter.

Sec. 21.2

36

Result of teleporting
• Now cannot get stuck locally.
• There is a long-term rate at which any page is visited.
• How do we compute this visit rate?

Sec. 21.2

37

Markov chains
• A Markov chain consists of n states, plus an n´n transition

probability matrix P.
• At each step, we are in one of the states.
• For 1 £ i,j £ n, the matrix entry Pij tells us the probability of j

being the next state, given that we are currently in state i.

i jPij

Sec. 21.2.1

38

`P

Markov chains

• Clearly, for all i, ∑"#$% 𝑃)" = 1.
• Markov chains are abstractions of random walks.
• Exercise: represent the teleporting random walk from 3 slides

ago as a Markov chain, for this case:

Sec. 21.2.1

39

Ergodic Markov chains

• A Markov chain is called an ergodic or irreducible Markov chain
if it is possible to eventually get from every state to every other
state with positive probability.

• For any ergodic Markov chain, there is a unique long-term visit
rate for each state.

• Steady-state probability distribution.

• Over a long time-period, we visit each state in proportion to this
rate.

• It does not matter where we start.

Sec. 21.2.1

40

Probability vectors
• A probability (row) vector x = (x1, … xn) tells us where the

walk is at any point.
• E.g., (000…1…000) means we’re in state i.

1 i n
• More generally, the vector x = (x1, … xn) means the walk is

in state i with probability xi.

F
)#$

%

𝑥) = 1

Sec. 21.2.1

41

Change in probability vector
• If the probability vector is x = (x1, … xn) at this step, what is it at

the next step?
• Recall that row i of the transition matrix P tells us where we go

next from state i.
• So from x, our next state is distributed as xP

• The one after that is xP2, then xP3, etc.
• (Where) Does this converge?

Sec. 21.2.1

42

How do we compute this vector?
• Let a = (a1, … an) denote the row vector of steady-state

probabilities.
• If our current position is described by a, then the next step is

distributed as aP.
• But a is the steady state, so a = aP.
• Solving this matrix equation gives us a.

• So a is the (left) eigenvector for P.
• (Corresponds to the “principal” eigenvector of P with the largest

eigenvalue.)
• Transition probability matrices always have largest eigenvalue 1.

Sec. 21.2.2

43

Smooth version
• To avoid zero columns and ensure ergodicity, replace P by:

J𝑷 = 𝑑𝑷 +
1 − 𝑑
𝑛

𝟏

• d is the damping factor, 𝑑 ∈ 0,1 ; 1 is the matrix of 1’s

• Power method:
• Initialize 𝒙(%) (where we start)
• At iteration 𝑡, compute 𝒙(') = 𝒙('())4𝑷
• Until 𝒙(') − 𝒙('()) < 𝜖

Sec. 21.2.1

44

45

Convergence

46

Application: Web search

47

Guan et al. 2008. “Bringing Page-Rank to the Citation Analysis”

Application: Citation analysis

48

Application: Citation analysis (cont)

HITS
for ranking

49

50

Spam filtering Query relevance Execution

HITS Online

PageRank Offline

Kleinberg, Jon M. "Authoritative sources in a hyperlinked environment." Journal of
the ACM (JACM) 46, no. 5 (1999): 604-632.

HITS: Hypertext Induced Topic Search

Hubs and Authorities
• A good hub page for a topic points to many authoritative

pages for that topic.
• A good authority page for a topic is pointed to by many good

hubs for that topic.
• Circular definition - will turn this into an iterative

computation.

Sec. 21.3

52

Hubs and Authorities
Authority: vertex with a large number of incoming edges
Hub: vertex with a large number of outgoing edges

53

Bigraph

- The vertices is divided into two non-overlapped sets
- Each edge connects two vertices from two sets

54

HITS algorithm
Input: Query q
Output: Authority and hub score of relevant pages
Algorithm:

1. Information retrieval
2. Graph expansion
3. Ranking

55

1- Information retrieval
Use a search engine (Google, Bing)
n Create root W containing top k relevant pages of q (k = 200)

56

2- Graph expansion
From root W, expand to base S
n For each p in W

n Add pages to which p links
n Add pages that link to p

Root
set

Base set

57

3- Ranking

Authority score (a)
Hub score (h)
Given a graph G = (V, E), the scores can be computed as

N𝑎 𝑖 = F
(",))∈2

ℎ(𝑗) ; 𝑎 𝑖 =
N𝑎 𝑖
N𝑎 $

Rℎ 𝑖 = F
(),")∈2

𝑎(𝑗) ; ℎ 𝑖 =
Rℎ 𝑖
Rℎ $

• From these, identify a small set of top hub and authority pages
®iterative algorithm

58

3- Ranking (cont)

`

𝒂 = 𝑳!𝒉

𝒉 = 𝑳𝒂

𝑳"# = 71 if (𝑖, 𝑗) ∈ 𝐸
0 otherwise

Thank you
for your
attentions!

59

