

HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Introduction to Data Science (IT4142E)

Contents

- □ Lecture 1: Overview of Data Science
- Lecture 2: Data crawling and preprocessing
- Lecture 3: Data cleaning and integration
- Lecture 4: Exploratory data analysis
- Lecture 5: Data visualization
- Lecture 6: Multivariate data visualization
- □ Lecture 7: Machine learning
- Lecture 8: Big data analysis
- Lecture 9: Capstone Project guidance
- Lecture 10+11: Text, image, graph analysis
- Lecture 12: Evaluation of analysis results

Plan

- Computer Vision and Applications
- Digital image / video ?
- Basic informations about digital images
 - histogram, brightness, contrast, color, texture, ...
 - Library : Opencv
- Convolution and Filters
 - noisy remove,
 - edge detectors
- Feature extraction: local and global descriptor

Computer Vision ?

- Image Processing
 - Work with image as a matrix
 - Input: image → output: image
 - Help human to examine / modify images
- Computer Vision
 - Make computers understand images and video
 - Images and video are a source of information on the reality

What kind of scene? Where are the cars? How far is the building?

Computer Vision and Applications

- Images, video are everywhere
- Video, images:
 - Riche information

✦Hot topic, especially When we talk every day about AI with smart city, mart home, smart …

• Understand the image

• Understand the image

Facebook's suggestion

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

 Earth View, Google earth (3D modeling from lots of 2D images): automatic building generation + hand modeled buildings (Golden Gate bridge or Sydney Opera house)

- OCR (Optical character recognition)
 - Technology to convert scanned docs to text: each scanner came with an OCR software

Digit recognition, AT&T labs http://yann.lecun.com/exdb/lenet/

Licence plate detection and character recognition

- Face detection: most of camera detect faces
 - Main raison is focus, enables smart cropping

- Smile detection: smart camera
 - Camera can automatically trip the shutter at the right instant to catch the perfect expression

Source: Derek Hoiem, Computer vision, CS 543 / ECE 549, University of Illinois

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Login without a password, but with biometrics (fingerprint, iris, face,.

Fingerprint scanners on many new laptops, other devices

Face recognition systems now beginning to appear more widely <u>http://www.sensiblevision.com/</u>

Source: Derek Hoiem, Computer vision, CS 543 / ECE 549, University of Illinois

• Object recognition (on mobile phones)

Point & Find, Nokia Google Goggles

• Smart cars \rightarrow autonomous vehicles

Mobileye: vision systems currently in many cars

"In mid 2010 Mobileye will launch a world's first application of full emergency braking for collision mitigation for pedestrians where vision is the key technology for detecting pedestrians

Source: Derek Hoiem, Computer vision, CS 543 / ECE 549, University of Illinois

• Panorama stitching:

Source:http://miseaupoint.org/blog/en/wp-content/uploads/2014/01/photo_stitching.jpg

• Games / robots:

Vision-based interaction game (Microsoft's Kinect)

http://www.robocup.org/

Robot vacuum cleaner

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

• To learn more about vision applications and companies, please visite D.Lowe 's note:

https://www.cs.ubc.ca/~lowe/vision.html

Some topics in CV

- Surveillance Cameras:
 - Counting number of clients in shop/restaurant
 - Detecting abnormal behaviors
 - Measuring customer's satisfaction
 - Object tracking: Someone ran a red light?
- Object classification / detection
 - Face / body/ eyes detection
 - Action recognition
 - Defect detection
- Image annotation / labeling
- Text detection and recognition
 - Card visit reader
- 3D object construction from 2D images

What we will talk about?

- 2 types information we would like to extract from images:
 - Matrix 3D information
 - Semantic Information

Digital images ?

- What we can see on the picture?
 A car?
- What does the machine see?
 - Image is a matrix of pixels
 - Image N x M : N xM matrix
 - 1 pixel (gray levels):
 - A intensity value: 0-255
 - Black: 0
 - White: 255

Digital images ?

- For an image I
 - Index (0,0): Top left corner
 - -I(x,y): intensity of pixel at

the position (x,y)

		x =													
		58	59	60	61	62	63	64	65	66	67	68	69	70	
y =	41	210	209	204	202	197	247	143	71	64	80	84	54	54	
	42	206	196	203	197	195	210	207	56	63	58	53	53	61	4
	43	201	207	192	201	198	213	156	69	65	57	55	52	-53	
	44	216	206	211	193	202	207	208	57	69	60	55	77	49	
	45	221	206	211	194	196	197	220	56	63	60	55	46	97	ø
	46	209	214	224	199	194	193	204	173	64	60	59	51	-62	Î
	47	204	212	213	208	191	190	191	214	60	62	66	76	-51	
	48	214	215	215	207	208	180	172	188	69	72	55	49	56	
	49	209	205	214	205	204	196	187	196	86	62	66	87	57	
	50	208	209	205	203	202	186	174	185	149	71	63	$\begin{pmatrix} k \\ k \end{pmatrix} \begin{pmatrix} k \\ k \end{pmatrix}$	-55	2
	51	207	210	211	199	217	194	183	177	209	90	62	64	-52	ĉ
	52	208	205	209	209	197	194	183	187	187	239	58	68	61	
	53	204	206	203	209	195	203	188	185	183	221	75	61	58	
	54	200	203	199	236	188	197	183	190	183	196	122	63	58	
	55	205	210	202	203	199	197	196	181	173	186	105	62	57	

66

V

Digital images ?

- Principal type of images
 - Binary image:
 - $I(x,y) \in \{0, 1\}$
 - 1 pixel: 1 bit
 - Gray image:
 - $I(x,y) \in [0..255]$
 - 1 pixel: 8 bits (1 byte)
 - Color image
 - $I_R(x,y), I_G(x,y) I_B(x,y) \in [0..255]$
 - 1 pixel: 24 bits (3 bytes)
 - Other : multi-spectre, depth image,...

Color image in RGB space

Image histogram

Histogram is a graphical representation of the repartition of colours among the pixels of a numeric image.

Image histogram

Histogram

Should be normalized by dividing all elements to total number of pixels in the image

Image histogram

- Histogram
 - Only statistic information
 - No indication about the location of pixel (no spatial information)
 - Different image can have the same histogram

Image Brightness

• Brightness of a grayscale image is the average intensity of all pixels in an image

- refers to the overall lightness or darkness of the image

$$B(I) = \frac{1}{wh} \sum_{v=1}^{h} \sum_{u=1}^{w} I(u, v)$$

Divide by total number of pixels

Sum up all pixel intensities

Contrast

- The contrast of a grayscale image indicate how easil object in the image can be distinguished
- Many different equations for contrast exist
 - Standard deviation of intensity values of pixels in the image

$$C = \sqrt{\frac{1}{M \times N} \sum_{x=0}^{N-1} \sum_{y=0}^{M-1} (f(x,y) - Moy)^2}$$

 Difference between intensity value maximum et minimum

$$C = \frac{\max[f(x,y)] - \min[f(x,y)]}{\max[f(x,y)] + \min[f(x,y)]}$$

Contrast

Contrast vs histogram

Examples

Contrast Enhancement

- Modify pixel intensities to obtain higher contrast
- There are several methods:
 - Linear stretching of intensity range:
 - Linear transform
 - Linear transform with saturation
 - Piecewise linear transform
 - Non-linear transform (Gama correction)
 - Histogram equalization (Cân bằng histogram)

Linear stretching

$$f_{\rm ac}(a) = a_{\rm min} + \left(a - a_{\rm low}\right) \cdot \frac{a_{\rm max} - a_{\rm min}}{a_{\rm high} - a_{\rm low}}$$

If $a_{min} = 0$ and $a_{max} = 255$ $f_{ac}(a) = (a - a_{low}) \cdot \frac{255}{a_{high} - a_{low}}$

Linear stretching

No efficace?

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Histogram equalization

Change histogram of modified image into uniform distribution

No parameters. OpenCV:cv2.equalizeHist(img)

Histogram equalization

Histogram equalization

Color Image histogram

- Intensity histogram:
 - Convert color image to grayscale
 - => Compute histogram of gray scale image
- Individual Color Channel Histograms:
 - 3 histograms for (R,G,B)
- 3D histogram:

a color identified by 3 values. Not usually because of big elements

BACH KARA

Source: https://web.cs.wpi.edu/~emmanuel

HOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

HSV (Hue – Saturation- Value)

- The Hue-Saturation-Value (HSV) color space is use for segmentation and recognition
 - Non-linear conversion
 - Visual representation of colors
- We identify for a pixel:
 - The pixel intensity (value)
 - The pixel color (hue + saturation)
- RGB does not have this seperation

HSV (Hue – Saturation- Value)

- Hue (H) is coded as an angle between 0 and 360
- Saturation (S) is coded as a radius between 0 and 1
 - -S = 0 : gray
 - -S = 1 : pure color
- Value (V) = MAX (Red, Green, Blue)

HSV (Hue – Saturation- Value)

- If we know the color of the object we are looking for, can model it using a hue interval
- Take care, because it is an angle (periodic value)
 - $-<u>Hue < 60^{\circ}$ means nothing</u>
 - Is 350° smaller or bigger than 60°?
 - Define an interval: $350^{\circ} < Hue < 60^{\circ}$ (for example)
- This interval is valid if <u>Saturation > threshold</u> (otherwise gray level)
- This is independant of Value , which is more sensible to light conditions

Lab color space

- The Lab system (sometimes L*a*b*) is based on a study from human vision
 - independant from all technologies
 - presenting colors as seen by the human eyes
- Colors are defined using 3 values
 - L is the luminance, going from 0% (black) to 100% (white)
 - a* represents an axis going from green (negative value, -127) to red (positive value, +127)
 - b* represents an axis going from blue (negative value, -127) to yellow (positive value, +127)

Lab color space

collected 10 images of the cube under varying illumination conditions

separately cropped every color to get 6 datasets for the 6 different colors

Changes in color due to varying Illumination conditions

 Compute the density plot: Check the distribution of a particular color say, blue or yellow in different color spaces. The density plot or the 2D Histogram gives an idea about the variations in values for a given color

Source: Vikas Gupta, Learn OpenCV

• Similar illumination: very compact

• Similar illumination: very compact

- Different illumination:
 - RGB space: the variation in the value of channels is very hight
 - HSV: compact in H. Only H contains information about the absolute color → a choix
 - YCrCb, LAB: compact in CrCb and in AB
 - Higher level of compactness is in LAB
 - Convert to other color spaces (OpenCV):
 - cvtColor(bgr, ycb, COLOR_BGR2YCrCb);
 - cvtColor(bgr, hsv, COLOR_BGR2HSV);
 - cvtColor(bgr, lab, COLOR_BGR2Lab);

- Image filtering : For each pixel, compute function of local neighborhood and output a new value
 - Same function applied at each position
 - Output and input image are typically the same size
- Convolution : Linear filtering, function is a weighted sum/difference of pixel values

I' = I * K

- Really important!
 - Enhance images: Denoise, smooth, increase contrast, etc.
 - Extract information from images:
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching

Original image

Filtered image

• New value of a pixel(i,j) is a weighted sum of its neigbors

• New value of a pixel(i,j) is a weighted sum of its neigbors

0

-1

0

104	104	104	100	98	
99	101	106	104	99	
101	98	104	102	100	
103	99	103	101	102	
105	102	100	97	96	

Kernel Matrix

-1

5

-1

0

-1

0

Image Matrix

105 * 0 + 102 * -1 + 100 * 0+103 * -1 + 99 * 5 + 103 * -1 +101 * 0 + 98 * -1 + 104 * 0 = 89

Output Matrix

Source: http://machinelearninguru.com

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

I' = I * K

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

- Border problem?
 - Zero padding in the input matrix
 - reflect across edge:
 - f(-x,y) = f(x,y)
 - f(-x,-y) = f(x,y)

?	?	?	?	?	?	?	?	?	?
?									?
?									?
?									?
?									?
?									?
?									?
?									?
?									?
?	?	?	?	?	?	?	?	?	?

		1.000				
0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	1
0	101	98	104	102	100	
0	99	101	106	104	99	ſ
0	104	104	104	100	98	
					-	

104	104	104	104	100	90	
104	104	104	104	100	0.0	
99	99	101	106	104	99	7
101	101	98	104	102	100	
103	103	99	103	101	102	
105	105	102	100	97	96	
105	105	102	100	97	96	

-			1.0	-		
0	0	0	0	0	о	
0	105	102	100	97	96	
0	103	99	103	101	102	7
0	101	98	104	102	100	
0	99	101	106	104	99	r
0	104	104	104	100	98	

Kernel Matrix

0	-1	0
-1	5	-1
0	-1	0

Image Matrix

0 * 0 + 0 * -1 + 0 * 0+0 * -1 + 105 * 5 + 102 * -1 +0 * 0 + 103 * -1 + 99 * 0 = 320

Output Matrix

105	105	102	100	97	96	
105	105	102	100	97	96	
103	103	99	103	101	102	
101	101	98	104	102	100	
99	99	101	106	104	99	
104	104	104	104	100	98	
					-	

Source: http://machinelearninguru.com

- 2D spatial convolution
 - is mostly used in image processing for feature extraction
 - And is also the core block of Convolutional Neural Networks (CNNs)
- Each kernel has its own effect and is useful for a specific task such as
 - blurring (noise removing),
 - sharpening,
 - edge detection,

—

Original image

Original image

0

0

0

0

1

0

0

0

0

*

Filtered image (no change)

Filtered image (shifted left by 1 pixel)

Source: David Lowe

- Box filter (mean filter):
 - Replace each pixel with an average of its neigborhood
 - Achieve smoothing effect

Original image

Filtered image with box size 5x5

1/9 x

Filtered image with box size 11x11

*	ĐẠI HỌC	YEARS ANAIM
	2	
	p	SOL
BÁC	H KHOA	

1

1

1

1

1

1

Gaussian filter

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

Gaussian filter with size 5 x5 , sigma =1

Gaussian function in 3D

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

Rule for Gaussian filter: set **filter half-width to about 3**σ

Gaussian image

- Gaussian filter:
 - Low-pass filter: Remove high-frequency component from the image
 - Image becomes more smooth
 - Better than mean filter
 - Convolution with itself is an other Gaussian
 - Repeat the conv. With small-width kernel => get the same result as larger-width kernel would have.
 - Convolving **2 times** with Gaussian kernel of width σ is the same as convolving **once with kernel of width** $\sigma\sqrt{2}$: I*G_{σ}*G_{σ} = I * G $_{\sigma\sqrt{2}}$
 - Separable filter: The 2D Gaussian can be expressed as the product of 2 functions : one function of x and a function of y:
 - $G_{\sigma}(x,y) = G_{\sigma}(x).G_{\sigma}(y)$

Gaussian filter

Original image

Filtered image with box size 5x5

Filtered image with box size 11x11

Sobel

Vertical Edge (absolute value)

Sobel

Horizontal Edge (absolute value)

Edge detection

- Edges are corresponding to:
 - Maximums of the first derivative
 - Zero-crossing in the second derivative

Edge detection with first derivatives

- Compute the convolution between the image and the first derivatives kernels
 - Kernels: Sobel, Prewitt, Robert
 - Implemented in OpenCV library
- Find local extrema
 - Edge composed of pixels having maximum/minimum value of the first derivatives of image
 - Can **use a threshold** to detect edge rapidly
 - Can make several steps to obtain the optimal edge: Canny detector (implemented in OpenCV)

Edge detection with first derivatives

- Filters used to compute the first derivatives of image
 - Robert
 - Prewitt
 - less sensitive to noise
 - Smoothing with mean filter, then compute1st derivative
 - Sobel:
 - less sensitive to noise
 - Smoothing with gaussian, then computing1st derivative

1

0

0

-1

-1	0	1
-1	0	1
-1	0	1

Edge detection with first derivatives

Image derivatives

• 1st derivatives :

Image gradient

- An image gradient is a directional change in the intensity or color in an image
- For each pixel in the image: Gx, Gy
- →Form a gradient vector (Gx, Gy) :
 - Important information to describe the image content
 - Gradient Magnitude = $\sqrt{(Gx)^2 + (Gy)^2} \approx |Gx| + |Gy|$
 - Gradient Direction = arctan(Gy/Gx)

Blue lines represent the gradient direction: from brightest to darkest

Edge detection with second derivatives

- Compute the second derivative
 - Convolution images with the Laplacian filter

• Find zero-crossing

Laplacian filter - Second derivative

- Discrete approximations for the Laplacian function
 - One convolution matrix
- $\left[\begin{array}{rrrrr} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{array}\right] \qquad \left[\begin{array}{rrrrrr} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{array}\right]$

Gradient

- Two types of features are extracted from the image:
 - local and global features (descriptors)

Global features

- Describe the image as a whole to the generalize the entire object
- Include contour representations, shape descriptors, and texture features
- Examples: Invariant Moments (Hu, Zernike), Histogram
 Oriented Gradients (HOG), PHOG, and Co-HOG,...

Local feature:

- the local features describe the image patches (key points in the image) of an object
- represents the texture/color in an image patch

Examples: SIFT, SURF, LBP, BRISK, MSER and FREAK, ...

Global features

256 bins intensity histogram

16 bins intensity histogram

Pyramid Histogram of Oriented Gradients

Source:http://www.robots.ox.ac.uk/~vgg/research/caltech/phog.html

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Local features: how to determine image patches / local regions

Dividing into patches with regular grid

image content

<section-header>

Based on the content of image

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

- Image segmentation
 - Thresholding
 - Split and merge
 - Region growing
 - Watershed

- Keypoint detectors:
 - DoG /SIFT detector
 - Harris corner detector
 - Moravec
 - ...
- Local features: computed in local regions associated to each keypoints:
 - SIFT,
 - SURF(<u>Speeded Up Robust</u> <u>Features</u>),
 - <u>PCA-SIFT</u>
 - LBP, BRISK, MSER and FREAK, ...

Feature extraction : DoG/SIFT detector

Scale

A SIFT keypoint : {x, y, scale, dominant orientation}

Source: Distinctive Image Features from Scale-Invariant Keypoints – IJCV 2004

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Feature extraction : Good feature?

- Compact
- Invariant to
 - geometric transformation
 - Camera viewpoint
 - Lighting condition

• Best performant local feature: **SIFT** (David Lowe)

Feature extraction : SIFT feature

Blur the image using the scale of the keypoint (scale invariance)

Compute gradients in respect to the keypoint orientation(rotation invariance) Compute orientation histogram in 8 directions over 4x4 sample regions

Source: <u>Distinctive Image Features from Scale-Invariant Keypoints</u> – IJCV 2004 http://campar.in.tum.de/twiki/pub/Chair/TeachingWs13TDCV/feature_descriptors.pdf

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY -

Other detectors and descriptors

Popular features: SURF, HOG, SIFT

http://campar.in.tum.de/twiki/pub/Chair/TeachingWs13TDCV/feature_descriptors.p df

Summary some local features: http://www.cse.iitm.ac.in/~vplab/courses/CV_DIP/PDF/Feature_Detectors_and_Descri ptors.pdf

Feature extraction : OpenCV

- SIFT & SURF:
 - Patented algorithms
 - They are free to use fro academic / research purposes
 - You should technically be getting permission to use them in commercial applications
- From OpenCV 3.0, patented algorithms are
 - removed from standard package,
 - putted into non-free module (opency-contrib, not installed by default)
- Free alternatives to sift, surf:
 - ORB (Oriented FAST and Rotated Brief)
 - BRIEF, BRISK, FREAK, KAZE and AKAZE

Feature extraction : OpenCV

- SIFT
 - sift.detect() function finds the keypoint in the images
 - sift.compute() which computes the descriptors from the keypoints

sift = cv.xfeatures2d.SIFT_create()

kp = sift.detect(gray,None)

kp,des = sift.compute(gray,kp)

 Find keypoints and descriptors in a single step sift.detectAndCompute()

sift = cv.xfeatures2d.SIFT_create()

kp, des = sift.detectAndCompute(gray,None)

- https://docs.opencv.org/3.4/da/df5/tutorial_py_sift_intro.html
- SURF: similar

Feature extraction : OpenCV

• SURF: similar

```
>>> img = cv.imread('fly.png',0)
# Create SURF object. You can specify params here or later.
# Here I set Hessian Threshold to 400
>>> surf = cv.xfeatures2d.SURF_create(400)
# Find keypoints and descriptors directly
>>> kp, des = surf.detectAndCompute(img,None)
>>> len(kp)
699
```


https://docs.opencv.org/3.4/df/dd2/tutorial_py_surf_intro.html

Origin: Bag-of-words models

 Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

2007-01-23: State of the Union Address George W. Bush (2001-)		
abandon choices c	1962-	10-22: Soviet Missiles in Cuba John F. Kennedy (1961-63)
deficit c expand	abando	1941-12-08: Request for a Declaration of War Franklin D. Roosevelt (1933-45)
insurgen palestinia	buildu declinea elimina	abandoning acknowledge aggression aggressors airplanes armaments armed army assault assembly authorizations bombing britain british cheerfully claiming constitution curtail december defeats defending delays democratic dictators disclose economic empire endanger facts false forgotten fortunes france freedom fulfilled fullness fundamental gangsters
septemt violenc	halt ha modern	german germany god guam harbor hawaii hemisphere hint hitler hostilities immune improving indies innumerable
A local de la companya de la compa	recessio	invasion islands isolate Japanese labor metals midst midway navy nazis obligation offensive officially pacific partisanship patriotism pearl peril perpetrated perpetual philippine preservation privilege reject
	surveil	treachery true tyranny undertaken victory Wartime washington
and a second second		US Presidential Speeches Tag Cloud http://chir.ag/phernalia/preztags/

Bags of features for object recognition

• Works pretty well for image-level classification and for recognizing object *instances*

face, flowers, building

Bag of features: outline

- 1. Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary
- Represent images by frequencies of "visual words"

References

- CVIP tool to explore the power of computer processing of digital images: Many methods in image processing and computer vision have been implemented
 - https://cviptools.ece.siue.edu/
- Library: OpenCV, with C/C++, Python and Java interfaces. OpenCV was designed for computational efficiency and with a strong focus on real-time application: <u>https://opencv.org/</u>
- Books:
 - Rafael C. Gonzalez, Richard Eugene Woods, Digital Image Processing, 2nd edition, Prentice-Hall, 2002: Chap 3 (spatial operators), 6 (Color spaces)
 - Richard Szeliski, Computer Vision: Algorithms and Applications, Springer, 2010. <u>http://szeliski.org/Book/</u>
- Articles:
 - SIFT (DoG detector and SIFT descriptor): <u>https://www.cs.ubc.ca/~lowe/keypoints/</u>
 - SURF: Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool, "<u>Speeded Up Robust</u> <u>Features</u>", ETH Zurich, Katholieke Universiteit Leuven
 - GLOH: <u>Krystian Mikolajczyk and Cordelia Schmid "A performance evaluation of local</u> <u>descriptors", IEEE Transactions on Pattern Analysis and Machine Intelligence, 10, 27, pp 1615--</u> <u>1630, 2005.</u>
 - PHOG: <u>http://www.robots.ox.ac.uk/~vgg/research/caltech/phog.html</u>
 - https://www.learnopencv.com/ : many examples with code in C++/ Python and clear explanation

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attentions!

soict.hust.edu.vn/ f fb.com/groups/soict

