
Artificial Intelligence
(IT3160E)

School of Information and Communication Technology
Hanoi University of Science and Technology

2025

Than Quang Khoat
khoattq@soict.hust.edu.vn

Content:
n Introduction of Artificial Intelligence

n Intelligent agent

n Problem solving: Search, Constraint satisfaction
q Informed search

n Logic and reasoning

n Knowledge representation

n Machine learning

2
Artificial intelligence

Reminder: Tree-based search

n A search strategy (i.e., method)
= A way of determining the order to examine the tree’s nodes

3Artificial intelligence

Informed search
n Uninformed search strategies use only the information

contained in the problem definition
q Not suitable for many practical problems (due to high cost of time

and memory)

n Informed search strategies use the problem-specific
knowledge ® The search process is more efficient
q Best-first search algorithms (Greedy best-first, A*)
q Local search algorithms (Hill-climbing, Simulated annealing,

Local beam)

4Artificial intelligence

Best-first search
n Intuitive idea: use an evaluation function f(n) for every

node of the search tree
q To evaluate the "suitability" of that node
à During the search process, the nodes with the highest suitability

are given priority

n Implementation
q Order the nodes in fringe in descending order of suitability

n Best-first search algorithms
q Greedy best-first search
q A* search

5Artificial intelligence

Greedy best-first search

n The evaluation function f(n) is a heuristic function h(n)

n The heuristic function h(n) estimates the cost from n to
goal

n Example: In the problem of finding a way from Arad to
Bucharest: hSLD(n) = Estimated straight-line distance from
n to Bucharest

n Greedy best-first search expands the node that appears
to be closest to goal

6Artificial intelligence

Greedy best-first search – Example (1)

7Artificial intelligence

Greedy best-first search – Example (2)

8Artificial intelligence

Greedy best-first search – Example (3)

9Artificial intelligence

Greedy best-first search – Example (4)

10Artificial intelligence

Greedy best-first search – Example (5)

11Artificial intelligence

Properties of Greedy best-first search

n Complete?
q No, because it can get stuck in loops, e.g., Iasi à Neamt à Iasi

à Neamt à…

n Time?
q O(bm)
q But a good heuristic function can give dramatic improvement

n Space?
q O(bm) – Keeps all nodes in memory

n Optimal?
q No

12Artificial intelligence

A* search

n Intuitive idea: Avoid expanding paths that are already
(i.e., up to the current moment) determined expensive

n Evaluation function f(n) = g(n) + h(n)

q g(n) = The cost from the root node to (the current one) n

q h(n) = The estimated cost from n to goal

q f(n) = The estimated total cost of path through n to goal

13Artificial intelligence

A* search: Example (1)

14Artificial intelligence

A* search: Example (2)

15Artificial intelligence

A* search: Example (3)

16Artificial intelligence

A* search: Example (4)

17Artificial intelligence

A* search: Example (5)

18Artificial intelligence

A* search: Example (6)

19Artificial intelligence

A* search: Properties
n If the state space is finite and there is a solution to avoid

repeating the states, then the A* algorithm is complete
(i.e., can find the solution), but the optimal is not
guaranteed

n If the state space is finite and there is no solution to
avoid repeating the states, then the A* algorithm is
incomplete (i.e., no guarantee to find a solution)

n If the state space is infinite, then the A* algorithm is
incomplete (i.e., no guarantee to find a solution)

n When is A* optimal?

20Artificial intelligence

A* vs. UCS

n Uniform-cost search (UCS)
expands in all directions

n A* expands mainly
towards the goal, but the
optimal is guaranteed

21Artificial intelligence

Admissible heuristics
n A heuristic h(n) is admissible if 0 ≤ h(n) ≤ h*(n) for every

node n, where h*(n) is the true cost to reach to the goal
state from n

n An admissible heuristic never overestimates the cost to
reach the goal
q It is optimistic

n Example: The heuristic hSLD(n) underestimates the
actual road distance

n Theorem: If h(n) is admissible, A* using TREE-SEARCH
is optimal

22Artificial intelligence

Optimality of A*: Proof (1)
n Suppose some suboptimal goal G2 has been generated and is in the

fringe. Let n be an unexpanded node in the fringe such that n is on a
shortest path to an optimal goal G

n

n We have: 1) f(G2) = g(G2) since h(G2) = 0
n We have: 2) g(G2) > g(G) since G2 is suboptimal
n We have: 3) f(G) = g(G) since h(G) = 0
n From 1)+2)+3) we have: 4) f(G2) > f(G)

23Artificial intelligence

Optimality of A*: Proof (2)

n We have: 5) h(n) ≤ h*(n) since h is admissible
n From 5) we have: 6) g(n) + h(n) ≤ g(n) + h*(n)
n We have: 7) g(n) + h*(n) = f(G) since n is in the path to G
n From 6)+7) we have: 8) f(n) ≤ f(G)

n From 4)+8) we have: f(G2) > f(n) A* never selects G2 for expansion

24Artificial intelligence

Admissible heuristics (1)
Example: For the 8-puzzle:

n h1(n) = number of misplaced tiles
n h2(n) = the least number of moves (¬,®,­,¯) to move the misplaced

tiles to their correct position

n h1(S) = ?

n h2(S) = ?

25Artificial intelligence

Admissible heuristics (2)
Example: For the 8-puzzle:

n h1(n) = number of misplaced tiles
n h2(n) = the least number of moves (¬,®,­,¯) to move the misplaced

tiles to their correct position

n h1(S) = 8

n h2(S) = 3+1+
2+2+
2+3+
3+2 = 18

26Artificial intelligence

Dominant heuristic
n Heuristic h2 dominates heuristic h1 if:

q Both h1(n) and h2(n) are admissible, and
q h2(n) ≥ h1(n) for every node n

n If heuristic h2 dominates heuristic h1, then h2 is better (to be used) for
search

n The 8-puzzle: Search cost = Average number of nodes expanded
q For the depth d =12

n IDS (Iterative Deepening Search): 3,644,035 nodes
n A*(using heuristic h1): 227 nodes
n A*(using heuristic h2): 73 nodes

q For the depth d =24
n IDS (Iterative Deepening Search): Too many nodes
n A*(using heuristic h1): 39,135 nodes
n A*(using heuristic h2): 1,641 nodes

27Artificial intelligence

Consistent heuristics
n A heuristic h is consistent if for every node n and every successor n’

of n (generated by action a):
 h(n) ≤ c(n,a,n') + h(n')

n If heuristic h is consistent, we have:
 f(n') = g(n') + h(n')
 = g(n) + c(n,a,n') + h(n')
 ≥ g(n) + h(n) = f(n)

 That means: f(n) is non-decreasing along any path passing
 through n

n Theorem: If h(n) is consistent, then A* using GRAPH-SEARCH is
optimal

28Artificial intelligence

Properties of A*

n Complete?
q Yes (Unless there are infinitely many nodes with f ≤ f(G))

n Time?
q Exponential (The number of considered nodes is an exponential

function of the solution's path length)

n Space?
q Keeps all nodes in memory

n Optimal?
q Yes, for some special conditions

29Artificial intelligence

Local search algorithms
n In many optimization problems, the path to the goal is

irrelevant
q The goal state itself = The solution

n The state space = A set of "complete" configurations
n Goal: Find a configuration satisfying all the constraints

q Example: The n-queens problem (i.e., arrange n queens on a
board of size 𝑛×𝑛 so that they do not attack each other)

n In such problems, we can use local search algorithms

n Save only a single "current" state (i.e., configuration) at a
time
Idea: Try to "improve" this current state using a (predefined) criterion

30Artificial intelligence

Example: n-queens problem

n Arrange n (=4) queens on a board of size 𝑛×𝑛 with no
two queens on the same row, column or diagonal

31Artificial intelligence

Hill-climbing search: Algorithm

32Artificial intelligence

Hill-climbing search: 8-puzzle problem
2 8 3
1 6 4
7 5

2 8 3
1 4
7 6 5

2 3
1 8 4
7 6 5

1 3
8 4

7 6 5

2

3
1 8 4
7 6 5

2

1 3
8 4
7 6 5

2
start goal

-5

h = -3

h = -3

h = -2

h = -1

h = 0h = -4

-5

-4

-4-3

-2

f(n) = -(The number of misplaced tiles)
33

Hill-climbing search: n-queens problem (1)

n Heuristic h = The number of pairs of queens attacking each other,
either directly or indirectly

n For the above state: h =17

34Artificial intelligence

Hill-climbing search: n-queens problem (2)

§ The above state is a local minimum solution
q With h =1 (i.e., there is still a pair of queens attacking each other)

35Artificial intelligence

Hill-climbing search: issue
n Problem: Depending on initial state, can get stuck in local optimal

q Cannot return the global optimal solution

36Artificial intelligence

Simulated annealing search
n Annealing process: The metal cools and freezes into a

crystallized structure

n Simulated annealing search may avoid returning local optima

n Simulated annealing search uses random search strategy,
which accepts changes that increase the value of the target
function (need to maximize) and also accepts (but limited)
changes that decrease the value of the target function

n Simulated annealing search uses a control parameter T (as in
temperature systems)
q T is a high value at the beginning of the search, and then

decreases gradually to 0

37Artificial intelligence

Simulated annealing search: Algorithm

n Intuitive idea: Escape local maxima by allowing some
"bad" moves but gradually decrease their frequency

38Artificial intelligence

Simulated annealing search: Properties

n If T (i.e., that defines the degree of frequency reduction
for “bad moves”) decreases slowly enough, then
simulated annealing search will find a global optimum
with probability approaching 1

39Artificial intelligence

Local beam search

n At a time in the search process, keep track of k – rather
than just 1 – best states

n At the beginning of the search: Select k states randomly

n At each iteration, generate all the successors of all k
states

n If any one is a goal state, stop (successfully); else select
the k best successors from the complete list and repeat

40Artificial intelligence

Adversarial search

n IDS and A* only consider the search problems with one
agent

n How about an environment with two agents which may
have conflict of interest?
q Adversarial search (Tìm kiếm có đối thủ)

n Adversarial search is often used in games

41Artificial intelligence

Issues of search in games
n Hard to predict the reaction of the opponent

q Need to determine a suitable move for each reaction (or move) of
the opponent

n Time limit (time-counting games)
q Difficult (or unable) to find an optimal solution ® approximation

n Adversarial search often requires effectiveness (quality of
each move and time cost)
® a hard requirement

n In a zero-sum adversarial game:
q Winner >< Loser
q Winning score of the winner = Losing score of the loser

42Artificial intelligence

Tic Tac Toe (cờ ca-rô)

n This is an adversarial game
q E.g.: http://www.ourvirtualmall.com/tictac.htm

n It consists of two players (e.g., MAX and MIN)
q Each will move just after the other’s move
q Game termination: Winner will have bonus, while loser will be

penalized

43Artificial intelligence

http://www.ourvirtualmall.com/tictac.htm

Representing an adversarial game
n Components for representing a game

q Initial state: State of the game + Who will move first
q Successor function: return some information (given a move,

states)
n All the admissible moves
n New state (after the move)

q Terminal test
q Utility function to evaluate each state

n Initial state + admissible moves = Game tree

44Artificial intelligence

Game tree for Tic Tac Toe

45Artificial intelligence

Optimal strategies
n An optimal strategy is a sequence of moves to achieve

the goal (e.g., winner)
n The strategy of MAX can depend on the moves by MIN,

and vice versa

n MAX needs choosing a strategy that maximizes its
objective function, assuming that MIN uses optimal
moves
q MIN needs choosing a strategy that minimizes its objective

function

n This strategy can be determined by considering the
MINIMAX value at each node in a game tree

46Artificial intelligence

MINIMAX value

n MAX chooses a move with maximal MINIMAX value
(to maximize its objective function)

n In contrast, MIN chooses a move with minimal MINIMAX
value (to minimize its objective function)

47Artificial intelligence

MINIMAX algorithm

48Artificial intelligence

MINIMAX algorithm: properties
n Completeness

q Yes, if the game tree is finite
n Optimality

q Yes, if the players always choose the optimal move at each step
n Time complexity

q O(bm)
n Memory complexity

q O(bm) (based on DFS)

n For Chess, branching factor b » 35 and tree depth m»100
q Too expensive – cannot find an optimal strategy

49Artificial intelligence

Pruning (cắt tỉa)

n Issue: MINIMAX algorithm may have an exponential
number of moves to be considered ® may not be
practical

n We can prune some branches in the tree

n a-b pruning (Alpha-beta pruning):
q Idea: if a branch cannot improve the objective function, we can

ignore it!
q Pruning a bad branch may not affect the solution.

50Artificial intelligence

a-b pruning: example (1)

51Artificial intelligence

a-b pruning: example (2)

52Artificial intelligence

a-b pruning: example (3)

53Artificial intelligence

a-b pruning: example (4)

54

a-b pruning: example (5)

55

Why calling a-b pruning?

n a is the best move’s
value of MAX until now
at the current branch

n If v is worse than a,
MAX will ignore the
moves with value v
q Prune the branches with

value v

n b has the same meaning
for MIN

56

a-b pruning algorithm (1)

57

a-b pruning algorithm (2)

58

a-b pruning

n For games with a large state space, a-b pruning is still
not good
q The pruned space is still large

n Domain knowledge about the game can be used to
reduce the search space
q Such a knowledge can enable us to evaluate each state
q Such an additional knowledge plays a similar role with heuristic

function h(n) in the A* algorithm

59

