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Content:
n Introduction of Artificial Intelligence

n Intelligent agent

n Problem solving: Search, Constraint satisfaction
q Informed search

n Logic and reasoning

n Knowledge representation

n Machine learning
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Reminder: Tree-based search

n A search strategy (i.e., method) 
= A way of determining the order to examine the tree’s nodes
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Informed search
n Uninformed search strategies use only the information 

contained in the problem definition
q Not suitable for many practical problems (due to high cost of time 

and memory)

n Informed search strategies use the problem-specific 
knowledge ® The search process is more efficient
q Best-first search algorithms  (Greedy best-first, A*)
q Local search algorithms  (Hill-climbing, Simulated annealing, 

Local beam)
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Best-first search
n Intuitive idea: use an evaluation function f(n) for every 

node of the search tree
q To evaluate the "suitability" of that node
à During the search process, the nodes with the highest suitability 

are given priority

n Implementation
q Order the nodes in fringe in descending order of suitability

n Best-first search algorithms
q Greedy best-first search
q A* search
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Greedy best-first search

n The evaluation function f(n) is a heuristic function h(n)

n The heuristic function h(n) estimates the cost from n to 
goal

n Example: In the problem of finding a way from Arad to 
Bucharest: hSLD(n) = Estimated straight-line distance from 
n to Bucharest

n Greedy best-first search expands the node that appears 
to be closest to goal
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Greedy best-first search – Example (1)
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Greedy best-first search – Example (2)
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Greedy best-first search – Example (3)
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Greedy best-first search – Example (4)
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Greedy best-first search – Example (5)
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Properties of Greedy best-first search

n Complete?
q No, because it can get stuck in loops, e.g., Iasi à Neamt à Iasi 

à Neamt à…

n Time?
q O(bm)
q But a good heuristic function can give dramatic improvement

n Space?
q O(bm) – Keeps all nodes in memory

n Optimal?
q No
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A* search

n Intuitive idea: Avoid expanding paths that are already 
(i.e., up to the current moment) determined expensive 

n Evaluation function f(n) = g(n) + h(n)

q g(n) = The cost from the root node to (the current one) n

q h(n) = The estimated cost from n to goal

q f(n) = The estimated total cost of path through n to goal
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A* search: Example (1)
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A* search: Example (2)
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A* search: Example (3)
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A* search: Example (4)
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A* search: Example (5)
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A* search: Example (6)
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A* search: Properties
n If the state space is finite and there is a solution to avoid 

repeating the states, then the A* algorithm is complete 
(i.e., can find the solution), but the optimal is not 
guaranteed

n If the state space is finite and there is no solution to 
avoid repeating the states, then the A* algorithm is 
incomplete (i.e., no guarantee to find a solution)

n If the state space is infinite, then the A* algorithm is 
incomplete (i.e., no guarantee to find a solution)

n When is A* optimal?
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A* vs. UCS

n Uniform-cost search (UCS) 
expands in all directions

n A* expands mainly 
towards the goal, but the 
optimal is guaranteed
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Admissible heuristics
n A heuristic h(n) is admissible if 0 ≤ h(n) ≤ h*(n) for every 

node n, where h*(n) is the true cost to reach to the goal 
state from n

n An admissible heuristic never overestimates the cost to 
reach the goal
q It is optimistic

n Example:   The heuristic  hSLD(n) underestimates the 
actual road distance

n Theorem: If h(n) is admissible, A* using TREE-SEARCH 
is optimal
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Optimality of A*: Proof (1)
n Suppose some suboptimal goal G2 has been generated and is in the 

fringe. Let n be an unexpanded node in the fringe such that n is on a 
shortest path to an optimal goal G

n

n We have:  1) f(G2) = g(G2)  since  h(G2) = 0 
n We have:  2) g(G2) > g(G)  since  G2 is suboptimal
n We have:  3) f(G) = g(G)  since  h(G) = 0 
n From 1)+2)+3) we have:  4) f(G2) > f(G) 
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Optimality of A*: Proof (2)

n We have:  5) h(n) ≤ h*(n) since h is admissible
n From 5) we have:  6) g(n) + h(n) ≤ g(n) + h*(n)
n We have:  7) g(n) + h*(n) = f(G) since  n is in the path to G
n From 6)+7) we have:  8) f(n) ≤ f(G)

n From 4)+8) we have:  f(G2) > f(n)        A* never selects G2 for expansion
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Admissible heuristics (1)
Example: For the 8-puzzle:

n h1(n) = number of misplaced tiles
n h2(n) = the least number of moves (¬,®,­,¯) to move the misplaced 

tiles to their correct position

n h1(S) = ? 

n h2(S) = ?

25Artificial intelligence



Admissible heuristics (2)
Example: For the 8-puzzle:

n h1(n) = number of misplaced tiles
n h2(n) = the least number of moves (¬,®,­,¯) to move the misplaced 

tiles to their correct position

n h1(S) = 8 

n h2(S) = 3+1+
2+2+
2+3+
3+2 = 18
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Dominant heuristic
n Heuristic h2 dominates heuristic h1 if:

q Both h1(n) and h2(n) are admissible, and
q h2(n) ≥ h1(n) for every node n

n If heuristic h2 dominates heuristic h1, then h2 is better (to be used) for 
search

n The 8-puzzle: Search cost = Average number of nodes expanded
q For the depth d =12

n IDS (Iterative Deepening Search): 3,644,035 nodes
n A*(using heuristic h1):  227 nodes
n A*(using heuristic h2):  73 nodes 

q For the depth d =24
n IDS (Iterative Deepening Search): Too many nodes
n A*(using heuristic h1):  39,135 nodes
n A*(using heuristic h2):  1,641 nodes
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Consistent heuristics
n A heuristic h is consistent if for every node n and every successor n’ 

of n (generated by action a):
  h(n) ≤ c(n,a,n') + h(n')

n If heuristic h is consistent, we have:
 f(n') = g(n') + h(n') 
      = g(n) + c(n,a,n') + h(n') 
      ≥ g(n) + h(n)   =  f(n)

 That means:  f(n) is non-decreasing along any path passing 
  through n

n Theorem:  If h(n) is consistent, then A* using GRAPH-SEARCH is 
optimal
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Properties of A*

n Complete?
q Yes  (Unless there are infinitely many nodes with f ≤ f(G) )

n Time?
q Exponential (The number of considered nodes is an exponential 

function of the solution's path length)

n Space?
q Keeps all nodes in memory

n Optimal?
q Yes, for some special conditions
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Local search algorithms
n In many optimization problems, the path to the goal is 

irrelevant
q The goal state itself = The solution

n The state space = A set of "complete" configurations 
n Goal: Find a configuration satisfying all the constraints

q Example: The n-queens problem (i.e., arrange n queens on a 
board of size 𝑛×𝑛 so that they do not attack each other)

n In such problems, we can use local search algorithms

n Save only a single "current" state (i.e., configuration) at a 
time 
Idea: Try to "improve" this current state using a (predefined) criterion
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Example: n-queens problem

n Arrange n (=4) queens on a board of size 𝑛×𝑛 with no 
two queens on the same row, column or diagonal
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Hill-climbing search: Algorithm
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Hill-climbing search: 8-puzzle problem
2 8 3
1 6 4
7 5

2 8 3
1 4
7 6 5

2 3
1 8 4
7 6 5

1 3
8 4

7 6 5

2

3
1 8 4
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2

1 3
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2
start goal

-5

h = -3

h = -3
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h = -1

h = 0h = -4
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-4-3

-2

f(n) = -(The number of misplaced tiles) 
33



Hill-climbing search: n-queens problem (1)

n Heuristic h = The number of pairs of queens attacking each other, 
either directly or indirectly

n For the above state: h =17
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Hill-climbing search: n-queens problem (2)

§ The above state is a local minimum solution
q With h =1 (i.e., there is still a pair of queens attacking each other)
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Hill-climbing search: issue
n Problem: Depending on initial state, can get stuck in local optimal

q Cannot return the global optimal solution
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Simulated annealing search
n Annealing process: The metal cools and freezes into a 

crystallized structure

n Simulated annealing search may avoid returning local optima

n Simulated annealing search uses random search strategy, 
which accepts changes that increase the value of the target 
function (need to maximize) and also accepts (but limited) 
changes that decrease the value of the target function

n Simulated annealing search uses a control parameter T (as in 
temperature systems)
q T is a high value at the beginning of the search, and then 

decreases gradually to 0
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Simulated annealing search: Algorithm

n Intuitive idea: Escape local maxima by allowing some 
"bad" moves but gradually decrease their frequency
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Simulated annealing search: Properties

n If T (i.e., that defines the degree of frequency reduction 
for “bad moves”) decreases slowly enough, then 
simulated annealing search will find a global optimum 
with probability approaching 1
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Local beam search

n At a time in the search process, keep track of k – rather 
than just 1 – best states

n At the beginning of the search:  Select k states randomly

n At each iteration, generate all the successors of all k 
states 

n  If any one is a goal state, stop (successfully); else select 
the k best successors from the complete list and repeat
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Adversarial search

n IDS and A* only consider the search problems with one 
agent

n How about an environment with two agents which may 
have conflict of interest?
q Adversarial search (Tìm kiếm có đối thủ)

n Adversarial search is often used in games
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Issues of search in games
n Hard to predict the reaction of the opponent

q Need to determine a suitable move for each reaction (or move) of 
the opponent

n Time limit (time-counting games)
q Difficult (or unable) to find an optimal solution ® approximation

n Adversarial search often requires effectiveness (quality of 
each move and time cost) 
® a hard requirement

n In a zero-sum adversarial game:
q Winner >< Loser
q Winning score of the winner = Losing score of the loser
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Tic Tac Toe (cờ ca-rô)

n This is an adversarial game
q E.g.:  http://www.ourvirtualmall.com/tictac.htm

n It consists of two players (e.g., MAX and MIN)
q Each will move just after the other’s move
q Game termination: Winner will have bonus, while loser will be 

penalized
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Representing an adversarial game
n Components for representing a game

q Initial state: State of the game + Who will move first
q Successor function: return some information (given a move, 

states)
n All the admissible moves
n New state (after the move)

q Terminal test
q Utility function to evaluate each state

n Initial state + admissible moves = Game tree
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Game tree for Tic Tac Toe
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Optimal strategies
n An optimal strategy is a sequence of moves to achieve 

the goal (e.g., winner)
n The strategy of MAX can depend on the moves by MIN, 

and vice versa

n MAX needs choosing a strategy that maximizes its 
objective function, assuming that MIN uses optimal 
moves
q MIN needs choosing a strategy that minimizes its objective 

function

n This strategy can be determined by considering the 
MINIMAX value at each node in a game tree
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MINIMAX value

n MAX chooses a move with maximal MINIMAX value 
(to maximize its objective function)

n In contrast, MIN chooses a move with minimal MINIMAX 
value (to minimize its objective function)
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MINIMAX algorithm
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MINIMAX algorithm: properties
n Completeness 

q Yes, if the game tree is finite
n Optimality

q Yes, if the players always choose the optimal move at each step
n Time complexity

q O(bm)
n Memory complexity

q O(bm)    (based on DFS)

n For Chess, branching factor b » 35 and tree depth m»100
q Too expensive  – cannot find an optimal strategy
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Pruning (cắt tỉa)

n Issue: MINIMAX algorithm may have an exponential 
number of moves to be considered ® may not be 
practical

n We can prune some branches in the tree

n a-b pruning (Alpha-beta pruning):
q Idea: if a branch cannot improve the objective function, we can 

ignore it!
q Pruning a bad branch may not affect the solution.
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a-b pruning: example (1)
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a-b pruning: example (2)
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a-b pruning: example (3)
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a-b pruning: example (4)
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a-b pruning: example (5)
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Why calling a-b pruning?

n a is the best move’s 
value of MAX until now 
at the current branch

n If v is worse than a, 
MAX will ignore the 
moves with value v
q Prune the branches with 

value v

n b has the same meaning 
for MIN
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a-b pruning algorithm (1) 
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a-b pruning algorithm (2) 
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a-b pruning

n For games with a large state space, a-b pruning is still 
not good
q The pruned space is still large

n Domain knowledge about the game can be used to 
reduce the search space
q Such a knowledge can enable us to evaluate each state
q Such an additional knowledge plays a similar role with heuristic 

function h(n) in the A* algorithm
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