
Artificial Intelligence
(IT3160E)

School of Information and Communication Technology
Hanoi University of Science and Technology

2025

Than Quang Khoat
khoattq@soict.hust.edu.vn

Content:
n Introduction of Artificial Intelligence

n Intelligent agent

n Problem solving: Search, Constraint satisfaction
q Uninformed search

n Logic and reasoning

n Knowledge representation

n Machine learning

2
Artificial intelligence

Problem solving by search
n Problem solving by search

q Finds the sequence of actions that allow the desired state(s) to be reached

n Main steps:
q Goal formulation

n A set of final (target) states
q Problem formulation

n Given a goal, identify actions and states to consider
q Search process

n Consider possible sequences of actions
n Choose the best sequence of actions

n Search algorithm
q Input: A problem (to be solved)
q Output: A solution, in the form of a sequence of actions to perform

3Artificial intelligence

Problem-solving agents

4Artificial intelligence

Problem solving by search: Example

n A tourist is on a tour in Romania
q He is currently in Arad
q Tomorrow, he has a flight departing from Bucharest
q Now, he needs to move (i.e., drive) from Arad to Bucharest

n Formulate goal:
q Must be in Bucharest

n Formulate problem:
q States: cities (passing through)
q Actions: driving between cities

n Find solution:
q The sequence of cities to pass through,

for example: Arad, Sibiu, Fagaras, Bucharest

5Artificial intelligence

Problem solving by search: Example

6Artificial intelligence

Search problem types
n Deterministic, fully observable à Single-state problem

q The agent knows exactly which (next) state it will be in
q Solution: A sequence of actions

n Non-observable à Sensorless problem
q The agent may not know what state it is currently in
q Solution: A sequence of actions

n Non-deterministic and/or partially observable
à Contingency problem
q Percepts provide new information about the current state
q Solution: A contingent plan or a policy
q Often interleave search and execution

n Unknown state space à Exploration problem

7Artificial intelligence

Example: Vacuum cleaner (1)

n Single-state problem
q Start in state #5

n Solution?

8Artificial intelligence

Example: Vacuum cleaner (2)

n Single-state problem
q Start in state #5

n Solution?
q [Right, Suck]

9Artificial intelligence

Example: Vacuum cleaner (3)

n Sensorless problem
q Start in a state of

{#1,#2,#3,#4,#5,#6,#7,#8}
q Always start with moving right

n Solution?

10Artificial intelligence

Example: Vacuum cleaner (4)

n Sensorless problem
q Start in a state of

{#1,#2,#3,#4,#5,#6,#7,#8}
q Always start with moving right

n Solution?
q [Right, Suck, Left, Suck]

11Artificial intelligence

Example: Vacuum cleaner (5)

n Contingency problem
q Start in state #5
q Non-deterministic: Suck may

dirty a clean carpet!
q Partially observable: location,

dirt at current location

n Solution?

12Artificial intelligence

Example: Vacuum cleaner (6)

n Contingency problem
q Start in state #5
q Non-deterministic: Suck may

dirty a clean carpet!
q Partially observable: location,

dirt at current location

n Solution?
q [Right, if Dirt then Suck]

13Artificial intelligence

Single-state problem formulation
A problem is defined by four items:

n Initial state
q Example: “at Arad“

n Actions – Defined by the state-transition function:
S(trạng_thái_hiện_thời) = tập các cặp <hành_động, trạng_thái_tiếp_theo>

q Example: S(Arad) = {<Arad à Zerind, Zerind>, … }

n Goal test
q Direct – Example: Current state x = “at Bucharest"
q Indirect – Example: Check-mate(x), Cleanliness(x), etc.

n Path cost (additive)
q Example: sum of distances, number of actions executed, etc.
q c(x,a,y) ≥ 0 is the step cost

– the cost for applying action a to transition from state x to state y

n A solution is a sequence of actions leading from the initial state to a
goal state

14Artificial intelligence

Selecting a state space
n Real world is often complex

à The state space must be abstracted for problem solving

n (Abstract) state = set of real states

n (Abstract) action = complex combination of real actions
q Example: Action "Arad à Zerind" represents a complex set of

possible routes, detours, rest stops, etc.

n For guaranteed realizability, any actual state must be
reachable from other one

n (Abstract) solution = A set of real paths that are solutions in
the real world

15Artificial intelligence

State space graph (1)

n States?
n Actions?
n Goal test?
n Path cost?

Vacuum

cleaner

problem

16Artificial intelligence

State space graph (2)

n States? Dirt and robot location
n Actions? Left, Right, Suck
n Goal test? No dirt at all locations
n Path cost? 1 per action

Vacuum

cleaner

problem

17Artificial intelligence

Example: The 8-puzzle (1)

n States?
n Actions?
n Goal test?
n Path cost?

18Artificial intelligence

Example: The 8-puzzle (2)

n States? Locations of tiles
n Actions? Move blank left, right, up, down
n Goal test? = Goal state
n Path cost? 1 per move

19Artificial intelligence

Representation by tree and graph
B is parent of C
C is child of B
A is ancestor of C
C is descendant of A

20Artificial intelligence

Search graph ® Search tree

n Graph-based search problems can be transformed into
tree-based search ones
q Replace each undirected link (edge) with 2 oriented links (edges)
q Eliminate loops that exist in the graph (to avoid not considering

multiple times for a node in any path)

21Artificial intelligence

Tree-based search algorithms

n Intuitive idea:
q Explore (i.e., consider) the state space

by generating successive states of the
discovered (i.e., considered) ones

q Also known as the method of expanding
states Goal

n0

successors(n)

nfringe

22Artificial intelligence

Tree-based search: Example (1)

23Artificial intelligence

Tree-based search: Example (2)

24Artificial intelligence

Tree-based search: Example (3)

25Artificial intelligence

Tic-Tac-Toe (i.e., Noughts and Crosses)

26Artificial intelligence

Tree-based search: General algorithm

27Artificial intelligence

Search tree representation
n A state is a (representation of) a physical configuration
n A node is a data structure constituting part of a search tree

q Includes: state, parent node, action, depth, path cost g(x)

n The Expand function creates new nodes:
q Assign the attribute values of the new node,
q Use the Successor-Fn function to create the corresponding states

28Artificial intelligence

Search strategies
n A search strategy is defined by picking the order of node

expansion
n Search strategies are evaluated along the following

dimensions:
q Completeness: Does it always find a solution if one exists?
q Time complexity: The number of nodes generated
q Space complexity: The maximum number of nodes in memory
q Optimality: Does it always find a least-cost solution?

n Time and space complexity are measured in terms of:
q b: The maximum branching factor of the search tree
q d: The depth of the least-cost solution
q m: The maximum depth of the state space (i.e., the depth of the

search tree) – may be +∞

29Artificial intelligence

Uninformed search strategies

n Uninformed search strategies use only the information
available in the problem definition

q Breadth-first search

q Uniform-cost search

q Depth-first search

q Depth-limited search

q Iterative deepening search

30Artificial intelligence

Breadth-first search (BFS)
n Expand shallowest unexpanded node – Nodes are considered

in increasing order of depth

n Implementation of the BFS algorithm
q fringe is a FIFO queue – new successors go at end

n The symbols are used in the BFS algorithm
q fringe: The queue structure holds the nodes (i.e., states) that will be

considered
q closed: The queue structure holds the nodes (i.e., states) that have

been considered
q G=(N,A): The tree representation of the problem’s state space
q n0: The initial state (i.e., the root node of the search tree)
q GOAL: The set of the goal states
q G(n): The set of successive nodes (i.e., states) of the current one n

31Artificial intelligence

BFS: Algorithm
BFS (N, A, n0, GOAL)
{
 fringe ¬ n0;
 closed ¬ Æ;
 while (fringe ¹ Æ) do
 { n ¬ GET_FIRST(fringe); // get the first element of fringe
 closed ¬ closed Å n;
 if (n Î GOAL) then return SOLUTION(n);
 if (G(n) ¹ Æ) then fringe ¬ fringe Å G(n);
 }
 return (“No solution”);
}

32Artificial intelligence

BFS: Example (1)
n Expand shallowest unexpanded node – Nodes are considered

in increasing order of depth

33Artificial intelligence

BFS: Example (2)
n Expand shallowest unexpanded node – Nodes are considered

in increasing order of depth

34Artificial intelligence

BFS: Example (3)
n Expand shallowest unexpanded node – Nodes are considered

in increasing order of depth

35Artificial intelligence

BFS: Example (4)
n Expand shallowest unexpanded node – Nodes are considered

in increasing order of depth

36Artificial intelligence

Properties of BFS
n Complete?

q Yes (if b is finite)
n Time?

q 1+b+b2+b3+… +bd + b(bd-1) =
O(bd+1)

n Space?
q O(bd+1) – Keeps every node

in memory
n Optimal?

q Yes, if cost =1 per step
q No, otherwise

37Artificial intelligence

Uniform-cost search (UCS)

n Expand least-cost unexpanded node – Nodes are
considered in order of increasing cost (from the root
node to the current one)

n Implementation:
q fringe is a queue ordered by path cost

n Equivalent to breadth-first search (BFS) if the costs of all
the steps (i.e., the edges of the search tree) are equal

38Artificial intelligence

UCS: Algorithm

UCS (N, A, n0, GOAL, c)
{
 fringe ¬ n0;
 closed ¬ Æ;
 while (fringe ¹ Æ) do
 { n ¬ GET_LOWEST_COST(fringe); // get the element of

 // lowest path cost c(n)
 closed ¬ closed Å n;
 if (n Î GOAL) then return SOLUTION(n);
 if (G(n) ¹ Æ) then fringe ¬ fringe Å G(n);
 }
 return (“No solution”);
}

39Artificial intelligence

Properties of UCS

n Complete?
q Yes, if step cost at least 𝜀, for some constant 𝜀 > 0

n Time?
q Depends on the number of nodes that have the path cost ≤ the

path cost of the optimal solution: O(béC*/ εù), where C* is the path
cost of the optimal solution

n Space?
q Depends on the number of nodes that have the path cost ≤ the

path cost of the optimal solution: O(béC*/ εù)

n Optimal?
q Yes, if nodes are expanded in increasing order of g(n)

40Artificial intelligence

Depth-first search (DFS)

n Expand deepest unexpanded node

n Implementation:
q fringe is a stack (i.e., LIFO) structure – New nodes are added to

the top of fringe

41Artificial intelligence

DFS: Algorithm
DFS (N, A, n0, GOAL)
{
 fringe ¬ n0;
 closed ¬ Æ;
 while (fringe ¹ Æ) do
 { n ¬ GET_FIRST(fringe); // get the first element of fringe
 closed ¬ closed Å n;
 if (n Î GOAL) then return SOLUTION(n);
 if (G(n) ¹ Æ) then fringe ¬ G(n) Å fringe;
 }
 return (“No solution”);
}

42Artificial intelligence

DFS: Example (1)
n Expand deepest unexpanded node

43Artificial intelligence

DFS: Example (2)
n Expand deepest unexpanded node

44Artificial intelligence

DFS: Example (3)
n Expand deepest unexpanded node

45Artificial intelligence

DFS: Example (4)
n Expand deepest unexpanded node

46Artificial intelligence

DFS: Example (5)
n Expand deepest unexpanded node

47Artificial intelligence

DFS: Example (6)
n Expand deepest unexpanded node

48Artificial intelligence

Properties of DFS
n Complete?

q No – Fails in infinite-depth spaces, spaces with loops
q Proposal: Modify to avoid repeated states along path
 à Complete in finite spaces

n Time?
q O(bm): Very large, if m is much larger than d

n Space?
q O(bm) – Linear space

n Optimal?
q No

49Artificial intelligence

Depth-limited search (DLS)
Is depth-first search (DFS) with depth limit l
 ® nodes at depth l have no successors

50Artificial intelligence

(The 8-puzzle - The DLS algorithm using the depth limit l=5)
51Artificial intelligence

Iterative deepening search (IDS)

n Problem of the depth-limited search (DLS) algorithm:
q If all the solutions (i.e., the target nodes) are at a depth greater

than the depth limit l, then the DLS algorithm fails (i.e., can't find a
solution)

n IDS algorithm:
q Apply the DFS algorithm for the paths of length <=1
q If it fails (can't find the solution), then continue to apply the DFS

algorithm for the paths of length <=2
q If it fails (can't find the solution), then continue to apply the DFS

algorithm for the paths of length <=3
q …(continue as above, until: 1)find a solution, or 2)the entire tree

has been examined but no solution is found)

52Artificial intelligence

IDS: Algorithm

53Artificial intelligence

IDS: Example (1)
Depth limit l=0

54Artificial intelligence

IDS: Example (2)
Depth limit l=1

55Artificial intelligence

IDS: Example (3)
Depth limit l=2

56Artificial intelligence

IDS: Example (4)
Depth limit l=3

57Artificial intelligence

IDS: Another algorithm
IDS (N, A, n0, GOAL, l) // l: depth limit
{
 fringe ¬ n0; closed ¬ Æ; depth ¬ l;
 while (fringe ¹ Æ) do
 { n ¬ GET_FIRST(fringe); // get the first element of fringe
 closed ¬ closed Å n;
 if (n Î GOAL) then return SOLUTION(n);
 if (G(n) ¹ Æ) then
 { case d(n) do // d(n): depth of node n
 [0..(depth-1)]: fringe ¬ G(n) Å fringe;
 depth: fringe ¬ fringe Å G(n);
 (depth+1): { depth ¬ depth + l;
 if (l=1) then fringe ¬ fringe Å G(n)
 else fringe ¬ G(n) Å fringe;
 }
 }
 }
 return (“No solution”);
}

58Artificial intelligence

DLS vs. IDS
n Given depth d and branching factor b, the number of

nodes generated in the DLS algorithm is:

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

n Given depth d and branching factor b, the number of
nodes generated in the IDS algorithm is:

NIDS = (d+1).b0 + d.b1 + (d-1).b2 + … + 3.bd-2 +2.bd-1 + 1.bd

n Example: Given b=10 and d=5:
q NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
q NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456
q Overhead = (123,456 - 111,111)/111,111 = 11%

59Artificial intelligence

Properties of IDS

n Complete?
q Yes

n Time?
q (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd+1)

n Space?
q O(bd)

n Optimal?
q Yes, if step cost =1

60Artificial intelligence

Summary of uninformed search strategies

61Artificial intelligence

Criterion Breadth-
First

Uniform-
Cost

Depth-First Depth-
Limited

Iterative
Deepening

Complete? Yes Yes No No Yes

Time O(bd+1) 𝑂(𝑏 !∗/#) O(bm) O(bl) O(bd+1)

Space O(bd+1) 𝑂(𝑏 !∗/#) O(bm) O(bl) O(bd)

Optimal? Yes
(some cases)

Yes
(some cases)

No No Yes
(some cases)

Repeated states
n Failure to detect repeated states can turn a linear problem into

an exponential one!

n Solution: Never consider a node more than once!

62Artificial intelligence

Graph search: Algorithm

n Never consider a node more than once!

63Artificial intelligence

Uninformed search: Summary

n Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be
explored

n Uninformed search strategies:
q Breath-first search (BFS)
q Depth-first search (DFS)
q Uniform-cost search (UCS)
q Depth-limited (DLS)
q Iterative deepening search (IDS)

n Iterative deepening search (IDS):
q Memory space complexity is linear
q Time complexity is higher just a little than the other uninformed search

algorithms

64Artificial intelligence

