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Problem solving by search

Problem solving by search
o Finds the sequence of actions that allow the desired state(s) to be reached

Main steps:

o Goal formulation
A set of final (target) states

o Problem formulation
Given a goal, identify actions and states to consider

o Search process
Consider possible sequences of actions
Choose the best sequence of actions
Search algorithm
o Input: A problem (to be solved)
o Output: A solution, in the form of a sequence of actions to perform
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Problem-solving agents

function SIMPLE-PROBLEM-SOLVING-AGENT( percept) returns an action
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state <— UPDATE-STATE( state, percept)

if seq is empty then do
goal <+ FORMULATE-GOAL(state)
problem <~ FORMULATE-PROBLEM(state, goal)
seq EARCH( problem

action < FIRST(seq)

seq <+ REST(seq)

return action
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Problem solving by search: Example

A tourist is on a tour in Romania
o He is currently in Arad
o Tomorrow, he has a flight departing from Bucharest
o Now, he needs to move (i.e., drive) from Arad to Bucharest

[]Oradea

Formulate goal:
o Must be in Bucharest

Formulate problem:
o States: cities (passing through)
o Actions: driving between cities

Find solution:

o The sequence of cities to pass through,
for example: Arad, Sibiu, Fagaras, Bucharest
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Problem solving by search: Example
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Search problem types

Deterministic, fully observable - Single-state problem
o The agent knows exactly which (next) state it will be in
o Solution: A sequence of actions

Non-observable - Sensorless problem
o The agent may not know what state it is currently in
o Solution: A sequence of actions

Non-deterministic and/or partially observable
- Contingency problem

o Percepts provide new information about the current state
o Solution: A contingent plan or a policy
o Often interleave search and execution

Unknown state space - Exploration problem
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Example: Vacuum cleaner (1)

= Single-state problem

o Start in state #5

= Solution? 3

1 (Y [7 [°k
&
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Example: Vacuum cleaner (2)

= Single-state problem
o Start in state #5

= Solution? 3
o [Right, Suck]

1 (Y [7 [°k
&
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Example: Vacuum cleaner (3)

= Sensorless problem
o Start in a state of

1 H#2 #3 #4 #5 #6 #T #8)

o Always start with moving right 3

= Solution?

A | R[22

A [BA] [ A |24
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Example: Vacuum cleaner (4)

= Sensorless problem

. =) 2 =)

o Start in a state of 3R | ogm 3R | ofR

{#1,#2 #3 #4 #5 #6 #7 #8}
o Always start with moving right 3 | =) 4 =)
oFR R
= Solution?

. 5 |=d) 6 =)

o [Right, Suck, Left, Suck] oBR oBR
7 | = 8 =)
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Example: Vacuum cleaner (5)

= Contingency problem

=) 2 =)
o Start in state #5 3R | ogm 3R | BB
o Non-deterministic: Suck may
dirty a clean carpet! 3 | =) 4 =)
o Partially observable: location, R e
dirt at current location
5 | =) 6 =)
_ R 2R
= Solution?
7 | =) 8 =)
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Example: Vacuum cleaner (6)

= Contingency problem

=) 2 =)
o Start in state #5 3R | ogm 3R | ofR
o Non-deterministic: Suck may
dirty a clean carpet! 3 | =) 4 =)
o Partially observable: location, R e
dirt at current location
5 | =) 6 =)
_ R 2R
= Solution?
a [Right, if Dirt then Suck] 7 | =) 8 =)
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Single-state problem formulation

A problem is defined by four items:

Initial state
o Example: “at Arad®

Actions — Defined by the state-transition function: )
S(trang_thai_hién_thoi) = tap cac cap <hanh_doéng, trang_thai_tiép theo>

o Example: S(Arad) ={<Arad = Zerind, Zerind>, ...}

Goal test
o Direct — Example: Current state x = “at Bucharest"
o Indirect — Example: Check-mate(x), Cleanliness(x), etc.

Path cost (additive)
o Example: sum of distances, number of actions executed, etc.

o c¢(x,a,y) 20 is the step cost
— the cost for applying action a to transition from state x to state y

A solution is a sequence of actions leading from the initial state to a
goal state
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Selecting a state space

Real world is often complex
- The state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions

o Example: Action "Arad - Zerind" represents a complex set of
possible routes, detours, rest stops, etc.

For guaranteed realizability, any actual state must be
reachable from other one

(Abstract) solution = A set of real paths that are solutions in
the real world
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State space graph (1)

LC.,Q = D .
Vacuum | ||
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= States?

= Actions?
= Goal test?
= Path cost?
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State space graph (2)

LC.,Q ‘&Qn
Vacuum | ||
S S
cleaner
R
problem LC“Q | :QO" LC%
- : :
R
LC =) T =) Q R
-
- s
= States? Dirt and robot location

= Actions? Left, Right, Suck
Goal test? No dirt at all locations
Path cost? 1 per action

Artificial intelligence
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Example: The 8-puzzle (1)

States?
Actions?
Goal test?
Path cost?

1

4

7 2
5
8 3

7

Start State

Goal State
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Example: The 8-puzzle (2)

States?
Actions?
Goal test?
Path cost?

7 2 4 1
5 6 4
8 3 1 7

Start State

Locations of tiles

Move blank left, right, up, down
= Goal state

1 per move

Goal State

Artificial intelligence
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Representation by tree and graph

B is parentof C

C is child of B

A is ancestor of C

C is descendant of A

terminal

(leaf)
Directed graph Undirected graph
(one-way street) (two-way streets)

Artificial intelligence
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Search graph — Search tree

= Graph-based search problems can be transformed into
tree-based search ones

o Replace each undirected link (edge) with 2 oriented links (edges)

o Eliminate loops that exist in the graph (to avoid not considering
multiple times for a node in any path)

Artificial intelligence 21



Tree-based search algorithms

\ U

= Intuitive idea:

o Explore (i.e., consider) the state space
by generating successive states of the
discovered (i.e., considered) ones

o Also known as the method of expanding
states
Goa

successors(n)

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem

loop do
if there are no candidates for expansion then return failure

choose a leaf node for expansion according t

if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

Artificial intelligence 2



Tree-based search: Example (1)
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Tree-based search: Example (2)
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Tree-based search: Example (3)
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Tic-Tac-Toe (i.e., Noughts and Crosses)

Xl | X X
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Tree-based search: General algorithm

function TREE-SEARCH( problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem)]), fringe)
loop do
if fringe is empty then return failure
<node «+— REMOVE-FRONT( fringe) >
if GoAL-TEsT[problem|(STATE[node]) then return SOLUTION(node)
< fringe < INSERTALL(EXPAND(node, problem), fringe] —

function EXPAND( node, problem) returns a set of nodes

successors < the empty set

for each action, result in SUCCESSOR-FN[problem|(STATE[node]) do
s$<—a new NODE
PARENT-NODE[s] < node; ACTION[s| «— action; STATE[s|  result
PATH-COST[$] = PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] «— DEPTH[node] + 1
add s to successors

return successors
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Search tree representation

A state is a (representation of) a physical configuration

A node is a data structure constituting part of a search tree
o Includes: state, parent node, action, depth, path cost g(x)

State

The Expand function creates new nodes:
o Assign the attribute values of the new node,

5

4

6

1

8

7

3

2

stale

Node

parent, action

depth =6
g=6

o Use the Successor-Fn function to create the corresponding states

Artificial intelligence
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Search strategies

A search strategy is defined by picking the order of node
expansion

Search strategies are evaluated along the following
dimensions:

o Completeness: Does it always find a solution if one exists?

o Time complexity: The number of nodes generated

o Space complexity: The maximum number of nodes in memory
o Optimality: Does it always find a least-cost solution?

Time and space complexity are measured in terms of:
o b: The maximum branching factor of the search tree

o d: The depth of the least-cost solution

o m: The maximum depth of the state space (i.e., the depth of the
search tree) — may be +oo

Artificial intelligence 29



Uninformed search strategies

Uninformed search strategies use only the information
available in the problem definition

o Breadth-first search
o Uniform-cost search
o Depth-first search

o Depth-limited search

o lterative deepening search

Artificial intelligence
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Breadth-first search (BFS)

Expand shallowest unexpanded node — Nodes are considered
in increasing order of depth

Implementation of the BFS algorithm
o fringe is a FIFO queue — new successors go at end

The symbols are used in the BFS algorithm

o fringe: The queue structure holds the nodes (i.e., states) that will be
considered

o closed: The queue structure holds the nodes (i.e., states) that have
been considered

G=(N,A). The tree representation of the problem’s state space

ny: The initial state (i.e., the root node of the search tree)

GOAL: The set of the goal states

I'{n): The set of successive nodes (i.e., states) of the current one n

o O O O
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BFS: Algorithm

BFS (N, A, n,, GOAL)

{

fringe < ng;
closed « J;

while (fringe = J) do

{ <« GET_FIRST(fringe); >

closed « closed @ n;
if (n € GOAL) then return SOLUTION(n);

if (I'(n) = Q) then@ge « fringe @ F(D

return (“No solution”);

}

/I get the first element of fringe

Artificial intelligence
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BFS: Example (1)

= Expand shallowest unexpanded node — Nodes are considered

in increasing order of depth

>

Artificial intelligence
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BFS: Example (2)

= Expand shallowest unexpanded node — Nodes are considered
in increasing order of depth

@
>E@ G
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BFS: Example (3)

= Expand shallowest unexpanded node — Nodes are considered

in increasing order of depth

Artificial intelligence
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BFS: Example (4)

= Expand shallowest unexpanded node — Nodes are considered

in increasing order of depth

Artificial intelligence
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Properties of BFS

= Complete?
o Yes (if b is finite)

= Time?
0 1+b+b?+b3+... +b? + b(b?-1) =
O(bd+1)
= Space?
o O(b?7) — Keeps every node
INn memory
= Optimal?
o Yes, if cost =1 per step
o No, otherwise

1 node
b nodes

b2 nodes

bs nodes

b™M nodes

Artificial intelligence
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Uniform-cost search (UCS)

Expand least-cost unexpanded node — Nodes are
considered in order of increasing cost (from the root
node to the current one)

Implementation:
o fringe is a queue ordered by path cost

Equivalent to breadth-first search (BFS) if the costs of all
the steps (i.e., the edges of the search tree) are equal
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UCS: Algorithm

UCS (N, A, n,, GOAL, c)

{

fringe <« ny;
closed « J;
while (fringe = &) do

{ @ET_LOWEST_COST(fringe // get the element of
// lowest path cost c(n)

closed « closed @ n;
if (n € GOAL) then retu TION(n);
if (I'(n) = @) then({ringe « fringe @ I'(n);

}

return (“No solution”);

Artificial intelligence
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Properties of UCS

Complete?
o Yes, if step cost at least €, for some constant € > 0

Time?
o Depends on the number of nodes that have the path cost < the

path cost of the optimal solution: O(b' ¢7¢!), where C” is the path
cost of the optimal solution

Space”?

o Depends on the number of nodes that have the path cost < the
path cost of the optimal solution: O(b €7 ¢))

Optimal?

0 Yes, if nodes are expanded in increasing order of g(n)

Artificial intelligence
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Depth-first search (DFS)

= Expand deepest unexpanded node

= Implementation:

o fringe is a stack (i.e., LIFO) structure — New nodes are added to
the top of fringe

Artificial intelligence
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DFS: Algorithm

DFS (N, A, n,, GOAL)

{

fringe <« ny;

closed « J;

while (fringe = J) do

{ @ GET_FIRST(fri n@ I get the first element of fringe
closed <« closed @ n;
if (n € GOAL) then return_ SOLUTION(n);

if (I(n );t@)then@(—Fn)@fn@
}

return (“No solution”);

Artificial intelligence
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DFS: Example (1)

= Expand deepest unexpanded node

Artificial intelligence
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DFS: Example (2)

= Expand deepest unexpanded node

4

Artificial intelligence
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DFS: Example (3)

= Expand deepest unexpanded node

Artificial intelligence

45




DFS: Example (4)

= Expand deepest unexpanded node

Artificial intelligence
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DFS: Example (5)

= Expand deepest unexpanded node

Artificial intelligence
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DFS: Example (6)

= Expand deepest unexpanded node

Artificial intelligence
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Properties of DFS

Complete?

o No - Fails in infinite-depth spaces, spaces with loops

o Proposal: Modify to avoid repeated states along path
- Complete in finite spaces

Time?

o O(b™). Very large, if mis much larger than d

Space?

o O(bm) — Linear space

Optimal?

o No

Artificial intelligence

49



Depth-limited search (DLS)

Is depth-first search (DFS) with depth limit /
— nodes at depth / have no successors

function DEPTH-LIMITED-SEARCH( problem, limit) returns soln/fail /cutoff
RECURSIVE-D LS(MAKE-NODE(INITIAL-STATE([problem)), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail /cutoff
cutoff-occurred? + false
if GOAL-TEST[problem|(STATE[node|) then return SOLUTION(node)
else if DEPTH[node| = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result <+ RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

Artificial intelligence
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[terative deepening search (IDS)

Problem of the depth-limited search (DLS) algorithm:

o If all the solutions (i.e., the target nodes) are at a depth greater
than the depth limit /, then the DLS algorithm fails (i.e., can't find a
solution)

IDS algorithm:

o Apply the DFS algorithm for the paths of length <=1

o If it fails (can't find the solution), then continue to apply the DFS
algorithm for the paths of length <=2

o If it fails (can't find the solution), then continue to apply the DFS
algorithm for the paths of length <=3

o ...(continue as above, until: 1)find a solution, or 2)the entire tree
has been examined but no solution is found)

Artificial intelligence 5



IDS: Algorithm

function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth+ 0 to oo do
result <+— DEPTH-LIMITED- SEARCH( problem, depth)
if result # cutoff then return result
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IDS: Example (1)

Depth limit /=0

Limit=0  »®_ @

Artificial intelligence

54




IDS: Example (2)

Depth limit /=1

B e ./@\@ ./.\'

Artificial intelligence

55




IDS: Example (3)

Depth limit /=2

Limit = 2 @ @

Artificial intelligence
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IDS: Example (4)

Depth limit /=3

Limit=3  »®

Artificial intelligence
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IDS: Another algorithm

IDS (N, A, ny, GOAL, I) /l'1: depth limit
{
fringe <« ny; closed « ; depth « |,
while (fringe = &) do
{ n<« GET_FIRST(fringe); /I get the first element of fringe

closed « closed @ n;
if (n € GOAL) then return SOLUTION(n);
if (I'(n) # Q) then
{ case d(n) do // d(n): depth of node n
[0..(depth-1)]: fringe «— I'(n) @ fringe;
depth: fringe « fringe @ I'(n);
(depth+1): { depth « depth +1;
if (I=1) then fringe « fringe @ I'(n)
else fringe <« I'(n) @ fringe;

}

return (“No solution”);

Artificial intelligence
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DLS vs. IDS

Given depth d and branching factor b, the number of
nodes generated in the DLS algorithm is:

Nps=b0+bl+b>+ ... +bo2+pdl+ p?
Given depth d and branching factor b, the number of
nodes generated in the IDS algorithm is:
Nips = (d+1).b% + d.b" + (d-1).b%2 + ... + 3.b%2 +2. b1 + 1 .bd
Example: Given b=710 and d=5:
o2 Nps=1+10+100+ 1,000 + 10,000 + 100,000 = 111,111

o Nps=6+50+400 + 3,000 + 20,000 + 100,000 = 123,456
o Overhead = (123,456 - 111,111)/111,111 = 11%
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Properties of IDS

= Complete?
o Yes
= Time?

a (d+1)b% +d b? + (d-1)b? + ..

= Space?
a O(bd)
= Optimal?
o Yes, if step cost =1

.+ b9 = O(bo*)

Artificial intelligence

60



Summary of uninformed search strategies

Criterion Breadth- Uniform- Depth-First | Depth- Iterative
First Cost Limited Deepenlng

Complete?

Time O(bd”) obc /ey omm) O(b’) O(bd”)
Space o) ol /ely  O(bm) O(bl) O(bd)
Optimal? Yes Yes No No Yes

(some cases)  (some cases) (some cases)
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Repeated states

= Failure to detect repeated states can turn a linear problem into

an exponential one!

A

= Solution: Never consider a node more than once!

Artificial intelligence
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Graph search: Algorithm

function Graph-Search(problem, fringe) returns a solution, or failure
fringe < Insert(Make-Node(Initial-State(problem)), fringe);
closed <— an empty set
while (fringe not empty)
node < RemovekFirst(fringe);
if (Goal-Test(problem, State(node))) then return Solution(node);
if (State(node) is not in closed then
add State(node) to closed
fringe < InsertAll(Expand(node, problem), fringe);
end if
end
return failure;

= Never consider a node more than once!
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Uninformed search: Summary

Problem formulation usually requires abstracting away real-

world details to define a state space that can feasibly be
explored

Uninformed search strategies:
o Breath-first search (BFS)

Depth-first search (DFS)

Uniform-cost search (UCS)

Depth-limited (DLS)

lterative deepening search (IDS)

Iterative deepening search (IDS):
o Memory space complexity is linear

o Time complexity is higher just a little than the other uninformed search
algorithms

a
a
a
a
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