
A Frame-based Approach to Text Generation

Huong Le_Thanh
Faculty of Information Technology

Hanoi University of Technology, Vietnam
1 DaiCoViet Street, Hanoi, Vietnam
huonglt@it-hut.edu.vn

Abstract

This paper is a study on constructing a
natural language interface to database,
concentrating on generating textual an-
swers. TGEN, a system that generates
textual answer from query result tables is
presented. The TGEN architecture guar-
antees its portability across domains. A
combination of a frame-based approach
and natural language generation tech-
niques in the TGEN provides text fluency
and text flexibility. The implementation
result shows that this approach is feasible
while a deep NLG approach is still far to
be reached.

1 Introduction

Database management systems (DBMSs) have
been widely used thanks to their efficiency in
storing and retrieving data. However, retrieving
information from database requires users to
compose queries in a query language (e.g., QBE
or SQL) or to fill some search criteria in the in-
terface (Liu, 1995; Catarci et al., 1997). In addi-
tion, traditional DBMSs are still limited by its
capability to generate outputs. They normally
dump query results in a table or a pre-defined
form without any understanding of the meaning
of data.

The research on natural language interface to
databases has recently received attention from
the research communities (Wang et al., 1999;
ELF Software Co., 2001; Torgersson and Falk-
man, 2002; Hallett et al., 2005; Bertomeu, 2006).
The purpose of such a natural language interface
is to allow users to compose queries in natural
language and to receive responses under the form

of short answers. The natural language interface
is thus preferred than the traditional interface.

A typical natural language interface has to
solve two main tasks: (i) translating a natural
language query to a query language; and (ii) gen-
erating a natural language answer by using in-
formation from a query result table. In this paper,
we focus on solving the second task. TGEN – a
text generator developed by us - can generate
query responses under the form of short answers
or summary reports in Vietnamese language.

The remaining sections of this paper are or-
ganized as follows: Section 2 introduces the ar-
chitecture of our proposed Natural Language In-
terface to Database (NLI2DB), in order to get an
overview of the TGEN role in the interface. Sec-
tion 3 describes the rule set used by the TGEN
to generate text. Section 4 presents the major
components and the data flow in the TGEN. In
Section 5, two examples are given to illustrate
the working process of the TGEN. Our imple-
mentation discussion and some experimental re-
sults are given in Section 6. Finally, Section 7
concludes the paper and proposes possible future
work on this approach.

2 The NLI2DB Architecture

The NLI2DB is a system that is integrated with a
traditional database management system to pro-
vide a natural language interface for querying
database and automatically generating answers.
An overview of the NLI2DB architecture is
shown in Figure 1.

The NLI2DB consists of two main modules:
• A Query Translator (QTRAN) to trans-

late natural language questions to SQL
queries.

• A Text Generator (TGEN) to generate
answers from query result tables.

A natural language question composed by a user
is translated into a SQL query by the Query
Translator. After that, the Database Management
System processes the SQL query and returns the
query result in the form of a table. The Text
Generator then transforms this result table into a
textual answer.

To test the feasibility of the NLI2DB, a spe-
cific Database Management System - a student
management database – is used. The entity rela-
tionship of the database is shown in Figure 2.
Knowledge sources (e.g., syntactic rules and the-
saurus) are needed in the working processes of
the QTRAN and the TGEN.

The remained sections present our main focus of
this paper - the implementation of the TGEN.
The rule set used in generating answers is intro-
duced first.

3 The Grammar used in the TGEN

The TGEN does not generate free texts, but the
texts that are based on predefined frames. These
frames are typical structures of answers. For ex-
ample, the frame for an answer of the List type
is:

[Noun phrase] [Verb phrase]:
1. [Item_1]
2.
3. [Item_n]

A List answer can also be represented by another
frame:

[Noun phrase] [Verb phrase] [Item_1], …,
[Item_n].

Each label [. . .] in the frame is a slot that needs
to be filled. The [Noun phrase] and the [Verb
phrase] are generated by using the syntactic
structure of the user’s question. This problem is
analyzed in detail in Section 5. The slots
[Item_1], …, [Item_n] are filled in by values
from the result table.

In order to create the frame set that is used in
generating text, we first identify and categorize
question types, then we define frames for each
question type. The question types that have been
considered by us are:

Figure 1. Architecture of the NLI2DB

Natural Language
Query

Query Translator

Knowledge
Sources

Text Generator

A Database Management System

SQL query
Result Table

Outputs

Natural Language
 Interface

Figure 2 – The entity relationship of the student management database

1. Questions that return a single value (e.g.,
Who is the leader of the class BK20 in
the academic year 2004-2005? 1). This
question type is called a Single_value
question.

2. List questions (e.g., Which subjects did
the class BK20 study in Semester 1 last
year?)

3. Statistical questions (e.g., Show us the
quality of students in the academic year
2005 – 2006.)

4. Comparison questions (e.g., Compare
the percentage of excellent students of
the classes BK20 and BK21.)

5. Description questions (e.g., Give us in-
formation about the student Pham Thanh
of the class BK20.)

6. Evaluation questions (e.g., Evaluate the
study progress of the student Nguyen
Van Minh.)

The name of a frame is called by its correspond-
ing question type. For example, the frame of a
List question is a List frame.

The TGEN uses a context-free grammar
(CFG) to organize generation rules. Each frame
in the TGEN is stored in the right hand side
(RHS) of a rule, whose left hand side (LHS) is
the frame type (e.g., List frame, Comparison
frame). The set of generation rules used in the
TGEN is called a rule set.

The LHS of a generation rule can be any non-
terminal symbol, whereas the RHS is a
combination of non-terminal symbols and
terminal symbols. A terminal symbol is a word
or a string that appears in the output text. A non-
terminal symbol do not appears in the output.
Instead, it has to be expanded by other
generation rules or to be replaced by a value in
the query result. In order to produce flexible out-
put texts, a non-terminal symbol in the RHS of a
rule can also be a frame. We analyze the De-
scription frame to illustrate the organization of
our rule set.

The answer for a Description question is a text
that describes relations among attribute values of
one or several entities. In order to keep the gen-
erality of the frame set, we design frames for

1 For the convenient, all examples are translated from Viet-
namese to English in Sections 3,4 and 5. In Section 6 (Im-
plementation Discussion and Experiments), we present our
original examples in Vietnamese and translate them into
English.

each entity of the database. Each frame consists
of all attributes of an entity. During the genera-
tion process, if some slots in the frame do not
have values to fill in, these slots will be removed
from the frame. The following rules are applied
to relations among attributes of the tbl_student
entity.

(1) [frame_student] [studname] ([sex])

[vp_studId]. [studname] [vp_DOB],
[vp_cityborn]. [studname] [vp_classId].

(2) [frame_student] [studname] ([sex])

[vp_studId]. [studname] [vp_classId]. [stud-
name] [vp_DOB], [vp_cityborn].

(3) [vp_studId] has the student code [studId]
(4) [vp_DOB] was born on [DOB]
(5) [vp_cityborn] in [cityborn]
(6) [vp_classId] is a student of the class [clas-
sId]
(7) [vp_classId] studies in the class [classId]

In the above rule set, the strings in the square
brackets ([]) are considered as non-terminal
symbols; whereas the string that are not in the
square brackets are terminal ones.

The rules whose LHS starts with [frame_ de-
fine the structure of a frame. Rules (1) and (2) in
the rule set above define two possible structures
of the Description frame. The non-terminal sym-
bols starting with [vp_ or [np_ represent for verb
phrases or noun phrases, respectively. The rule
set also has an [s_ symbol, which represents for
sentence. The symbols that are in the square
bracket and do not start with [frame_, [vp_,
[np_ and [s_ are pre-terminal symbols. They rep-
resent for entity’s attributes and will be replaced
by attribute values during the next generating
step.

If a Description answer describes relations
among attribute values of several entities, the
system will automatically generate the answer by
connecting the frames of these entities through
entity’s key. The system only select frame’s parts
that relates to attributes of the result table. Dur-
ing the generating process, the entities’ keys are
often replaced by their corresponding name at-
tributes (e.g, [StudId] is replaced by [studname]).
This process will be illustrated by Example 1 in
Section 5.

4 The Text Generator system

The major components and the data flow in the
TGEN are shown in Figure 3. The Text Genera-
tor is divided into four main components: a
Frame Selector, a Slot Filler, a Syntactic Refiner,
and an Answer Generator.

4.1 A Frame Selector

This component is used to select frames for the
answer. Four factors being considered in select-
ing frames are: keywords in the user’s question,
the SQL query2, the shape of the result table, and
values in the result table. Each factor will be ana-
lyzed in detail below.

Some user’s questions contain keywords that
signal theirs question types. Examples of the
keywords are Compare, List, and Evaluate. If
these keywords are found in the user’s question,
the frames corresponding to the detected ques-
tion type will be chosen.

The shape of the result table can decide the
frame type as well.

• If the result table has only one value, the
Single_value frame is selected.

• If the result table has several columns
and one row, the Description frame is
chosen. If the result table is a join among
several entities, a join of the correspond-

2 The SQL query is generated by the Query Translator.

ing Description frames will be estab-
lished.

• If the result table has one column and
several rows, the List frame is chosen.

• If the result table has multiple rows and
columns, the Statistical frame or the
Evaluation frame is the most
appropriate.

If the user’s question and the shape of the result
table do not provide enough information for se-
lecting frames, values in the result table will be
used to fill in slots of all candidate frames. The
frames whose required slots3 cannot be filled will
be eliminated.

4.2 A Slot Filler

After frames have been selected, the Slot Filler
has to generate text using the rule set mentioned
in Section 3. This is a top-down generating algo-
rithm.

Our target is to create a variety of output texts,
but to keep the algorithm complexity low. There-
fore, when selecting rules from the rule set, if
two or more rules are satisfied, the rules will be
chosen by the following policy:

• All rules whose the LHS starts with
[frame_ are chosen. This policy is used

3 A required slot is the slot that must be filled in by text or
values. Otherwise, the frame that contains this slot cannot
be used.

Frame Selector Result table

User’s question

Slot Filler

Syntactic
Refiner

Answer Generator

Answers

Rule Set

Functional word
dictionary

Thesaurus

Syntactic
Rules

Figure 3. Data flow in the Text Generator

Syntactic Parser User’s question

SQL query

Word
Dictionary

SQL query

to guarantee the flexibility of the output
texts.

• If the LHS of the rule does not start with
[frame_, the system will randomly
choose one rule among the satisfied rules
that have not been used in expanding the
chosen frame. If all satisfied rules have
been used, they are reselected another
round by the same method. This strategy
is used to prevent the combination ex-
plosion and to make sure that a rule is
not repeatedly used all the time.

The Slot Filler needs a functional word dic-
tionary4 to map values in the result table with
frame’s slots. For example, the table column Full
name is mapped with the attribute studname of
the entity tbl_student. Therefore, values in this
columns are filled in slots [studname] of the con-
sidering frames.

Several frame types (e.g., the List frame) reuse
some parts of the user’s question in their content.
Therefore, a syntactic parser is integrated with
the TGEN to get the syntactic structure of sen-
tences.

The slots that do not have values to fill in will
be removed from the frame. This action may
cause sentential fragments (e.g., a sentence with-
out a verb phrase) in the output texts. For that
reason, the TGEN needs a Syntactic Refiner to
solve this problem. The Syntactic Refiner will be
introduced next.

4.3 A Syntactic Refiner

The purpose of the Syntactic Refiner is to pro-
duce grammatical sentences from the outputs of
the Slot Filler. It first parses the outputs of the
Slot Filler to detect ungrammatical sentences. In
order to do that, the Syntactic Refiner locates
positions of NPs and VPs in the Slot Filler’s out-
puts by tracing the applied generation rules.
Then, it checks the syntax of sentences given
their NPs and VPs.

If a sentence lacks of a major part such as an
NP or a VP, the Syntactic Refiner will combine it
with its adjacent sentences. If it is not success,
the ungrammatical sentence will be removed
from the output texts.

4 The functional word dictionary is used to store relations
between a word/phrase and its role in the database. For ex-
ample, the word student corresponds to the entity
tbl_student in the student management database.

4.4 An Answer Generator

Although the output texts of the Syntactic Re-
finer are grammatically correct, it may not be
fluent. There are some reasons for this problem:
the sentences can be too short or too long; some
words are repeated several times; etc. The An-
swer Generator has to refine the texts so that it
can be as natural as possible. We only deal with
repeated words in this research. The Answer
Generator replaces repeated words by its syno-
nym or reference words. A thesaurus, which
stores semantic relations among words, is used in
this process.

We will illustrate the working process of the
TGEN by examples given in Section 5.

5 Examples of the Generating Process

In this section, we consider two examples corre-
sponding to two typical frame types. One frame
type does not need syntactic information from
user’s questions (e.g., the Description frame –
Example 1), and another frame type does (e.g.,
the List frame – Example 2).

5.1 Example 1

User’s question:
(1) What is the name of the student whose stu-
dent number is 20050245? Which class and fac-
ulty does this student studies?

The result table returned by the SQL query is:
Stud. name Class Faculty

Pham Thanh BK20 Information Technology

The following steps are carried out by the
TGEN:

Step 1: Selecting frames

In this example, the system cannot find keywords
that signal question types. It then looks at the
result table and finds that the result table has
several columns and one row. Therefore, the De-
scription frame is chosen. Based on the SQL
query, TGEN detects that values in the result
table are from three attributes
tbl_Student.StudName, tbl_Class.Classname, and
tbl_Faculty.FacName. It automatically generates
a new frame for the answer by connecting the
frames [frame_Student], [frame_Class], and
[frame_Faculty] through entities’ keys.

As mentioned in Section 3, only frames’ parts
that relate to attributes of the result table are con-
sidered to be put in the new frame. During the
generating process, the entities’ keys are often

replaced by their corresponding name attributes
(e.g, [StudId] is replaced by [studname]). In or-
der to select the suitable frames’ parts, the sys-
tem has to find the appearance of at least two
among three attributes tbl_Student.StudName,
tbl_Class.Classname, and tbl_Faculty.FacName
in the above three frames. If TGEN cannot find
these parts, it replaces name attributes by the cor-
responding key attributes and finds the appear-
ance of these attributes (e.g., finding the appear-
ance of tbl_Student.StudName and
tbl_Class.ClassId or tbl_Student.StudId and
tbl_Class.Classname).

The rule set involving tbl_Student has two
rules whose LHS is [frame_Student]. The RHS
of these two rules has one part that involves
tbl_Student.StudName and tbl_Class.ClassId:
[studname] [vp_classId].

The rule set that describes relations among
attributes of the tbl_Class is:
(8) [frame_Class] [np_Classname]

[vp_ClassIdC]. [np_Classname]
[vp_FacIdC].

(9) [np_Classname] Class [classname]
(10) [vp_ClassIdC] has the code [ClassId]
(11) [vp_FacIdC] belongs to the faculty
[FacId]

The rule set that describes relations among
attributes of the tbl_Faculty is:
(12) [frame_Faculty] [np_FacName]

[vp_FacIdK], [np_Address], [np_Tel].
(13) [frame_Faculty] [np_FacName]

([np_FacIdK]) [vp_Address]. [s_Tel].
(14) [np_FacName] faculty [facname]
(15) [vp_FacIdK] has the code [FacId]
(16) [np_Address] address [Address]
(17) [np_Tel] telephone number [Tel]
(18) [vp_Address] has the address [Address]
(19) [s_Tel] Contact number: [Tel]

The rule set of tbl_Class has one rule whose
LHS is [frame_Class]. The RHS of this rule has
one part that involves tbl_Class.Classname and
tbl_Faculty.FacId: [np_Classname]
[vp_FacIdC]. The rule set of tbl_Faculty has
one rule whose LHS is [frame_Faculty]. How-
ever, the RHS of this rule does not contain any
part that relates at least two among three entities
student, class, and faculty. Finally, TGEN has
collected the following parts: [studname]
[vp_classId] and [np_Classname] [vp_FacIdC].
The new frame rule is:
(1’) [new_frame] [studname] [vp_classId].
[np_Classname] [vp_FacIdC].
The rules that will be used are collected from the
rule set of [frame_Student] and [frame_Class].

(6) [vp_classId] is a student of the class [clas-
sId]
(7) [vp_classId] studies in the class [classId]
(9) [np_Classname] class [classname]
(11) [vp_FacIdC] belongs to the faculty
[FacId]

Since the result table does not contain infor-
mation about key attributes of entities, the slot
corresponding to the key attributes in the above
rules are replaced by the corresponding name
attributes.
(2’) [vp_classId] is a student of the class
[classname]
(3’) [vp_classId] studies in the class [class-
name]
(4’) [np_Classname] class [classname]
(5’) [vp_FacIdC] belongs to the faculty
[facname]

Step 2: Filling in frames’ slots

TGEN generates text by expanding the RHS of
the rule (1’). Since the columns Stud. name,
Class, Faculty are from three attributes
tbl_Student.Name, tbl_Class.Name, and
tbl_Faculty.Name, values in the first, second,
and third column are filled in the slots [stud-
name], [classname] and [facname]. Since there
are two rules (2’ and 3’) that can be applied to
[vp_classId], TGEN will randomly chooses one
of them. The result generated after this step is:
(1a) Pham Thanh is a student of the class BK20.
The class BK20 belongs to the faculty Informa-
tion Technology.

Step 3: Refining the syntax of sentences

After filling in frames’ slots, the system checks
the syntax of sentences in these frames. Since
both sentences are syntactically correct, the sys-
tem does not modify the output of Step 2.

Step 4: Refining the output texts

The system finds a full name is repeated at the
second sentence of the output text. Therefore, the
system replaces the repeated name by a reference
string, which is this class in this case.

After being refined by Step 4, the output now
becomes:
(1b) Pham Thanh is a student of the class BK20.
This class belongs to the faculty Information
Technology.

5.2 Example 2

User’s question:
(2) Who got the mark 10 in the Database sub-
ject?

The syntactic parser integrated in the TGEN
determines that the interrogative pronoun Who is
the noun phrase of the question, and got the mark
10 in the Database subject is the verb phrase of
the question.
Let us consider the case when the query returns
only one value, as shown in the result table:

Full name
Nguyen Thuy Linh

In this case, the system chooses the Single_value
frame (Step 1). To produce an answer, the inter-
rogative pronoun of the question is replaced by
the value Nguyen Thuy Linh (Step 2). The output
of Step 2 is:

(2a) Nguyen Thuy Linh got the mark 10 in the
Database subject.

Steps 3 and 4 do not modify the above output.
Therefore, Sentence (2a) is the final answer.

Consider the case when the result table has
several values, as shown in the table below:

Full name
Nguyen Thuy Linh
Dinh Thu Van

The four steps being carried out by the TGEN
are:

Step 1: Selecting frames

The answer applies the List frame.

Step 2: Filling in frames’ slots

The VP of the answer is are. The NP of the an-
swer will be constructed by the following for-
mula:
[NP1 in plural] [relative pronoun] [VP of the
question]
in which the NP1 is generated as follow:

 The system determines where values in the
columns Full name come from by looking at the
SQL query. It returns a pair (entity, attribute),
which is (tbl_student, name) in this case. The
system then interprets the code tbl_student to
student by searching in the functional word dic-
tionary. NP1 now is student. Since the query re-
turns several values, the word student is put in
the plural form.

Who is chosen to be the [relative pronoun] in
this example. Therefore, the output of Step 2 is:

(2b) Students who got the mark 10 in the Data-
base subject are

• Nguyen Thuy Linh
• Dinh Thu Van

Sentence (2b) is the final answer since Steps 3
and 4 do not modify the above output.

6 Implementation Discussion and Ex-
periments

A prototype of the TGEN has been implemented
for Vietnamese language. Since text generation
is our focus in this research, we assume that the
Query Translator has already translated the
user’s question into a SQL query. A Vietnamese
syntactic parser (Le-Thanh et al., 2000) is inte-
grated into the system in order to get the syntac-
tic structure of sentences. The program is written
in Java and the database management system is
implemented in SQL Server 2000.

The TGEN produces one or several textual an-
swers for a user’s question, depending on the
number of answer frames a question has. The
current version of the system has not evaluated
the quality of the answers yet. Instead, all possi-
ble answers are displayed in an editable interface
so that the user can select, modify, save to file,
and print the textual answers.

The syntactic rules and the thesaurus in the
TGEN are domain independent, whereas the rule
set and the functional word dictionary are strictly
related to the student management domain. To
increase the portability of the system, all knowl-
edge sources are stored in separate data files. If
the TGEN is applied to other domains, we only
need to modify the content of the files corre-
sponding to the generation rule set and the func-
tional word dictionary.

The TGEN architecture can be applied to a va-
riety of other languages. When changing to an-
other language, we only need to change the
knowledge sources of the system. These knowl-
edge sources include the syntactic rules, the the-
saurus, the generation rule set and the functional
word dictionary.

Some experiments with our prototype system
are shown below.

Question 1:

(3) Điểm thi cao nhất trong kỳ thi Tin học học kỳ
1 năm 2006-2007 là bao nhiêu? Ai đạt điểm cao
nhất?

What is the highest mark in the Informatics
examination in Semester 1 of the academic year
2006-2007? Who got the highest mark?

The answer for Question 1 is:

(3a) Điểm thi cao nhất trong kỳ thi Tin học học
kỳ 1 năm 2006-2007 là 9. Bành Quỳnh Mai đạt
điểm cao nhất.

The highest mark in the Informatics examination
in Semester 1 of the academic year 2006-2007 is
9. Bành Quỳnh Mai got the highest mark.

Question 2:
(4) So sánh tỷ lệ sinh viên giỏi của lớp BK20 và
BK21.

Compare the percentage of excellent students
of the classes BK20 and BK21.

The answer for Question 2 is:

(4a) Tỷ lệ sinh viên giỏi của lớp BK20 là 20%.
Với lớp BK21, tỷ lệ này là 25%. Ta có thể thấy tỷ
lệ sinh viên giỏi của lớp BK21 cao hơn lớp
BK20.

The percentage of excellent students of the
class BK20 is 20%. With the class BK21, this
percentage is 25%. We can see that the
percentage of excellent students of the class
BK21 is higher than the class BK20.

(4b) Tỷ lệ sinh viên giỏi của lớp BK20 là 20%.
Với lớp BK21, tỷ lệ này là 25%, cao hơn so với
lớp BK20.

The percentage of excellent students of the
class BK20 is 20%. With the class BK21, this
percentage is 25%, higher than the class BK20.

7 Conclusions

We described in this paper the TGEN architec-
ture that allows the implementation of a text gen-
erator for generating answers from query result
tables of a DBMS. The TGEN is not based on a
deep natural language generation approach. In-
stead, it uses a hybrid one. It combines a set of
predefined structures with deeper NLG tech-
niques, including (i) using generation rules to
generate text; (ii) checking the syntax of sen-
tences; (iii) replacing repeated words by their
synonyms or reference words.

The current prototype of the TGEN can pro-
duce flexible and grammatical outputs. It proves
that a hybrid approach is feasible for this kind of
applications while a deep NLG approach is still
far to be reached.

To improve the system performance, future
work includes: (i) expanding the rule set to deal
with a variety of question types; (ii) researching
methods to improve the coherence and the flu-

ency of output texts; and (iii) defining criteria to
automatically evaluate the outputs.

Acknowledgement

The author gratefully acknowledges the receipt
of a grant from the Flemish Interuniversity
Council for University Development Coopera-
tion (VLIR UOS) which enabled the research
team to carry out this work.

References
Núria Bertomeu, Hans Uszkoreit, Anette Frank, Hans-

Ulrich Krieger and Brigitte Jörg. 2006. Contextual
phenomena and thematic relations in database QA
dialogues: results from a Wizard-of-Oz Experi-
ment. Proceedings of the HLT-NAACL 2006
Workshop on Interactive Question Answering,
New York.

Tiziana Catarci, Maria F. Costabile, Stefano Levialdi
and Carlo Batini. 1997. Visual query systems for
databases: A survey. Journal of Visual Languages
and Computing, 8(2):215–260.

ELF Software Co. 2001. Access ELF: the amazing
software that lets you communicate with Microsoft
Access in plain English.
http://www.elfsoft.com/ns/prodserv.htm (Last Up-
dated: Nov., 2001). ELF Software Co. 210 W 101
St. NYC NY 10025

Catalina Hallett, Richard Power and Donia Scott.
2005. Intuitive Querying of e-Health Data Reposi-
tories. In Proceedings of the 4th UK e-Science All
Hands Meeting, Nottingham, UK. S.J. Cox (ed.).

Huong Le_Thanh, Quang Pham_Hong, and Thuy
Nguyen_Thanh. 2000. An approach to automati-
cally analyze syntax of Vietnamese text. Journal of
Informatics and Cybernetics, Volume 15, No.4.

Hui Liu. 1995. A Visual Interface For Querying a
CASE Repository. In Proceedings of 11th Interna-
tional IEEE Symposium on Visual Languages.
Darmstadt, Germany.

Olof Torgersson and Göran Falkman. 2002. Using
Text Generation to Access Clinical Data in a Vari-
ety of Contexts. In Proceedings of MIE2002, vol.
90 of Studies in Health Technology and Informat-
ics, pp. 460-465. IOS Press, 2002.

Shan Wang, Xiaofeng Meng, Shuang Liu. 1999.
Nchiql: A Chinese Natural Language Query Sys-
tem to Databases. In Proceedings of the Interna-
tional Symposium on Database Applications in
Non-Traditional Environments (DANTE'99).

