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 Finding plagiarism strings between two given documents are the main task of 

the plagiarism detection problem. Traditional approaches based on string 

matching are not very useful in cases of similar semantic plagiarism. Deep 

learning approaches solve this problem by measuring the semantic similarity 

between pairs of sentences. However, these approaches still face the following 

challenging points. First, it is impossible to solve cases where only part of a 

sentence belongs to a plagiarism passage. Second, measuring the sentential 

similarity without considering the context of surrounding sentences leads to 

decreasing in accuracy. To solve the above problems, this paper proposes a 

two-phase plagiarism detection system based on multi-layer long short-term 

memory network model and feature extraction technique: (i) a passage-phase 

to recognize plagiarism passages, and (ii) a word-phase to determine the exact 

plagiarism strings. Our experiment results on PAN 2014 corpus reached 

94.26% F-measure, higher than existing research in this field. 
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1. INTRODUCTION 

Plagiarism is defined as the reuse of another person’s ideas, processes, results, or words without 

explicitly acknowledging the source [1]. Plagiarism detection is the algorithm for automatically retrieving 

strings in a suspicious document reused from another document. Plagiarism methods are divided into two 

main types: literal plagiarism and intelligent one, based on the plagiarist’s behavior [2]. Literal plagiarism is 

a common and popular case in which plagiarists do not spend much time hiding the academic crime they 

committed. For example, they copy and paste the text from the internet. Intelligent plagiarism is severe 

academic dishonesty wherein plagiarists try to deceive readers by changing others’ contributions to appear as 

their own. Intelligent plagiarists try to hide, obfuscate, and change the original work in various intelligent 

ways, including text manipulation, translation, and idea adoption. 

Over the past two decades, automatic plagiarism detection has received significant attention from 

the research community. Two main tasks of automatic plagiarism detection are source retrieval and text 

alignment. In the source retrieval task, given a suspicious document and a web search engine, the task is to 

retrieve all source documents from which text has been reused. In the text alignment subtask, given a pair of 

documents (a suspicious document and a source one), the task is to identify contiguous maximal-length 

passages of reused text. 

https://creativecommons.org/licenses/by-sa/4.0/
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Most of existing works on text alignment focus on supervised and unsupervised approaches. Several 

unsupervised approaches use character-based methods (e.g., [1], [3], [4]) that applied string matching or 

approximate string matching with measures such as Hamming or Levenshtein distances to compute the 

similarity between two strings within a sliding window. Instead of comparing strings as in character-based 

methods, vector-based methods (e.g., [5], [6]) proposed representing input texts as vectors of tokens and 

measuring the distance between these vectors by using similarity coefficients such as Jaccard, Cosine, 

Euclidean, or Manhattan distances. 

Based on the intuition that similar documents would have similar syntactical structures, some 

research works (e.g., [7], [8]) used syntactic information at the first stage of measuring sentential similarity. 

The main limitation of these unsupervised approaches is that they cannot deal with intelligent plagiarism in 

which the same content can be expressed by different words and in different orders. Research on intelligent 

plagiarism (e.g., [9]-[11]) often concentrate on finding the similarity between pairs of sentences. Gharavi et al. [9] 

proposed a plagiarism detection method for the Persian language by representing each sentence by a semantic 

embedding vector and then comparing the similarity between these vectors using the cosine similarity. 

Cherroun et al. [10] proposed a two-phase system using a supervised learning approach to detect 

plagiarism in Arabic. The first phase produced a representing vector for each sentence by combining different 

features, including word embedding, word alignment, term frequency weighting, and part-of-speech tagging. 

The second phase used lexical, syntactic, and semantic features in three machine learning models (support 

vector machine (SVM), decision trees (DT), and random forests (RF)) to improve the accuracy of the first 

phase results. However, their approach did not deal with obfuscated plagiarism cases when a passage is 

inserted in the middle of a sentence. Altheneyan et al. [11] presented two systems (PlagLinSVM and 

PlagRbfSVM) using the support vector machine classifier (SVM) with lexical, syntactic, and semantic 

features to detect plagiarism sentences. Their approach applied two plagiarism detecting levels: paragraph 

and sentence ones. The paragraph-level detects similar paragraphs in the two input documents basing on the 

number of common unigrams and bigrams of these paragraphs. The sentence-level aligns sentences in the 

above result paragraph pairs basing on the number of common unigrams between the two sentences. If the 

score of a sentence pair was higher than the pre-defined threshold, the SVM classifier is applied to determine 

whether two sentences are similar or not. Finally, plagiarism passages were created by connecting adjacent 

sentences that were copied from the source documents. 

Previous intelligent plagiarism approaches have limitations on finding copied paragraphs based on 

sentence units, assuming that people only copy or rewrite sentences. However, existing cases of plagiarism 

are more complicated than that. When comparing the plagiarism strings and the source one, we found that 

they can be different in; (i) the number of sentences; (ii) the sentence length; and (iii) the text appearance’s 

order. The above situations are not resolved yet in existing research on plagiarism detection. 

Recently, deep learning approaches have proven to be efficient in solving many tasks of natural 

language processing. However, as far as we know, the largest training corpus for the plagiarism detection 

task is still very small for the training phase. Therefore, in this paper, we propose a plagiarism system that 

takes advantage of hand-crafted feature vectors and long short-term memory (LSTM) network model [12] to 

deal with the problems mentioned above. The system includes two main phases: 

− passage-phase to figure out plagiarism passages in suspicious and source documents. 

− word-phase to remove redundancy parts from plagiarism passages to achieve the exact plagiarism 

strings. 

The main contributions of this work are: 

− We proposed new features at both the passage and word level to improve the accuracy in detecting 

similar strings between two documents. These features are: (i) Maximize passage similarity, maximize 

passage intersection, passage importance at the passage-phase; and (ii) word similarity, average word 

similarity, sentence based similarity at the word-phase. 

− We proposed a two-phase plagiarism detection system based on a multi-layer LSTM network model 

using our proposed features to solve both literal and intelligent plagiarism problems. 

The rest of the article is organized as: our proposed method is introduced in section 2. In section 3, 

we describe our experiments and analyze the results. Finally, our conclusions and future research directions 

are presented in section 4. 

 

 

2. PROPOSED METHOD  

The problem of finding similar strings between two documents is stated is [13]: 

Definition 1: Given two documents d and d’, the goal is to detect a set of passage pairs, P, such as: 

 

P = {< pdi , pd′j > | pdi ,pd′j: pdid  pd′jd
′ |pdi pd′j| > } (1) 
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in which pdi  is a string from d; pd′j  is a string from d’; pdi pd′j indicates the similarity between 

pdi  and pd′j;  is a threshold that is used to determine whether two strings are similar enough to be 

considered as plagiarism. 

The series of competition shared tasks for plagiarism detection named plagiarism analysis, 

authorship identification, and near-duplicate detection (PAN) has defined four types of plagiarism. 

a. None obfuscation: Create plagiarism cases by copying a paragraph from the source document and insert 

it into the suspicious one. 

b. Random obfuscation: Create plagiarism cases by inserting, deleting, changing the order of words from a 

paragraph of the source, and inserting it into the suspicious document. 

c. Translation obfuscation: Create plagiarism cases by translating a paragraph more than once through 

several languages and back to the original language using different machine translation tools. Then, 

inserting the translated paragraph into the suspicious document. 

d. Summary obfuscation: Create plagiarism cases by summarizing the source paragraph and inserting it 

into the suspicious document. 

This paper aims at solving plagiarism cases belong to all four types above. Our proposed system’s 

workflow is shown in Figure 1, including three steps. 

− Pre-processing: This step splits input documents into sentences, removes stopwords and special 

characters, and combines sort sentences into one. 

− Passage-phase: After the pre-processing step, we use a context window sliding over the source and 

suspicious documents to create candidate passages. We extract features from these passages and 

generate an input feature matrix corresponding to these features. This matrix is feed into a binary 

classifier of the candidate selection module to obtain pairs of plagiarism passages. 

− Word-phase: The pairs of plagiarism passages are used as the input for the word-phase. The purpose of 

this phase is to define the exact plagiarism strings from the input passages. A binary classifier at the 

word-level is used to perform this task. 

 

 

 
 

Figure 1. Overview of the proposed system’s workflow for plagiarism detection 

 

 

2.1.  Pre-processing  

The input documents are split into sentences using the sent tokenizer tool from the NLTK library. 

Then stopwords are removed from these sentences. Some specific cases can affect the accuracy of plagiarism 

selection. These cases are: 

− The input documents contain numbers that are written incorrectly, such as ‘8. 39’, ‘7 p. m’. In this case, 

the sentence splitter incorrectly segments text into sentences at the dot (‘.’) character.  

− After removing stopwords, there are some short sentences containing none or only one or two tokens. 

For example, two sentences “Can you feel the burn?”, “Who we are?” remain two words and empty, 

respectively, after cleaning stopwords and punctuation characters. 

Since the similarities of short sentences do not have much meaning, we combine the short sentences 

with surrounding sentences and compare the similarity between the passages after combined. Therefore, to 

deal with the problems mentioned above, we first apply the sentence splitter and then remove stopwords, 

numbers, and special characters from the sentences. After cleaning the text, sentences with less than three 

words are combined with the next sentence to create extended sentences. To the best of our knowledge, the 

above combination step allows us to efficiently manage the passage’s length after pairing and avoiding the 

case of creating too-long passages. We use a window of size w (sentences) sliding on both suspicious and 
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source documents to generate candidate plagiarism passages, which are used as inputs of the passage-phase. 

The optimal window size for the PAN datasets is three sentences. 

 

2.2.  Passage-phase 

The input of this phase is candidate plagiarism passages, each passage consisting of three 

consecutive sentences from the suspicious or source documents. In this phase, each passage is encoded as a 

semantic embedding vector. The semantic similarity between two passages is calculated based on the 

distance between these vectors. We use SBERT to encode passages, since it is proved in [14] that SBERT is 

better than other methods (e.g., Word2Vec [15], Glove [16], Fastext [17], InferSent [18], or Universal 

Sentence Encoder [19]) in various domains. Features representing for each passage is derived from these 

passage vectors. They are then used as inputs for the binary classification at the passage level to detect 

whether two passages are similar or not. 

 

2.2.1. Passage-phase feature extraction 

Given a set of all candidate passages in the suspicious document U = (u1,u2,…,un) and a set of all 

candidate passages in the source document V = (v1,v2,…,vm), with each passage ui and vj is represented as a 

passage embedding vector. We propose the following features for this phase:  

− Maximize passage similarity 

This feature is used to determine the maximum similarity of a passage vector ui against a set of 

passage vectors V. Let us say 𝑠𝑖𝑚𝑢𝑖,𝑣𝑗
 is the similarity between two passage vectors ui and vj where ui ∈ U, vj 

∈ V. Let 𝑠𝑖𝑚𝑢𝑖,𝑉
 is the maximum passage similarity of the passage vector ui against the set of passage vectors 

V. It is calculated as: 

 

𝑠𝑖𝑚𝑢𝑖,𝑉
= max

𝑣𝑗∈𝑉
𝑐𝑜𝑠𝑖𝑛(𝑢𝑖 , 𝑣𝑗) (2) 

 

The maximize passage similarity feature vector of all passage vectors in the pair of suspicious and 

source document is determined by (3): 

 

𝑝𝑠𝑖𝑚(𝑈, 𝑉) =  (𝑠𝑖𝑚𝑢1,𝑉 , 𝑠𝑖𝑚𝑢2,𝑉 , … , 𝑠𝑖𝑚𝑢𝑛,𝑉 , 𝑠𝑖𝑚𝑣1,𝑈, 𝑠𝑖𝑚𝑣2,𝑈 , … , 𝑠𝑖𝑚𝑣𝑚,𝑈) (3) 

 

− Maximize passage intersection 

To determine the maximum intersection value of a passage ui with a set of passages V, we split 

passages into words and find the intersection words of each passage pair (ui, vj), with ui ∈ U, vj ∈ V and take 

the maximum length of this intersection. This value is calculated as in (4): 

 

𝑖𝑛𝑡𝑒𝑟𝑢𝑖,𝑉 = max𝑣𝑗∈𝑉
𝑙𝑒𝑛(𝑢𝑖 ∩ 𝑣𝑗) (4) 

 

The maximize passage intersection feature vector of all passages in the pair of suspicious and source 

document is determined by (5): 

 

𝑝𝑖𝑛𝑡𝑒𝑟(𝑈, 𝑉) =  (𝑖𝑛𝑡𝑒𝑟𝑢1,𝑉 , 𝑖𝑛𝑡𝑒𝑟𝑢2,𝑉 , … , 𝑖𝑛𝑡𝑒𝑟𝑢𝑛,𝑉 , 𝑖𝑛𝑡𝑒𝑟𝑣1,𝑈, 𝑖𝑛𝑡𝑒𝑟𝑣2,𝑈, … , 𝑖𝑛𝑡𝑒𝑟𝑣𝑚,𝑈) (5) 

 

− Passage importance 

Term frequency-inverse document frequency (TF-IDF) is the most widely used and considered one 

of the most appropriate term weighting schemes. This TF-IDF is employed to get rid of terms with lower 

weights from documents and helps to increase the retrieval effectiveness. Term frequency-inverse document 

frequency is a numerical statistic that tells us how important a word is to a document in a collection or a 

corpus. It is mostly used as a weighting factor in various processes used for information retrieval and text 

mining. To determine similar passages, we put forward the idea of term frequency-inverse sentence 

frequency (TF-ISF) [20]. We treat each passage as a document and each document as a corpus, then calculate 

the values of TF(w,U), TF(ui,U), and ISF(ui,U), in which w is a term in a passage ui, U is the document 

containing ui. Given | 𝑢𝑖| is the total number of words in the passage ui, TF(ui,U) is computed as:  

 

𝑇𝐹(𝑢𝑖 , 𝑈) =
∑ 𝑇𝐹(𝑤,𝑈)𝑤 ∈ 𝑢𝑖

|𝑢𝑖|
 (6) 

 

ISF(ui,U) is computed by (7): 
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𝐼𝑆𝐹(𝑢𝑖 , 𝑈) =
∑ 𝐼𝐷𝐹(𝑤,𝑈)𝑤 ∈  𝑢𝑖

| 𝑢𝑖|
 (7) 

 

The passage importance of the passage ui in the document U is determined by (8): 

 

𝑖𝑚𝑝 𝑢𝑖,𝑈 =  𝑇𝐹( 𝑢𝑖, 𝑈) × 𝐼𝑆𝐹( 𝑢𝑖 , 𝑈) (8) 

 

The passage importance feature vector of all passage in the pair of suspicious and source document is 

determined by (9): 

 

𝑝𝑖𝑚𝑝(𝑈, 𝑉) = (𝑖𝑚𝑝𝑢1,𝑈 , 𝑖𝑚𝑝𝑢2,𝑈, … , 𝑖𝑚𝑝𝑢𝑛,𝑈, 𝑖𝑚𝑝𝑣1,𝑉 , 𝑖𝑚𝑝𝑣2,𝑉 , … , 𝑖𝑚𝑝𝑣𝑚,𝑉) (9) 

 

− The feature matrix for the passage-phase 

After extracting and creating three feature vectors psim(U,V), pinter(U,V), and pimp(U,V), we 

combine them into a two-dimensional matrix of size (n+m) x 3 where n+m is the total number of passages 

from suspicious and source documents. The feature matrix for all passages in the pair of suspicious and 

source documents is determined as in (10). It is used as the input for the multi-layer LSTM network model, 

described in section 2.2.2. 

 

𝑓𝑝𝑎𝑠𝑠𝑎𝑔𝑒 = 

(

 

𝑠𝑖𝑚𝑢1,𝑉 𝑖𝑛𝑡𝑒𝑟𝑢1,𝑉 𝑖𝑚𝑝𝑢1,𝑈
𝑠𝑖𝑚𝑢2,𝑉

𝑖𝑛𝑡𝑒𝑟𝑢2,𝑉 𝑖𝑚𝑝𝑢2,𝑈
⋮ ⋮ ⋮

𝑠𝑖𝑚𝑣𝑚,𝑈 𝑖𝑛𝑡𝑒𝑟𝑣𝑚,𝑈 𝑖𝑚𝑝𝑣𝑚,𝑉)

  (10) 

 

2.2.2. Plagiarism passage selection 

We build our binary classifier by using a multi-layer LSTM network model, which is used to predict 

the probability of being a plagiarism passage in the pair of suspicious and source documents. Figure 2 shows 

the structure of our model at the passage-phase. At this phase, we generate the input vectors by reshaping the 

feature matrix fpassage into a three-dimensional matrix of batch_size, time_steps, and seq_len and feed them 

into the model. The parameters using in the LSTM model are: (i) batch_size equals the number of passages; 

(ii) time_steps equals 1; (iii) seq_len equals the number of features (seq_len=3). 

 

 

 
 

Figure 2. The architecture of the multi-layer LSTM model at the passage-phase 

 

 

The output of the sigmoid activation function is always in the range of (0,1). This function is applied 

to the output of all units in the last hidden LSTM layer. Let 𝑦 = (𝑦1 , 𝑦2, … , 𝑦𝑛+𝑚) is the output of the binary 

classification model (0 < yi < 1), and n+m is the number of passages in the pair of suspicious and source 

documents. Figure 3 shows the output of the model is a vector of 0s and 1s in which values 1 for all yi being 

higher than a threshold θ, and values 0 for the remaining. 



Int J Artif Intell ISSN: 2252-8938  

 

 A two-phase plagiarism detection system based on multi-layer LSTM networks (Nguyen Van Son) 

641 

0 0 1 1 1 0 0 0 . . . 0 0 1 1 1 1 0 0 . .

Suspicious Source

. 00 . . . . . 0 0 .  
 

Figure 3. The output of the model at the passage-phase  

 

 

Plagiarism passages are generated by selecting sentences corresponding to the longest values of 1 

from the output of the model. When observing and analyzing the plagiarism passages obtained, we found that 

most plagiarism passages contain entire sentences. However, the plagiarism paragraph contains several 

redundant words at the two ends, such as the example in the PAN 2014 corpus explained by: this example. In 

this example, the underlined text is inside the plagiarism paragraph, whereas the rest is redundant. 

The suspicious plagiarism paragraph: 

 

The capsule was designed for entry into the Martian atmosphere, descent to the surface, 

impact survival, and surface lifetimes of as much as six months and contained the power, guidance, 

control communications, and data handling systems necessary to complete its mission. is perhaps 

the most productive space probe yet deployed, visiting four planets and their moons, including two 

primary visits to previously unexplored planets, with powerful cameras and a multitude of scientific 

instruments, at a fraction of the money later spent on specialized probes such as the and the probe. 

Along with, and Voyager 2 is an .Voyager 2 Galileo spacecraft Cassini-Huygens [2] [3] Pioneer 10 

Pioneer 11 Voyager 1 New Horizons interstellar probe resident per year, or roughly half the cost of one 

candy bar each year since project inception. 

 

The source plagiarism paragraph: 

 

Voyager 2 unmanned interplanetary space probe Voyager program Voyager 1 Voyager 2 

ecliptic Solar System Uranus Neptune gravity assist Saturn Voyager 2 Titan Planetary Grand Tour 

[1] is perhaps the most productive space probe yet deployed, visiting four planets and their moons, 

including two primary visits to previously unexplored planets, with powerful cameras and a 

multitude of scientific instruments, at a fraction of the money later spent on specialized probes such 

as the and the probe. Along with, , and Voyager 2 is an .Voyager 2 Galileo spacecraft Cassini-

Huygens [2] [3] Pioneer 10 Pioneer 11 Voyager 1 New Horizons interstellar probe Contents Titan 

3E Centaur was originally planned to be, part of the. 

 

To solve this problem, we extend pairs of plagiarism passages from the suspicious and source 

documents by adding k sentences to the left and right of both passages. Extended passages will be used as the 

input for the word-phase to find exact plagiarism strings. It is done by removing redundant text from the 

extended plagiarism passages. The word-phase will be introduced next. 

 

2.3.  Word-phase 

To remove the redundant text at the two ends of the extended plagiarism passages, we need to 

identify semantically related segments based on consecutive words of high similarity. To get the meaning of 

a word, we put that word in a window size of 3 with one word on the left and one word on the right. The text 

inside this window is used as the input of SBERT to create word feature vectors. 

  

2.3.1. Word-level feature extraction 

In this phase, three features are proposed based on the cosine similarity between the word and the 

sentence containing that word. The word similarity feature is a vector that contains the maximum similarity 

values of each word. The maximum similarity of a word in the suspicious passage is the maximum similarity 

of that word with each word in the source passage and vice versa. Features average word similarity and 

sentence based similarity are used to solve cases where the similarity value of a word has a big difference 

with the surrounding words. The average word similarity feature is a vector that each item is the average of 

the word similarity values within the sentence. The sentence based similarity feature is a vector that each 

item is the maximum of sentence similarities of the sentence containing that word. The detailed information 

on the word-phase features is explained by: 

Given the extended suspicious passage P=(p1,p2,…,pn), the extended source passage Q=(q1,q2,…,qm) 

with each word pi and qj is represented by a word embedding vector. 

− Word similarity 

Let us call sim(pi,qj) is the cosine similarity between two word vectors pi and qj. The word similarity 

feature between P and Q is a vector being computed as (11).  
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wsim(P,Q) = (𝑚𝑎𝑥
𝑞𝑗∈𝑄

𝑠𝑖𝑚(𝑝1, 𝑞𝑗), 𝑚𝑎𝑥
𝑞𝑗∈𝑄

𝑠𝑖𝑚(𝑝2, 𝑞𝑗),…, 𝑚𝑎𝑥
𝑝𝑗∈𝑃

𝑠𝑖𝑚(𝑞𝑚, 𝑝𝑗)) (11) 

 

− Average word similarity 

Given wi (with i= 1÷n+m), is the i-th word in the pair of suspicious and source passages, d is the 

sentence that wi ∈ d, and |d| is the total number of words in the sentence d. Let us call avg(wi) is the average 

similarity of word wi in the sentence d; wsim(i) is the value of the i-th item in the word similarity feature 

vector. Then, the avg(wi) is computed as:  

 

𝑎𝑣𝑔(𝑤𝑖) =
∑ 𝑤𝑠𝑖𝑚(𝑖)𝑤𝑖∈𝑑

|𝑑|
 (12) 

 

The average word similarity feature between two passages P and Q is a vector determined by the following 

formula: 

 

wavg(P,Q) = (avg(p1), avg (p2),…, avg (pn), avg(q1), avg(q2),…, avg(qm)) (13) 

 

− Sentence based similarity 

We reuse the maximize passage similarity feature (as described in the passage-phase) with the 

meaning of the passage is the sentence. Given the set of sentences U = (u1,u2,…,uk), and V = (v1,v2,…,vs) in 

the suspicious and source passages, respectively. Let us call sim_sent(pi) is the sentence based similarity of 

word pi in the sentence uj. The sim_sent(pi) is computed as:  

 

𝑠𝑖𝑚_𝑠𝑒𝑛𝑡(𝑝𝑖) =  max
𝑣𝑙∈𝑉

𝑐𝑜𝑠𝑖𝑛(𝑢𝑗 , 𝑣𝑙) | 𝑝𝑖 ∈  𝑢𝑗 (14) 

 

The sentence based similarity feature between two passages P and Q is a vector determined by the 

following formula: 

 

wsent(P,Q)=(sim_sent(p1),sim_sent(p2),…,sim_sent(pn),sim_sent(q1),sim_sent(q2),…,sim_sent(qm))

 (15) 

 

The feature matrix for the word-phase: 

After computing three feature vectors wsim(P,Q), wavg(P,Q), and wsent(P,Q), we combine these 

feature vectors into a two-dimensional matrix of size (n+m) x 3.  

 

𝑓𝑤𝑜𝑟𝑑 = 

(

 
 
 

max
qj∈Q

sim(p1, qj) 𝑎𝑣𝑔(𝑝1) 𝑠𝑖𝑚_𝑠𝑒𝑛𝑡(𝑝1)

max
qj∈Q

sim(p2, qj) 𝑎𝑣𝑔(𝑝2) 𝑠𝑖𝑚_𝑠𝑒𝑛𝑡(𝑝2)

⋮ ⋮ ⋮
max
pj∈Q

sim(qm, pj) 𝑎𝑣𝑔(𝑞𝑚) 𝑠𝑖𝑚_𝑠𝑒𝑛𝑡(𝑞𝑚))

 
 
 

 (16) 

 

The feature matrix of all the extended plagiarism passages is determined by (16). This feature matrix is used 

as the input for the multi-layer LSTM model, described in section 2.3.2. 

 

2.3.2. Plagiarism string selection 

In this section, we conduct two processing steps: (i) select plagiarism sentences and (ii) remove 

redundant text. The details of each step are described as: 

− Select plagiarism sentences 

To select exact plagiarism sentences from the extended plagiarism passages, we use a multi-layer 

LSTM model whose input is taken from the feature matrix fword as shown in Figure 4. The parameters using 

in this model are: (i) batch_size equals the number of words; (ii) time_steps equals 1; (iii) seq_len equals the 

number of features (seq_len=3). 

In Figure 4, pi and qj denotes the i-th and j-th word in the pair of extended plagiarism passages, 

𝑦_𝑝𝑟𝑒𝑑 = (𝑦1, 𝑦2, … , 𝑦𝑛+𝑚) is the output of the binary classification model (0 < yi < 1), n+m is the total number 

of words in the pair of these passages. The predicted mean value of a sentence u is computed as in (17):  

 

𝑦_𝑝𝑟𝑒𝑑_𝑠𝑒𝑛𝑡𝑢 =  𝑎𝑣𝑔(𝑦_𝑝𝑟𝑒𝑑𝑢) =
∑ y𝑖𝑤𝑖∈𝑢

|𝑢|
 (17) 
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where wi is a word in the sentence u. 

After computing values 𝑦_𝑝𝑟𝑒𝑑_𝑠𝑒𝑛𝑡𝑢 for all sentences, we create a vector with the size 

corresponding to the total number of sentences in the pair of plagiarism passages. If the value of y_pred_sent 

of a sentence is higher than a threshold β, the value corresponding to that word in the sentence is 1; 

otherwise, it is 0. We select the longest strings with the value of 1 as the plagiarism sentences. 

 

 

 
 

Figure 4. The architecture of the multi-layer LSTM model at the word-phase 

 

 

− Remove redundant text 

To achieve the exact plagiarism strings, we consider the leftmost plagiarism sentence and the 

rightmost one. The difference between these sentences’ max_threshold and min_threshold is higher than  

t1 (t1=0.4). The max_threshold and min_threshold of a sentence u are determined by (18) and (19): 

 

𝑚𝑎𝑥_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑢 = 𝑚𝑎𝑥
𝑤𝑖∈𝑢

𝑦𝑖  (18) 

 

𝑚𝑖𝑛_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑢 = 𝑚𝑖𝑛
𝑤𝑖∈𝑢

𝑦𝑖  (19) 

 

with wi is a word in the sentence u. 

These sentences above have one part inside and the remaining part outside the plagiarism passage. 

The outside part is on the left (orient =1) if the sentence is on the left of the plagiarism sentences or on the 

right (orient =2) if the sentence is on the right of the plagiarism sentences. If the previous step result contains 

only one sentence, the outside part belongs to the two ends (orient =3) of the sentence. Analyzing the output 

vector of the LSTM model y_pred, we discover that the predicted value yi corresponding of the inside words 

is much higher than the predicted value yj corresponding of the outside ones. 

Algorithm 1 is used to cut off the redundant text from these sentences. The idea of this algorithm is: 

Given a threshold α, find the longest text in the leftmost sentence and the rightmost one whose all of their 

words have the predictive value y_pred < α. We defined the left and right position as the first and last word 

of the exact plagiarism strings, respectively. The algorithm receives the following parameters as inputs: 

− y_d: is the predicted vector of the sentence. y_𝑑 = (𝑦_𝑑1, 𝑦_𝑑2, … , 𝑦_𝑑𝑡) with t is the number of words 

in the sentence. 

− orient: determines the intersection position in the left (orient =1) or right (orient =2) or both sides  

(orient =3) of boundary sentences. 

 

Algorithm 1: Intersection position determination 
Input: y_d, orient 

1: # orient = 1: left; orient = 2: right; orient = 3: both 

2: pos_left = 0; pos_right = length(y_d) – 1 

3: α = min(y_d) + (max(y_d)-min(y_d))/2 

4: if orient = 1 or orient = 3 then 

5:  for i = 0 to length(y_d) - 1 do 

6:   if y_d [i] > α then 
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7:         pos_left = i 

8         break 

9: if orient = 2 or orient = 3 then 

10:  for i = length(y_d) – 1 downto 0 do 

11:   if y_d[i] > α then 

12:        pos_right = i 

13        break 

Output: pos_left, pos_right 

 

We initialize the left and right positions with the first and last points, respectively (lines 2). The 

threshold α is the average value of maximum and minimum of y_d vector. We define the left (line 4) and 

right (line 9) position based on the orient value. For each direction, we scan all the points (line 5 and line 10) 

and get the first points whose predict value y_pred are higher than the threshold α (line 7 and line 13). These 

points are the results of the algorithm. 

 

 

3. EXPERIMENT RESULTS AND DISCUSSION 

In our experiment, we use PAN 2013 text alignment training corpus [21] for training the system. 

This corpus is also the training corpus using in PAN 2014 competition. The PAN 2013 corpus consists of 

1000 no obfuscation, 1000 random obfuscation, 1000 translation obfuscation, and 1185 summary obfuscation 

pairs of documents. Normally, this corpus is too small for training a deep learning model. By our experiment, 

we will prove that our approach of combining hand-crafted features with the LSTM model will be a good 

solution for this problem. To compare our system performance with state-of-the-art research in this task, we 

used PAN 2014 text alignment test corpus [22] for evaluating the system. 

 

3.1.  Evaluation metrics 

Our system was evaluated by using a tool provided by PAN to measure the system performance. 

Four measures used in PAN are macro-averaged Precision, Recall, Plagdet, and Granularity. The formula to 

compute these values are described such as: 

Given S, R, s, r are a set of all plagiarism cases, a set of all plagiarism system-detection cases, a 

plagiarism case, and a plagiarism system-detection case, respectively. The macro-averaged precision and 

recall are defined by: 

 

𝑝𝑟𝑒𝑐(𝑆, 𝑅) =  
1

|𝑅|
× ∑

|∪𝑠∈𝑆(𝑠∩𝑟)|

|𝑟|𝑟∈𝑅  (20) 

 

𝑟𝑒𝑐(𝑆, 𝑅) =  
1

|𝑆|
× ∑

|∪𝑟∈𝑅(𝑠∩𝑟)|

|𝑠|𝑠∈𝑆  (21) 

 

The detection granularity of R under S indicates whether each plagiarism case s  S is detected as a 

whole or in several pieces. It is calculated as: 

 

𝑔𝑟𝑎𝑛(𝑆, 𝑅) =  
1

|𝑆𝑅|
× ∑ |𝑅𝑆|𝑠∈𝑆𝑅

 (22) 

 

where SR  S are cases detected by detections in R, and RS  R are the detections of a given s. 

Plagdet is the overall score of the system, which is calculated as: 

 

𝑝𝑙𝑎𝑔𝑑𝑒𝑡(𝑆, 𝑅) =  
2×𝑝𝑟𝑒𝑐×𝑟𝑒𝑐

𝑝𝑟𝑒𝑐+𝑟𝑒𝑐
×

1

𝑙𝑜𝑔2(1+𝑔𝑟𝑎𝑛(𝑆,𝑅))
 (23) 

 

3.2.  Experimental results and analysis 

Several tests have been carried out to choose the best configuration for our system. We performed 

experiments by each phase to optimize parameters of the system. Extracted feature vectors from pairs of 

documents in the PAN 2013 training corpus are passed to the multi-layer LSTM model during the training 

process. We chose binary_crossentropy as the loss function since the model is a binary classification model. 

The threshold θ, which is used to select sentences in the passage-phase, is chosen to be 0.1. To choose the 

value k (mentioned in section 2.2.2) for extending plagiarism passages, we initiate the k value by 1 and 

continuously increasing this value until the system reaches the highest recall value. Experiments proved that 

the value of k depends on the length of the plagiarism passages, as shown in Table 1. 

At the word-phase, instead of using thresholds to identify each word, we apply the threshold  

β (β = 0.1) to the y_pred_sent. The LSTM model generates an array whose size is equal to the number of 
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sentences. The value of the array’s element is 1 if y_pred_sent is higher than β, and 0 for others. Then we 

select a continuous string with the highest predicted value. Table 2 shows the accuracy and loss values in the 

LSTM training phase with the four datasets in PAN 2013. 

To evaluate the effectiveness of our proposed features, we carried experiments using each feature 

instead of all features, with the input is pairs of documents from PAN 2014 test corpus. Figure 5 shows the 

effect of these features at the word-phase on the system output. Three pairs of Figures 5(a) to 5(f) show the 

prediction results of y_pred and the final results using 1, 2, and 3 features, respectively. In these figures, the 

blue line shows the predicted result; the red line shows the average predicted value by sentences. The green 

line separates the suspicious and source passage; the black line shows the range of the selected plagiarism 

passages. The evaluation results proved that all the proposed features are useful, solving well for both literal 

plagiarism and intelligent plagiarism. 

 

 

Table 1. The dynamic parameters  

for extending passage 
 Plagiarism passage’s length k 

1 ≥6 sentences 1 

2 ≥3 sentences 2 

3 ≥2 sentences 3 
4 1 sentence 4 

 

Table 2. Accuracy and loss values of the training phase 

PAN 2013 training corpus 
Sentence level Word level 

Accuracy Loss Accuracy Loss 

None Obfuscation 0.9925 0.0068 0.9808 0.0161 

Random Obfuscation 0.9727 0.0814 0.9303 0.1909 

Translate Obfuscation 0.9707 0.0748 0.9443 0.1229 
Summary Obfuscation - - 0.9201 0.2096 

 

 

 

(a) (b) 

  

(c) 
 

(d) 

  

 
(e) (f) 

 

Figure 5. Effects of selecting different features at word-phase to plagiarism passage: (a) using one feature- 

wsim (P,Q); (b) output’s result when using wsim (P,Q); (c) using two features-wsim (P,Q), wavg (P,Q);  

(d) output’s result when using wsim (P,Q), wavg (P,Q); (e) using three features-wsim (P,Q), wavg (P,Q); 

wsent (P,Q); and (f) output’s result when using wsim (P,Q), wavg (P,Q), wsent (P,Q) 
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Table 3 compares our system performance compared with existing research on this task using PAN 

2014 as the test set. It shows that our system has a remarkable improvement comparing to other researches. It 

indicates that our system can detect most plagiarism cases comparing to others. The results prove that our 

proposed feature extraction techniques combining with our LSTM models is a promise solution for the case 

of detecting intelligent plagiarism in which the same content can be expressed in different ways and by 

different words, using a small training corpus. 

 

 

Table 3. Performance comparison with state-of-the-art approaches 
Team F-measure (%) Plagdet (%) Prec (%) Rec (%) Gran 

Our system 94.26 94.26 94.04 94.48 1.00000 

Palkovskii and Belov [ 23] 90.80 90.78 92.76 88.92 1.00027 

Alaa Saleh Altheneyan et al. (PlagLinSVM) [11] 90.15 90.01 89.75 90.55 1.00210 
Oberreuter and Eiselt [24] 89.30 89.27 87.17 91.54 1.00051 

Sanchez-Perez et al. [25] 89.21 89.20 86.61 91.98 1.00026 

Glinos [26] 89.89 88.77 96.01 84.51 1.01761 
Alaa Saleh Altheneyan et al. (PlagRbfSVM) [11] 88.40 88.27 85.52 91.49 1.00209 

Shrestha et al. [27] 87.05 86.81 84.42 89.84 1.00381 

Gross and Modaresi [28] 86.84 85.50 92.52 81.82 1.02187 
Rodríguez Torrejón and Martín Ramos [29] 84.87 84.87 90.03 80.27 1.00000 

* The best results are highlighted in bold. 

 

 

When analyzing our system output, we found that most of the incorrect results are due to the 

following situations: 

− Sentential redundancy: This situation occurs when the sentence near the plagiarism passage is 

semantically related to the plagiarism passage. In that case, the system often includes it to the 

plagiarism passage. 

− Word missing or redundancy: This situation occurs when only a part of the sentence is in the plagiarism 

passage. The pre-processing step has removed stopwords from the input documents. Therefore, when 

restoring the original text from the output of the word-phase, we need to recover these stopwords from 

the original documents. Redundance or some missing stopwords may occur at the beginning and the end 

of the recovery passage.  

These problems will be considered in our future work. 

 

 

4. CONCLUSION 

This paper has proposed an approach using feature extraction techniques and a two-phase plagiarism 

detection system based on multi-layer LSTM Networks to determine plagiarism strings between two 

documents. The key to the paper's success is to select appropriate features for both word matching and 

semantic-based plagiarism. Besides, the inheritance of research results on measuring the similarity between two 

sentences is also an essential factor in catching sentences inside plagiarism passages compared to outside sentences. 

The proposed method was evaluated using the PAN 2014 text alignment corpus and widely accepted 

evaluation metrics: precision, recall, and plagdet. The solution achieves the best recall and plagdet, and the 

second precision better compared to state-of-the-art systems. In our future work, we plan to find a method to 

automatically choose optimal parameters for our system. Also, we will investigate methods to solve the 

redundancy problem in the system’ output, mentioned in section 3.2. 
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