
Optimizing Genetic Algorithm in Feature Selection for
Named Entity Recognition

Huong Thanh LE
Hanoi University of Science

and Technology
huongthanh@gmail.com

Luan Van TRAN
Hanoi University of Science

and Technology
tranvanluan7@gmail.com

Xuan Hoai NGUYEN
Hanoi University

nxhoai@gmail.com

Thi Hien NGUYEN
Le Quy Don Technical

University
nguyenthihienqn@gmail.com

ABSTRACT
This paper proposes some strategies to reduce the running
time of genetic algorithms used in a feature selection task for
the problem of named entity recognition. They include: (i)
reduction of population size during the evolution process of
the genetic algorithm; (ii) parallelization of the fitness com-
putation; and (iii) use of progressive sampling for calculating
the optimal sample size of the training data. Maximum En-
tropy algorithm is then used, as a test classifier, to compute
the accuracy of the named entity recognition system with the
reduced feature sets identified by the genetic algorithm. Ex-
perimental results show that our improved genetic algorithm
run three time faster than the standard genetic algorithm,
while the accuracy of the named entity recognition system
(using Maximum Entropy) on the induced feature subset
does not decrease. In addition, the feature subset induced
by our improved genetic algorithm is much smaller than the
original feature set and has helped Maximum Entropy to
achieve higher accuracy than the original one.

CCS Concepts
•Computing methodologies → Genetic algorithms;
Maximum entropy modeling; Feature selection;

Keywords
Genetic Algorithm; Progressive Sampling; Feature Selec-
tion; Named Entity Recognition; Maximum Entropy.

1. INTRODUCTION
Feature selection (FS) is the process of selecting an op-

timal subset from original features for Machine Learning
(ML) algorithms. This is one of the most important factors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

SoICT 2015, December 03-04, 2015, Hue City, Viet Nam
c© 2015 ACM. ISBN 978-1-4503-3843-1/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2833258.2833262

for the success of ML tasks. The smaller size of the fea-
ture subset is, the faster the learning system runs. However,
the size of feature subsets is not always proportional with
the accuracy of the learning algorithm that works on it. A
bad feature set may greatly degrade the performance of the
system. Most machine learning approaches determine the
features manually, which does not guarantee the optimal-
ity of the crafted feature set. The main focus of this paper
is to use genetic algorithms for automated feature selection
in solving the Named Entity Recognition (NER) task. Al-
though genetic algorithm (GA) has been shown to induce
better feature set than other feature selection approaches
such as forward selection [10] and backward selection [5] in
NER task, its complexity is extremely high. The reason for
this is that the genetic algorithm has to compute the fit-
ness of a large number of individuals in the population for
every generation. Here, each individual represents a com-
bination of features from the original feature set. For the
NER task, the time to compute the fitness of an individual
is usually long. To compute the fitness of an individual, the
features represented by this individual are fed to the ma-
chine learning algorithm for training a NER model, often,
on a huge training data set. Then, the NER model is tested
with the test set to compute the accuracy of the system.
This accuracy is the feedback for computing the fitness of
the individual in the genetic algorithm. In this paper, we
propose two following strategies to reduce the computation
time of the GA: (i) reducing population size of the genetic al-
gorithm after some generations; and (ii) reducing the fitness
computation time of individuals in the genetic algorithm.
To reduce fitness computation time of each individual, the
following techniques are employed: (i) progressive sampling
for finding the (near) optimal sample size of the training
data; and (ii) parallelization of individual fitness computa-
tion in each generation. The rest of this paper is organized
as follows. Section 2.1 introduces some backgrounds on ge-
netic algorithms, progressive sampling, and related work of
feature selection for NER using genetic algorithms. Section
3 describes our improved genetic algorithm in optimizing
the set of features for NER system. Experimental results
are given and discussed in Section 5. Finally, Section 6 con-
cludes the paper and highlights some possible extensions of
the work in this paper.

11

2. BACKGROUND

2.1 Genetic algorithm in feature selection
A genetic algorithm [3] is a methodology for solving op-

timization problems based on natural selection. In a GA,
a population of strings, which encodes candidate solutions
(called individuals) to an optimization problem, evolves to-
ward better solutions. Each individual is evaluated by a fit-
ness function, which measures the quality of its correspond-
ing solution. The evolution usually starts from a population
of randomly generated individuals. In each generation, mul-
tiple individuals are selected from the current population
(based on their fitness), and modified (recombined and pos-
sibly randomly mutated) to form a new population. The
new population is then used in the next iteration of the al-
gorithm. Commonly, the algorithm terminates when either
a maximum number of generations has exceeded, or a sat-
isfactory fitness value has been reached. GAs have recently
been used in feature selection [8, 6, 11]. Each feature subset
is represented by an individual in GA and is encoded in a
string of bits. The length of string corresponds to the to-
tal number of features considered in the task. Bit’s value 1
means the feature is selected and 0 if otherwise. The basic
flowchart of the GA system for feature selection is shown
in Fig.1 below. One of the main problems of GAs for fea-

Figure 1: The flowchart of the GA for feature selec-
tion.

ture selection in NER task is that its run time complexity
is usually extremely high. This is because the individual
fitness computation of the GA, in this case, is very time
consuming. The fitness computation time for each individ-
ual is the total time of training the system (using the feature
set induced by the individual), testing it on the test set of
data, and computing the system’s accuracy. To reduce the
time of computing the fitness of individuals, Lanzi [8] intro-
duced inconsistency rate to evaluate the fitness of individuals
in the population independently from a learning algorithm.
The inconsistency rate specifies to what extent the reduced
data still represents the original dataset and can be consid-
ered a measure of how much inconsistent the data become
when only a subset of attributes is considered. However,
such learning algorithm independent approach would miss
the chance to discover the feature set that is suitable for
the bias of the chosen learning algorithm. Umamaheswari
and Radhamani [13] used fuzzy rough set and GA for fea-
ture selection. They applied a Rough set method to select

an optimal feature subset and then applied a GA to select
another one. The union of these two subsets is used for clas-
sification. The classification consists of multi linear discrim-
inant analysis and support vector machines. Classification
is done on the base of parameter extracted by gray level co-
occurrence matrix and histogram texture feature extraction
method. Parsi et al. [11] proposed swap training method in
a genetic algorithm for feature selection in a face recogni-
tion system. K-Nearest Neighbor is used as the classifying
algorithm in this approach. In each iteration of the genetic
algorithm, the system switches the role of training and test
data in order to prevent premature convergence to local min-
imums. Obtained results from implementing the proposed
technique on Yale Face database showed performance im-
provement of the proposed GA in selecting proper features.
Some FS approaches (e.g., [4, 5, 14]) use local search oper-
ations for speeding up the convergence of GA. The mutual
information between each pair of features is used in [4] as
an independent measure for feature ranking in classification
tasks. They perform the local search operations in GA by
computing the mutual information between each pair of fea-
tures, which demands excessive computation. Zhu et al. [14]
proposed a GA for gene selection, which uses information
gain (IG) for local search operations that is sensitive for the
real-valued continuous feature set. In this paper, we propose
a method to reduce the fitness computation time of an indi-
vidual by reducing the sample size of the training data set,
using progressive sampling [12], which is introduced next.

2.2 Progressive Sampling
Given a large data set and a classification learning algo-

rithm, Progressive Sampling (PS) takes gradually increasing
portions of the available data as the sample until the system
accuracy no longer improves. At this point, the Optimal
Sample Size (OSS) is achieved. It has been shown that the
technique is remarkably efficient compared to using the en-
tire data [12]. In progressive sampling, a learning curve (see
Fig.2) is used to depicts the relationship between sample
size and model accuracy [12]. The horizontal axis in Fig. 2
represents the sample size and the vertical axis represents
the accuracy of the model. Most learning curves typically
have steeply sloping portion early in the curve, and a plateau
late in the curve. In a well-behaved learning curve, progres-
sive sampling will stop at a size equal to or slightly larger
than the OSS corresponding to the optimal system accuracy.
However, finding the OSS is not simple. Progressive sam-

Figure 2: Learning Curves and Progressive Samples.

pling is most efficient when the starting sample size is closed
to the OSS. The less the information divergence between the
starting sample and the whole data set, the more efficient it
is. Gu et al. [1] proposed a method for finding the Statis-
tical Optimal Sample Size by defining an information-based
measure of Sample Quality. This sample quality is obtained

12

Table 1: Features for Named Entity Recognition

Index Feature group Feature type Position

1
Context

word 0, 1, -1, 2, -2
2 wordPair (-1,0), (0,1), (-1,1)

3
Part-of-Speech

pos 0, 1, -1, 2, -2
4 posPair (-1,0), (0,1), (-1,1)

5

Orthography

Prefix 0, 1, -1, 2, -2
6 Suffix 0, 1, -1, 2, -2
7 LengthOfWord 0, 1, -1, 2, -2
8 Capitalization 0, 1, -1, 2, -2
9 DigitAndSymbol 0, 1, -1, 2, -2
10 IsUrl 0, 1, -1, 2, -2
11 AllLowerCase 0, 1, -1, 2, -2
12 AllCapitalization 0, 1, -1, 2, -2
13 StopWord 0, 1, -1, 2, -2

14 Combination PrevPosAndCWord (-1,0)

15
Dictionary

InPerDict 0, 1, -1, 2, -2
16 InLocDict 0, 1, -1, 2, -2
17 InOrgDict 0, 1, -1, 2, -2

18
Statistics

InfrequentWord 0, 1, -1, 2, -2
19 Bigram (-1,0)

20 Position FirstWordOfSentence 0, 1, -1

by measuring the information divergence between the sam-
ple and the whole data set. The method of Gu et al. [1] will
be used in our research to find the optimal sample size of the
training data, which will be discussed in details in Section
3.2.

3. THE IMPROVED GENETIC ALGORITHM
IN FEATURE SELECTION FOR NER

The NER task considered in this research is to recognize
Person, Organization, Location name entities from English
texts. By investigating different researches on NER, a set
of 20 feature types have been proposed by us. Each feature
type is considered in the window size of five. This feature
set is depicted in Table 1 above. In Table 1, position 0
means the current word; positions ±1, ±2 mean the word
at the position ±1, ±2 relative to the current word. Since
some feature types do not need to be considered at some
specific positions in the window, the total features to be
considered in our NER task is 88. The size of the search
space (feature space) of GA is therefore 288 (all possible
subset of 88 features).

As mentioned in Section 1, the size of feature’s subsets is
not proportional to the accuracy of the learning algorithm.
Therefore, finding an optimal feature subset is an optimiza-
tion problem of multiple objectives. To evaluate the fitness
of an individual in the population (a feature subset), the
following fitness function is used in our GA:

Fitness(indi) = w1 ∗
total(indi)

len(indi)
+w2 ∗accuracy(indi) (1)

where indi is the ith individual in the population; total(indi)
is the total number of features in the feature subset (or the
total number of values 1 in the individual i); len(indi) is
the total number of features (or the length of the individ-
ual i); accuracy(indi) is the accuracy of the NER system
when the feature subset represented by the individual i is
used. Weights w1 and w2 are positive numbers such that
w1 + w2 = 1. In our experiments, w1 and w2 are tuned
as 0.1 and 0.9, respectively, indicating that the accuracy is
more important than the number of features being used. As
aforementioned, the main objective of this research is to re-
duce the computation time of the GA in finding the optimal
feature subset for NER. In our proposed approach, this is
done by two strategies:

1. To reduce population size of the GA after some gener-

ations;

2. To reduce the fitness computation time spent on indi-
viduals in GA.

These strategies are described as follows.

3.1 Reducting Population Size of the GA
Reducing population size will reduce the computation time

dramatically. Since the population after many generations
will converge, removing reasonably some individuals from a
generation will not reduce the average fitness of the popu-
lation. In order to do that, our system needs to consider
each individual is bad or not. Let fitij is the fitness of the
individual j at generation i; fiti is the average fitness of
the population at generation i; the operator E denotes the
average value of fitij . Then E(fitij) = fiti. The standard
deviation of a fitness fitij is calculated by the following for-
mula:

σ(i) =

√
E[(fiti − fitij)]2 (2)

An individual fij in generation i is considered as bad if its
fitness is smaller than fiti − σ(i). In our approach, after N
generations (N is determined by testing different values in
our experiments), the population at the next generation will
be the population at the current generation after removing
its bad individuals. Therefore, the population size at the
next generation is:

pSize(i+ 1) = pSize(i)− numBadIndividuals(i) (3)

In the above formula, pSize(i) is the population size at gen-
eration i; numbadIndividuals(i) is the number of bad indi-
viduals at generation i.

3.2 Reduction of Individual Fitness Compu-
tation Time

To reduce the fitness computation time of individuals, the
following techniques are applied: (i) progressive sampling
through generations of GA; (ii) parallel computing the fit-
ness of individuals in each generation.

3.2.1 Progressive sampling through generations of
GA

In our system, the fitness of an individual depends on the
accuracy of the NER system when using the feature sub-
set corresponding to this individual. To compute this accu-
racy, a training data set is used in a machine learning algo-
rithm with the feature subset to produce a training model.
The accuracy is computed based on the recognition result
of NER model on the testing data. However, the training
time on a large training data set is very time consuming.
Our proposed solution to this problem is to use Progressive
Sampling [1], a method to reduce the training data without
losing accuracy. As mentioned in Section 2.2, Gu et al. [1]
developed a method for finding the Statistical Optimal Sam-
ple Size (SOSS) by defining an information-based measure
of Sample Quality. This method is applied to our research
to find the optimal sample size from the training data set.
Our NER data set contains words with their tags. Let D
is the training data set, S is a sample set from the training
data set D, Jk(S,D) is the information divergence between
D and S based on a feature k. These features are also the
ones used in the machine learning algorithm for NER task.

13

Jk(S,D) is computed by the following formula:

Jk(S,D) =

c∑
j=1

(pSj − pDj)log
pSj

pDj
(4)

in which pij is the probability of occurrence of the jth value
in population i (here the population i can be the sample set
S or the whole training data set D); c is all possible values of
the feature k. The average difference in information between
S and D is:

J =
1

f
×

featf∑
k=feat1

(Jk(S,D)) (5)

in which f is the total numbers of features being used. The
sample quality of S in the training set D of Gu et al. [1]’s
system is measured by e−J . To calculate the SOSS of D, Gu
et al. [1] set n sample sizes Si spanning the range of [1, N]
and compute the corresponding qualities Qi (i = 1, 2, ..., N).
They then draw a sample quality curve (relationship be-
tween sample size and sample quality) using these (Si, Qi)
points. The SOSS is estimated using the curve. To calcu-
late samples’quality, upon scanning each sample, a random
number r uniformly distributed on [0.0, 1.0) is generated. If
r < Si/N, then corresponding statistics (by counting a cate-
gorical value or binning a numerical value) are gathered for
the ith sample. In our system, the quality Qi of a sample set
of size Si is evaluated by measuring the F-score of the NER
system when using this sample set. The algorithm to find
relationship between sample size and sample quality based
on Gu et al. [1]’s algorithm is shown below. In our algo-

Algorithm 1: The SOSS algorithm to find the starting
sample size.

Input: The training data D of size N ; n sample sizes
S1, S2, ..., Sn; Si ∈ [1, N]
Output: n pairs (Si, Qi) represent the relation between
sample size and sample quality

1. foreach word k in D(k ∈ [1, N]) do
/* Update the occurrence times of each

feature’s value in D */

foreach sample set i (with the size Si) do
r ← a random real value between 0.0 and 1.0.

if (r < Si/N) then
update corresponding statistical measure for all
features of sample i

2. foreach sample set i do
calculate its Qi and output (Si, Qi);

rithm, S1 is the sample size at generation 0; Sn is the size
of the entire data set. Support that n0 is the sample size at
generation 0 (S1 = n0), then the sample size Si at genera-
tion i is min(N,n0 ∗ ai), in which N is the size of training
data, a is the increasing data rate. n0 is defined manually in
our system. a is calculated such as n0 ∗ an is approximately
equal to N . After calculating all pairs (Si, Qi), the SOSS
is extracted by getting the last sample size returned by the
progressive sampling process.

4. OUR PROPOSED GENETIC ALGORITHM
FOR NER

The improved GA for feature selection is shown in Algo-
rithm 2 below. The algorithm terminates when the popula-
tion contains only one individual.
The function parallelComputeFitness in the above algorithm
is shown in Algorithm 3.
In the function parallelComputeFitness mentioned above,
the fitness of each individual in the population is only com-
puted when it is not in the hashMap. This action is used to
prevent recomputing the fitness of an individual if is already
computed in the previous generation.

5. EXPERIMENTS AND RESULTS
The CoNLL-2003 data set is used in our experiment. This

is the data set that is commonly used to evaluate the per-
formance of different language-independent NER systems,
offered by the Message Understanding Conferences (MUC).
The training and testing data sets consist of approximately
116, 000 words and 40, 000 words, respectively. Four types of
named entities which are concentrated in the CoNLL-2003
data set are persons, locations, organizations and names of
miscellaneous entities that do not belong to the previous
three groups. Maximum Entropy is used in our experiment
as the machine learning method for NER. The F-score of the
NER system when using the entire feature set (88 features)
is 91.12%. The running time of the MaxEnt algorithm for
this data set is 21s.
Our GA was configured with the following parameters:

• Maximum generation of the GA:maxGeneration = 40

• Mutation rate: mutationThresholdm = 0.05

• Crossover rate: crossoverThresholdc = 0.9

After each generation, the sample size increases 1.004 times
(increasing data rate a = 1.004). The process of measur-
ing the fitness of individuals was computed in parallel in
4 threads. The initial population size startSize is 19, 000
words. This value is computed by the progressive sampling
process described in Section 3.2. Since the genetic algorithm
uses many random processes, different runs of GA will give
different outputs. Therefore, our experiments were carried
out five times to objectively evaluate our GA. The average
number of features in five time running are 37 features; the
average F-score is 94.58%; and the average running time
is 1355 minutes. It shows that the optimal feature subset
returned by our GA is smaller than the original feature set
and provides better performance (the F-score increases from
91.12% to 94.58%). There are several works on feature sub-
set selection for the NER task using GA (e.g., [2, 4, 6]).
However, as far as we know, only [6] used the same data
set with us. Kitoogo et al. [6] proposed a multi-objective
genetic algorithm to select the best features from domain in-
dependent features with a maximum entropy model. Their
experiments with the CoNLL-2003 data set obtained the F-
score of 90.81%. Some other works on automatic feature
subset selection for the NER task that used the same data
set are [7, 9]. The feature induction method for CRFs in [9]
achieved the performance of 89%. Klinger and Friedrich [7]
proposed filtering methods using information gain or χ2 as
well as an iterative approach for pruning features with low
weights. Their experiments shown that with only 3% of the

14

Algorithm 2: The improve GA for feature selection.

Input: Training data D; all features
featureNames;crossover rate c; mutation rate m;
increasing data rate a; maximum generation of the GA
maxGeneration.
Output: The optimal feature subset

1. Compute the starting sample size by using the
progressive sampling process described in Section
III.B. startSize = computeSOSS(D,S1, S2, ..., Sn)

2. Initialize population P of startSize individuals. Each
individual corresponds to a set of randomly selecting
features in the set featureNames. PopulationP =
createPopu(startSize, featureNames)

3. Create a starting sample set from the training data
D, with the size startSize
dataTrain = sampling(D, startSize)

4. Compute parallelly fitness of individuals in the
population and push them on a hashmap in order to
retrieve them easily
parallelComputeFitness(P,dataTrain,dataTest)

5. Select the best individual and recompute its fitness
using the training data set D. The fitness of the best
individual is recomputed since the previous fitness is
computed from a subset of the training data, thus it
may not be the real fitness of this individual.
Chromosome chmax = getBest(P,D)

6. int k=0;

while (true) do
k++;

// move to the next generation

if (k > maxGeneration) then
break;

// Increase the sample size

dataTrain = sampling(D,dataTrain.size()*a);

// Compute the new population size (see

Section III.A)

newSize = computeNewSize(P);

// Crossover, mutate to create new

population

P = newGeneration(P,newSize);

parallelComputeFitness(P,dataTrain,dataTest);

Chromosome ch = getBest(P,D);

if (ch.fitness > ch max) then
ch max = ch;

7. return ch max.Feature;

Algorithm 3: The parallelComputeFitness function.

Input: A population Popu; training data set dataTrain;
testing data set dataTest
for (Chromosome ch:Popu) do

/* Check whether the fitness of the

individual ch is already in hashMap */

if (fitnessHashMap.keySet().contains(ch)) then
ch.fitness= fitnessHashMap.get(ch);

else
ch.fitness=computeFitness(ch,
dataTrain,dataTest);

original number of features a 60% inference speed-up is pos-
sible, whereas the F1 measure decreases only slightly (0.57%
from approximately 88%). Our GA was also compared with
different installations of GA, using the CoNLL-2003 data
set:

1. running the normal GA with the MaxEnt algorithm
(without the progressive sampling and parallel com-
puting) and the population size = 40;

2. running GA with the MaxEnt algorithm, using parallel
computing (without the progressive sampling) and the
population size = 40;

3. running GA with the MaxEnt algorithm, using the
progressive sampling (without parallel computing);

4. running GA with the MaxEnt algorithm, using the
progressive sampling and parallel computing. The av-
erage values of five time running shown in Table 2 was
used in this case.

Experimental results in Table 2 show that the progressive
sampling can efficiently reduce the computational time of
GA, even when the parallel computing process is not used.
When using the parallel computing process, the computa-
tional time can reduce further, however, it does not inverse
proportionally to the number of threads being used.

Comparing the feature set returned by different instal-
lations of GA.

As mentioned above, different runs of the same GA can
give different outputs since the generic algorithm uses many
random decisions during its evolutionary process. Therefore,
we compared the feature sets returned by 5 running times of
our proposed GA and detected the common features shared
among these feature sets (Table 3). These common features
can be considered as the most important features from the
set of 88 features proposed by us. The more times a fea-
ture appearing in feature sets, the more important it can
be. One feature that never appears in all result feature
sets is PrevPosAndCWord. It indicates that this feature is
not important in the NER task. The features shared among
three other installations of genetic algorithm (MaxEnt +
GA, MaxEnt + GA + parallel, MaxEnt + GA + sampling)
are Bigram, Capitalization, CurrentWord, DigitAndSymbol-
Prev, InfrequentWordNext, Next2InPerDict, PosTag.
By looking at the feature sets returned by different instal-
lations of GA, we found that Bigram, Word, Capitalization,

15

Table 2: Experimental results when using different
installations of GA

Run
MaxEnt
+ GA

MaxEnt
+ GA +
parallel

MaxEnt
+ GA
+ PS

MaxEnt
+ GA
+ PS

+ parallel
#features 37 25 41 37

F-score(%) 94.58 93.75 94.41 93.67

Running time
(in minute) 1355 389 461 322

Table 3: Shared features returned by 5 time running
of our proposed GA

Sharing times Shared features
5 AllLowerCase, CurrentWord, FirstWord

4

Bigram, DigitAndSymbolPrev,
PrevInLocDict, InfrequentWordPrev2

IsUrl, StopWord, Suffix, LengthOfWord,
LengthOfWordNext, LengthOfWordPrev2,

3
Capitalization, PosTagPrev2, PrefixPrev2

Prev2InPerDict, PrevInOrgDict,
PrevInPerDict, WordPair, SuffixNext2

DigitAndSymbolPrev, InfrequentWord, PosTag, InPerDict
are important features in the NER task.

6. CONCLUSION AND FUTURE WORK
This paper focuses on implementing a genetic algorithm

for selecting an optimal feature subset that is used in Max-
imum Entropy classifier for NER task. Several strategies
have been proposed to reduce the computation time of GA,
including: (i) reducing population size after some genera-
tions; (ii) parallel computing the fitness of individuals in
each generation; and (iii) progressive sampling for finding
the optimal sample size of the training data. Experimen-
tal results show that our GA can generate a feature sub-
set which is much smaller than the original one, but it can
provide a higher accuracy for NER task. In addition, our
improved GA run three times faster than the basic GA,
whereas the accuracy of the optimal feature subset of the
improved GA does not decrease compared to the basic one.
Our future work is to find other strategies to reduce compu-
tation time of GA, such as improving the method to com-
pute the fitness of individuals in GA. Instead of computing
the real fitness of individuals, these values can be predicted
based on the fitness of individuals in previous generations of
GA.

7. REFERENCES
[1] B. Gu, B. Liu, F. Hu, and H. Liu. Efficiently

determining the starting sample size for progressive
sampling. In Proceedings of the 12th European
Conference on Machine Learning, EMCL ’01, pages
192–202, London, UK, 2001. Springer-Verlag.

[2] M. Hasanuzzaman, S. Saha, and A. Ekbal. Feature
subset selection using genetic algorithm for named

entity recognition. In Proceedings of the 24th Pacific
Asia Conference on Language, Information and
Computation, PACLIC 24, Tohoku University, Japan,
4-7 November 2010, pages 153–162, 2010.

[3] J. H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
MI, USA, 1975.

[4] J. Huang, Y. Cai, and X. Xu. A hybrid genetic
algorithm for feature selection wrapper based on
mutual information. Pattern Recogn. Lett.,
28(13):1825–1844, Oct. 2007.

[5] M. M. Kabir, M. Shahjahan, and K. Murase. Involving
new local search in hybrid genetic algorithm for
feature selection. In ICONIP (2), volume 5864 of
Lecture Notes in Computer Science, pages 150–158.
Springer, 2009.

[6] F. Kitoogo, V. Baryamureeba, and G. De Pauw.
Towards domain independent named entity
recognition. In Strengthening the Role of ICT in
Development, pages 38–49, Kampala, Uganda, 2008.
Fountain Publishers, Fountain Publishers.

[7] R. Klinger and C. M. Friedrich. Feature subset
selection in conditional random fields for named entity
recognition. In RANLP, pages 185–191. RANLP 2009
Organising Committee / ACL, 2009.

[8] P. Lanzi. Fast feature selection with genetic
algorithms: a filter approach. In Evolutionary
Computation, 1997., IEEE International Conference
on, pages 537–540, Apr 1997.

[9] A. McCallum. Efficiently inducing features of
conditional random fields. In Proceedings of the
Nineteenth Conference on Uncertainty in Artificial
Intelligence, UAI’03, pages 403–410, San Francisco,
CA, USA, 2003. Morgan Kaufmann Publishers Inc.

[10] T. Pahikkala, A. Airola, and T. Salakoski. Speeding up
greedy forward selection for regularized least-squares.
In The Ninth International Conference on Machine
Learning and Applications, ICMLA 2010, Washington,
DC, USA, 12-14 December 2010, pages 325–330, 2010.

[11] A. Parsi, M. Salehi, and A. Doostmohammadi. Swap
training: A genetic algorithm based feature selection
method applied on face recognition system. World of
Computer Science and Information Technology
Journal, pages 125–130, 2012.

[12] F. Provost, D. Jensen, and T. Oates. Efficient
progressive sampling. In Proceedings of the Fifth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’99, pages 23–32,
New York, NY, USA, 1999. ACM.

[13] J. Umamaheswari and G. Radhamani. A hybrid
approach for classification of dicom image. World of
Computer Science and Information Technology
Journal (WCSIT), 1(8):364–369, 2011.

[14] Z. Zhu, Y.-S. Ong, and M. Dash. Markov
blanket-embedded genetic algorithm for gene selection.
Pattern Recognition, 40(11):3236 – 3248, 2007.

16

