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ABSTRACT 

This paper presents a feature selection approach for named entity 
recognition using genetic algorithm. Different aspects of genetic 
algorithm including computational time and criteria for 
evaluating an individual (i.e., size of the feature subset and the 
classifier’s accuracy) are analyzed in order to optimize its 
learning process. Two machine learning algorithms, k-Nearest 
Neighbor and Conditional Random Fields, are used to calculate 
the accuracy of the named entity recognition system. To evaluate 
the effectiveness of our genetic algorithm, feature subsets 
returning by our proposed genetic algorithm are compared to 
feature subsets returning by a hill climbing algorithm and a 
backward one. Experimental results show that feature subsets 
obtained by our genetic algorithm is much smaller than the 
original feature set without losing of predictive accuracy. 
Furthermore, these feature subsets result in higher classifier’s 
accuracies than that of the hill climbing algorithm and the 
backward one   

Categories and Subject Descriptors 

G.2.1 [Combinatorics] - Combinatorial algorithms, Counting 
problems  

General Terms 
Algorithms, Measurement, Performance, Design, Reliability, 
Experimentation, Languages, Theory. 

Keywords 
Optimizing, genetic algorithm, feature selection, named entity 
recognition 

1. INTRODUCTION 
Named Entity Recognition (NER) is the task of locating and 
classifying atomic elements in text into predefined categories 
(e.g., people, organizations, locations, expressions of time, 
quantities, etc.). NER is useful in many applications such as 
search engine, question-answering system, etc. 

 

Most NER’s systems concentrate on machine learning 
approaches, whose performance relies on features being used. 
Selecting a subset of good features is an optimization problem of 
multiple objectives, such as number of features and accuracy.  
Using a small feature subset requires less computational time 
than using a larger one. However, the system’s accuracy is lower 
than using a larger, suitable set of features. Another problem is, 
using more features increases the system complexity, but does 
not always increase the system’s accuracy. A bad feature may 
even degrade the performance of the system. Most machine 
learning approaches for NER determine the features manually.  
In this paper, we propose a genetic algorithm (GA) to 
automatically select a minimal subset of features that can 
produce high accuracy for the NER system.  Different aspects are 
discussed in order to optimize the GA learning process.  

The rest of this paper is organized as follows. Section 2 
introduces related work of feature selection using GA and the 
contribution of this paper.  Section 3 describes our approach to 
apply GA in optimizing the set of features for NER system. 
Experimental results are discussed in Section 4. Finally, Section 
5 concludes the paper and indicates some future research 
directions. 

2. RELATED WORK 

Feature selection is the process of selecting an optimal subset 
from original features. In a NER system, an optimal subset of 
features is the smallest subset that most contribute towards 
accuracy. The smaller size of the feature subset is, the faster the 
NER system runs. However, the size of feature’s subsets is not 
proportional with the accuracy. Therefore, this is an optimization 
problem of multiple objectives.  

Carrying out an exhaustive search in the feature space has a 
high computational cost, since the total search space for M 
features is 2M, which is a NP-hard problem. Therefore, heuristic 
search is often used to deal with this problem.  

Two approaches often used in single solution are forward 
selection [15,16] and backward selection [1,8]. The forward 
selection starts with no feature in the model. It tests the addition 
of each feature using a chosen model comparison criterion and 
adding the feature (if any) that improves the model the most. 
This process repeats until none improves the model. The 
backward selection starts with all candidate variables. It tests the 
deletion of each variable using a chosen model comparison 
criterion and deleting the variable (if any) that improves the 
model the most by being deleted. This process repeats until no 
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further improvement is possible. The disadvantage of these 
strategies is, the searching process cannot go back to previous 
features. Therefore, if a feature is already removed, it cannot be 
reconsidered anymore. This treatment is not good in case some 
features are correlated in recognizing an entity.  

Two methods often used in multiple solutions are filter and 
wrapper. Filter techniques [3,6] evaluate the relevance of 
features and rank them based on certain statistical criteria. The 
features with the highest ranking values are selected and the low 
scoring features are removed. Earlier filter-based methods 
evaluated features in isolation and did not consider correlation 
between them. Recently, methods have been proposed to select 
features with minimum redundancy. The methods proposed use a 
minimum redundancy-maximum relevance feature selection 
framework. They supplement the maximum relevance criteria 
along with minimum redundancy. 

Wrapper methods [5,9,18] use a classifier to score feature 
subsets based on their predictive power. SVM-RFE (Support 
Vector Machine Recursive Feature Elimination) [18], a wrapper 
method applied to cancer research, uses a backward feature 
elimination scheme to recursively remove insignificant features 
from subsets of features. In each recursive step, it ranks the 
features based on the amount of reduction in the objective 
function. Bottom ranked features are then eliminated from the 
results. Many experimental results have proved that the wrapper 
methods can yield better performance, although they have the 
disadvantage of high computational cost. 

Genetic algorithm [4,10,12] is a multiple solution that is 
often considered in feature selection. It can be implemented as 
either a filter approach or a wrapper one. Feature selection using 
genetic algorithm is performed by combining different objectives 
into one formula. Genetic algorithm does not evaluate each 
feature separately, it can thus prevent the problem in forward and 
backward methods. The disadvantage of genetic algorithm is that 
its complexity is very high. The total number of feature subsets it 
has to consider is 2M in the worst case with M is the number of 
features. More ever, computing the fitness of an individual is 
also time consuming. In case of NER, it is the total time of 
training the system, testing it with another set of data, and 
computing the system’s accuracy.  

To reduce the time of computing the fitness of individuals, 
Lanzi [12] introduced inconsistency rate to evaluate the fitness of 
individuals in the population independently from a learning 
algorithm. The inconsistency rate specifies to what extent the 
reduced data still represents the original dataset and can be 
considered a measure of how much inconsistent the data become 
when only a subset of attributes is considered.  

Umamaheswari and Radhamani [19] used fuzzy rough set 
and genetic algorithm for feature selection. They applied a 
roughest algorithm to select an optimal feature subset and then 
applied a genetic algorithm to select another one. The union of 
these two subsets is used for classification. The classification 
consists of multi linear discriminent analysis and support vector 
machine. Classification is done on the base of parameter 
extracted by gray level co-occurrence matrix and histogram 
texture feature extraction method.  

Parsi et al. [14] proposed swap training method in a genetic 
algorithm for feature selection in a face recognition system. K-

Nearest Neighbor is used as the NER algorithm in this approach. 
In each iteration of genetic algorithm, the system switches the 
training and test data with each other in order to prevent 
converging to local minimums.  Obtained results from 
implementing the proposed technique on Yale Face database 
show performance improvement of genetic algorithm in selecting 
proper features.  

This paper is a research on using GA to select a good subset 
of features used in named entity recognition.  Background of GA 
and NER algorithms used in GA to evaluate the fitness of 
individuals are introduced next. 

3. BACKGROUND 

3.1 Genetic algorithm 

A genetic algorithm [7] is a method for solving optimization 
problems that is based on natural selection. In a genetic 
algorithm, a population of string, which encodes candidate 
solutions (called individuals) to an optimization problem, evolves 
toward better solutions. Each individual is evaluated by a fitness 
function, which measures the quality of its corresponding 
solution. The evolution usually starts from a population of 
randomly generated individuals. In each generation, multiple 
individuals are selected from the current population (based on 
their fitness), and modified (recombined and possibly randomly 
mutated) to form a new population. The new population is then 
used in the next iteration of the algorithm. Commonly, the 
algorithm terminates when either a maximum number of 
generations has been produced, or a satisfactory fitness level has 
been reached for the population. If the algorithm has terminated 
due to a maximum number of generations, a satisfactory solution 
may or may not have been reached. 

In GA for NER, each feature subset is an individual in a 
population and is encoded by a string of bits. The length of string 
corresponds to the total number of features considered in NER 
task. Bit’s value 1 means the feature is selected and 0 if vice 
versa.  

The basic flowchart of the GA system for feature selection is 
shown in Figure 1 below. 

 

Figure 1.  The flowchart of the genetic algorithm for feature 
selection 
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The fitness of an individual in GA is evaluated by using 

machine learning algorithm for NER. In our research, two 
machine learning algorithms are tested, which are Conditional 
Random Fields (CRF) and k-Nearest Neighbor (kNN). A brief 
introduction of CRF and kNN is introduced next. 

3.2 Conditional Random Fields 

3.2.1 Definition of Conditional Random Fields 

The theory of Conditional Random Fields is proposed by Lafferty 
et al. [11].  Conditional Random Fields are undirected graphical 
models trained to maximize a conditional probability. A linear-
chain CRF with parameters  = {, ...} defines a conditional 
probability for a state (or label) sequence y = y1 … yT given an 
input sequence x = x1 …xT (in which T is the length of sequence) 
to be  
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where Zx is the normalization constant that makes the probability 
of all state sequences sum to one; fk(yt-1,yt,x,t) is a feature 
function which is often binary-valued, but can be real-valued; k 
is a learned weight associated with feature fk. Large positive 
values for k indicate a preference for such an event, while large 
negative values make the event unlikely.  

3.2.2 Training CRF 

The weights of a CRF,  ={, ...}, are a set to maximize the 
conditional log-likelihood of labeled sequences in some training 
set, D = {(x,1)(1),(x,1)(2), …, (x,1)(N)}: 
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in which the second sum is a Gaussian prior over parameters 
(with variance ) that provides smoothing to help cope with 
sparesity in the training data. 

When the training labels make the state sequence 
unambiguous (as they often do in practice), the likelihood 
function in exponential models such as CRF is convex, so there 
are no local maxima, and thus finding the global optimum is 
guaranteed. It has recently been shown that quasi-Newton 
methods, such as L-BFGS, are significantly more efficient than 
traditional iterative scaling and even conjugate gradient [13].  

3.2.3 Inference in CRF 

Inference in CRF is to find the most probably state sequence y* 
corresponding to the given observation sequence x. 

)|(maxarg* * xypy y  

In order to find y*, one can apply the dynamic programming 
technique with a slightly modified version of the original Viterbi 
algorithm for HMMs.  

As far as we known, CRF is one of the best machine 
learning method for NER. The drawback of CRF is the high 
complexity of its learning algorithm. To recognize named entities 

from text, Stanford Named Entity Recognizer [17], written by 
Finkel and his colleges, is used in our system.  SNER is a CRF 
toolkit for segmenting and labeling named entities, written in 
Java. By using SNER, we can redefine feature sets and specify 
the feature templates in a flexible way. 

3.3 K_Nearest Neighbors 

K_Nearest Neighbor is one of simplest classifying algorithm. In 
kNN, the label of a new sample is determined by the major label 
of its nearest K training cases. The distance between two 
samples in our NER task is calculated as follow:  
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in which X and Y are two samples; xi and yi are values of feature 
i in the samples X and Y. 

Since the time to evaluate the goodness of a feature subset 
using in a machine learning algorithm for the NER task includes 
both the training and testing time, using kNN is often faster than 
most machine learning algorithms. This is because kNN does not 
have the training process; it only needs to calculate the distance 
between the new sample and other sample in the training data to 
get its nearest k training cases. However, the accuracy of kNN is 
often lower than modern classification algorithms such as CRF. 
Since GA requites fast fitness evaluation, kNN is a good 
candidate for NER in GA. Therefore, kNN will be integrated in 
our genetic algorithm for the NER task. 

In kNN, a word/phrase is recognized as a certain named 
entity (e.g., Person, Organization, Location) if its features’s 
values are similar to those values of majority neighbors in its k 
nearest neighbors.  

4. OPTIMIZING GENETIC ALGORITHM 
FOR FEATURE SELECTION 

In this section, we propose strategies to reduce the computational 
cost of GA without losing the optimality of the final solution. All 
features considered in our NER system are introduced next.  

4.1 Feature set 

The NER task considered in this research is to recognize Person, 
Organization, Location name entities from Vietnamese text. In 
solving this task, 21 feature types are considered, including: 
word, wordPair, firstSyllable, lastSyllable, 
isNumberOrTimeOrTimeMarker, initUpcaseWord, allCapWord, 
letterAndDigitWord, isPunctuation, isBracket, isQuotationMark, 
firstSentenceWord, inVnFamilyName, inVnGivenName, 
inVnMiddleName, inLocDict, inOrgDict, perIndicateNoun, 
locIndicateNoun, orgIndicateNoun, and pos. Vietnamese 
language is monosyllable. Its vocabulary has many compound 
words such as “bến tàupier”, “bến xecar park” in which the first 
syllable (e.g., “bếnparking place” ) is a large concept, whereas the 
second syllable is a specific kind of that concept (e.g., “xecar”). 
Another type of compound words (e.g., “tuyến đường route”, “mặt 
đườngroad”) has the last syllable is a concept (e.g., “đườngroad”), 
whereas the first syllable is an attribute of that concept (e.g., 
“tuyếnline”, “mặtface”). Therefore, we propose to use firstSyllable 
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and lastSyllable in our NER system to detect words belonging to 
the same group.  

In general, each feature type is considered in the window 
size of five (two words before the current word, the current word, 
and two words after the current word). However, since some 
feature types at certain positions have no meaning in the NER 
task, we restrict the feature’s positions as shown in Table 1.  

Table 1. Features for Named Entity Recognition 

Ind
ex 

Feature 
group 

Feature type Position 

1 word 0, ±1, ±2 

2 wordPair (-1 0), (0 1), 
(-1 1) 

3 firstSyllable (e.g., bến tàupier , bến 
xecar park) 

0, -1, -2 

4 lastSyllable (e.g., tuyến đường route, 
mặt đườngroad) 

0, -1, -2 

5 

 

Context 

isNumberOrTimeOrTimeMarker 
(e.g., 2.1, 21,  21/08/2012, 8/1995, 
6am, thángmonth, nămyear)  

0, ±1, ±2 

6 initUpcaseWord 0, ±1, ±2 

7 allCapWord 0, ±1, ±2 

8 letterAndDigitWord 0, ±1, ±2 

9 isPunctuation (e.g.,  . ? !) ±1, ±2 

10 isBracket ±1, ±2 

11 isQuotationMark ±1, ±2 

12 

Orthogr
aphy 

firstSentenceWord 0, -1, -2 

13 inVnFamilyName 0, ±1, ±2 

14 inVnGivenName 0, 1, 2 

15 inVnMiddleName 0, ±1, ±2 

16 inLocDict 0, ±1, ±2 

17 inOrgDict 0, ±1, ±2 

18 perIndicateNoun 0, ±1, ±2 

19 locIndicateNoun 0, ±1, ±2 

20 

Diction
ary 

orgIndicateNoun 0, ±1, ±2 

21 Part-of-
Speech 

pos 0, ±1, ±2 

 

In Table 1, position 0 means the current word; positions ±1, ±2 
mean the word at the position ±1, ±2 compared to the current 
word. Each feature is a combination of its feature type and its 
position. For example, there are five features with the feature 
type “word”, including prev2Word (the word before the previous 
word), prevWord (the previous word), curWord (the current 
word), nextWord (the next word), next2Word (the word after the 
next word), corresponding to positions -2, -1, 0, 1, and 2, 
respectively. Therefore, the total number of features needed to be 
considered in our GA is 92. 

The search space of GA is all possible combinations of these 
features, which is 292 in this case. The time to carry out an 

exhausted search in the GA space is equal to the time to evaluate 
the fitness of an individual multiplying by the total number of 
individuals. Therefore, reducing the search space and the time to 
evaluate the fitness of an individual are crucial problems in our 
genetic algorithm. 

4.2 Fitness Function 

As mentioned in Section 4.1, the time to evaluate the fitness of 
an individual in a genetic algorithm should be small. Normally, 
the fitness of an individual (corresponding to a feature subset) is 
evaluated by the NER system’s performance, which is F-score - a 
combination measure of Precision and Recall. The time to 
calculate this value is the total time of training and testing the 
NER system using 10-fold validation, which is quite long in most 
NER systems. To reduce the calculating time, instead of using F-
score, the error rate of the NER is used to evaluate the 
individual’s fitness1. It is easy to see that, the smaller the number 
of data items misclassified, the more suitable the feature subset.  

The focus of this paper is to find the smallest feature subset 
for which the NER system’s performance does not deteriorate 
below a certain level comparing to the highest one. Therefore, 
information about the size of the feature subset is also integrated 
into the fitness formula, which is shown below: 

Fitness(i)=w1*f/k+w2*n/ne 

in which i is the individual i in the population; f is the total 
number of features in the feature subset (or the total number of 
values 1 in the individual i); k is the total number of features (or 
the length of the individual i); n is the total words in the training 
set; ne is the number of words misclassified. w1 and w2 are 
weights of the size of the feature subset and the error rate of the 
classifier (w1 + w2 = 1). In our experiments, w1 and w2 are 
chosen as 0.2 and 0.8, respectively, meaning that the error rate is 
more important than the number of features being used. 

It is easy to see that the fitness is inversely proportional to 
the number of features selected and the error rate of the NER 
system. 

4.3 The proposed genetic algorithm 

To reduce computational time of our genetic algorithm, the 
following strategies are used: 

1. reduce individuals being visited 

2. reduce the time of computing the fitness of an 
individual 

3. prevent repeated fitness tests. 

Solution to the problem (2) has been discussed in Section 4.2. 
One solution for reducing individuals being visited is to keep the 
population size small. However, the system will quickly converge 
to a local optimal solution in this case. To deal with this 
problem, the population size is set to be large at the beginning 
and reducing by the time (after one half of generations), so that 
the system can explore the search space at the beginning and 
converge to some optimal solutions at the end. To reduce the 
computational time at the beginning when the population size is 

                                                             
1 The idea of using error rate to evaluate the individual’s fitness 

is inherited from [2]. 
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large, the data set using in GA is small at the beginning and 
increasing by the time (after one half of generations).   

To prevent repeated fitness tests, the individuals’ fitness is 
stored in the memory so that if those individuals appear in the 
future, the system does not need to re-evaluate them. This 
strategy is very important when the time to compute each fitness 
is long. One problem with this implementation is, when too 
many individuals are kept in the memory, the memory may be 
overflow, or it takes too long to find a specific individual. To 
prevent this problem, a fixed size of memory is used to store 
these individuals. The individual with lowest fitness will be 
removed from the memory when the memory is full. 

The improve GA for feature selection is shown in Figure 2 
below. The algorithm terminates when the population contains 
only one individual.  

 
Input:  Feature sets F = f1, f2, ..., fm 
    Data set D, initial data size iniD, 

initial population size N, crossover rate 
c, mutation rate m  

Output: The optimal feature subset  
Algorithm: 
1. Set population size curPopSize = N 
2. Set data size curDataSize = iniD. Get a data 

subset with the size curDataSize from the data 
set D as the current data set.  

3. Initialize population P of curPopSize 
individuals.  

4. Calculate the fitness of each individual in P, 
using the current data set. 

5. Set generation index G = 1 
Do 
a. Carry out selection, crossover, mutation 

operations, resulting in a new population 
P1  

b. If G = N/2 then   
i.curPopSize = N/2; N= curPopSize;  

ii.curDataSize  = 2  * curDataSize. Get 

a data subset with the size 
curDataSize from the data set D as the 
current data set. This subset does not 
contain the old data set in the 
previous step. 

iii.Update the fitness of old individuals 
in the current population by the 
formula:   
Fitness(i)= (oldFit(i)+ 

2 *newFit(i))/(1+ 2 ) 

in which Fitness(i) is the fitness of 
the individual i in the current 
population; oldFit(i) is the fitness 
of the individual i  in the old data 
set; newFit(i) is the fitness of the 
individual  i in the current data set. 
The weight of newFit(i) is increased 
by sqrt(2) to reflex the new size of 
the data set. The fitness of the 
individual i in the old data set is 
retrieved from previous runs. 

c. Calculate the fitness of new individuals 
in P1, using the current data set.  

d. Generate a new population P from P1, with 
population size curPopSize. In other 
words, the algorithm selects curPopSize 

individuals with the highest fitness in 
P1.  

e. Generation G = G + 1  
6. While(curPopSize>1) 
7. Return P 

Figure 2.  The improve GA for feature selection 

5. EXPERIMENTAL RESULTS 

As far as we know, there is no public data set available for the 
NER task in Vietnamese. Therefore, we have to create a new 
data set by our own.  Our data set are documents taken from 
newspaper websites on economics, politics, cultures and 
education that were annotated manually with seven labels B-per, 
I-per, B-loc, I-loc, B-org, I-org, and O (other). This data set 
consists of 8242 sentences among which 5881 sentences 
(consisting of 170230 words) were used as the training set and 
2361 sentences (consisting of 62000 words) were used as the test 
set.  

The GA system was tested on two machine learning 
algorithms for NER (CRF and kNN). By applying the GA 
learning process with a training set of 2176 sentences (consisting 
of  60218 words) and a test set of 1071 sentences (32416  
words), we obtained a feature subset. The whole training data set 
was then used to train the NER algorithms on that feature subset 
to obtain a prediction model.  The NER system’s error rate was 
calculated on the whole test set.   

In the learning process, a population size N was chosen at 
the beginning. The initial training data size was set to 232 
sentences (3000 words). The initial test data size was set to 121 
sentences (2000 words). After N/2 generation, the population 
size was reduced by a half (N = N/2). The test data size was 
increased by sqrt(2).   

After the optimal feature subset was obtained, the F-score of 
the NER system is calculated using this feature subset.  

The kNN algorithm was tested with the number of 
neighbors being equal to 15.  When using all features (92 
features), the F-score of the NER system was 91.66% for kNN 
and 92.33% for CRF. Experimental results when using GA-kNN 
and GA-CRF for feature selection are shown in Table 2 below. 
The final row of Table 2 displays the size of the feature subset 
returned by GA. 

Table 2. Experimental results when using GA-kNN and GA-
CRF for feature selection 

NER 
algorithm 

kNN CRF 

Initial 
population size 

16 32 64 16 32 64 

F-score of the 
NER system 

(%) 

92.93 92.79 92.65 94.23 94.23 94.23 

Number of 
features 

33 32 38 39 41 44 
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Experimental results in Table 2 prove that we can use a 
feature set smaller than the original one in the NER system 
without losing the system’s accuracy.  

The optimal subsets when using kNN are smaller than a half 
of the original feature set and give us higher accuracies than the 
original feature set. It indicates that several features in the 
original feature set are redundant. Furthermore, some features 
are even degraded the NER system’s accuracy. The best feature 
subset when using kNN is the subset of 33 features, generated by 
the GA with the initial population size of 16 individuals. The F-
score of the NER system in this case is 92.93%.  

The feature subsets returned by GA-CRF system are also 
smaller than a half of the original feature set. The F-score when 
using these subsets increase by approximately 2%, comparing to 
the accuracy when using the original data set.  The best feature 
subset in this case contains 39 features, resulting in the F-score 
of 94.23% of the NER system. It indicates that CRF provides 
higher accuracy than kNN. 

To evaluate the effect of GA to feature selection, two other 
feature selection methods were tested, which are hill climbing 
and backward ones. The hill climbing algorithm is a kind of 
forward selection. In the hill climbing algorithm, the initial 
feature is chosen randomly. Other features are considered to be 
added to the feature subset one by one. A feature is kept in the 
subset if the F-score of the NER system increases when it is 
added to the feature subset. The hill climbing algorithm 
terminates when no further improvements can be found. The 
backward selection works in the reverse direction. It starts with 
all variables and then continuously removes features that 
increase the error the most until no further improvements can be 
found.  

In our experiment with the hill climbing algorithm, kNN 
was used as the NER algorithm. Experimental results with the 
hill climbing algorithm are given in Table 3. Since the initial 
feature was chosen randomly, three different tests with the hill 
climbing algorithm gave us three different feature subsets.  

Table 3. Experimental results when using the hill climbing 
algorithm for feature selection 

Run 1 2 3
F-score of the NER 

system (%) 
91.21 91.58 91.50 

Number of features 17 11 9 

The sizes of feature subsets returned by the hill climbing 
algorithm in Table 3 are small. However, the F-scores of the 
NER system are lower than those of the feature subsets generated 
by GA. This is because the hill climbing algorithm does not 
consider the correlation between features. If a feature is removed, 
it cannot be reconsidered anymore. Therefore, the hill climbing 
algorithm may ignore good feature subsets in recognizing named 
entities. As a result, the F-score of the NER system in this case is 
not high. The best feature subset generated by the hill climbing 
algorithm consists of 11 features, corresponding to the F-score of 
the NER system of 91.58%.   

The backward algorithm starts with all features and then 
continuously removes features that reduce the F-score of the 
NER system the most. Experiments with the backward algorithm 

using kNN as the classifier result in a subset of 82 features, 
which is much larger than feature subsets produced by other 
algorithms considered in this paper. The F-score of the NER 
system in this case is 91.66%, approximately to the F-score of 
the NER system when using the hill climbing algorithm. 

It is interesting to see that our proposed features 
(firstSyllable and lastSyllable) appear in all optimal subsets 
returned by our experiments, meaning that they are important 
features in NER for Vietnamese text. 

Experiment results show that using GA in feature selection 
for NER task provides better results compared to hill climbing 
algorithm and backward algorithm. By using some strategies to 
reduce computational cost of GA, GA can be a potential solution 
for feature selection task. 

6. CONCLUSION AND FUTURE WORK 

In this paper, we have introduced a genetic algorithm to 
automatically select a minimal feature subset that can produce 
high accuracy for the NER system. To optimize the GA learning 
process, several strategies have been proposed, including: (i) 
change the population size and the data size during the GA 
learning process; (ii) reduce the time of computing the fitness of 
an individual; and (iii) prevent repeated fitness tests during GA 
learning process. Experimental results show that GA can 
generate a feature subset which is smaller than a half of the 
original one, but with a higher F-score of the NER system. In 
addition, GA provides better performance than the hill climbing 
and backward algorithms.  

Our future work is to find other strategies to reduce 
computation time of GA, such as improving the method to 
compute the fitness of individuals in GA. Instead of computing 
the real fitness of individuals, these values can be predicted 
based on the fitness of individuals in the previous generations of 
GA.   
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