
Automatic Feature Selection for Named Entity Recognition
Using Genetic Algorithm

Huong Thanh Le
Hanoi University of Science and Technology

Hanoi, Vietnam

huonglt@soict.hut.edu.vn

Luan Van Tran
Hanoi University of Science and Technology

Hanoi, Vietnam

tranvanluan7@gmail.com

ABSTRACT

This paper presents a feature selection approach for named entity
recognition using genetic algorithm. Different aspects of genetic
algorithm including computational time and criteria for
evaluating an individual (i.e., size of the feature subset and the
classifier’s accuracy) are analyzed in order to optimize its
learning process. Two machine learning algorithms, k-Nearest
Neighbor and Conditional Random Fields, are used to calculate
the accuracy of the named entity recognition system. To evaluate
the effectiveness of our genetic algorithm, feature subsets
returning by our proposed genetic algorithm are compared to
feature subsets returning by a hill climbing algorithm and a
backward one. Experimental results show that feature subsets
obtained by our genetic algorithm is much smaller than the
original feature set without losing of predictive accuracy.
Furthermore, these feature subsets result in higher classifier’s
accuracies than that of the hill climbing algorithm and the
backward one

Categories and Subject Descriptors

G.2.1 [Combinatorics] - Combinatorial algorithms, Counting
problems

General Terms
Algorithms, Measurement, Performance, Design, Reliability,
Experimentation, Languages, Theory.

Keywords
Optimizing, genetic algorithm, feature selection, named entity
recognition

1. INTRODUCTION
Named Entity Recognition (NER) is the task of locating and
classifying atomic elements in text into predefined categories
(e.g., people, organizations, locations, expressions of time,
quantities, etc.). NER is useful in many applications such as
search engine, question-answering system, etc.

Most NER’s systems concentrate on machine learning
approaches, whose performance relies on features being used.
Selecting a subset of good features is an optimization problem of
multiple objectives, such as number of features and accuracy.
Using a small feature subset requires less computational time
than using a larger one. However, the system’s accuracy is lower
than using a larger, suitable set of features. Another problem is,
using more features increases the system complexity, but does
not always increase the system’s accuracy. A bad feature may
even degrade the performance of the system. Most machine
learning approaches for NER determine the features manually.
In this paper, we propose a genetic algorithm (GA) to
automatically select a minimal subset of features that can
produce high accuracy for the NER system. Different aspects are
discussed in order to optimize the GA learning process.

The rest of this paper is organized as follows. Section 2
introduces related work of feature selection using GA and the
contribution of this paper. Section 3 describes our approach to
apply GA in optimizing the set of features for NER system.
Experimental results are discussed in Section 4. Finally, Section
5 concludes the paper and indicates some future research
directions.

2. RELATED WORK

Feature selection is the process of selecting an optimal subset
from original features. In a NER system, an optimal subset of
features is the smallest subset that most contribute towards
accuracy. The smaller size of the feature subset is, the faster the
NER system runs. However, the size of feature’s subsets is not
proportional with the accuracy. Therefore, this is an optimization
problem of multiple objectives.

Carrying out an exhaustive search in the feature space has a
high computational cost, since the total search space for M
features is 2M, which is a NP-hard problem. Therefore, heuristic
search is often used to deal with this problem.

Two approaches often used in single solution are forward
selection [15,16] and backward selection [1,8]. The forward
selection starts with no feature in the model. It tests the addition
of each feature using a chosen model comparison criterion and
adding the feature (if any) that improves the model the most.
This process repeats until none improves the model. The
backward selection starts with all candidate variables. It tests the
deletion of each variable using a chosen model comparison
criterion and deleting the variable (if any) that improves the
model the most by being deleted. This process repeats until no

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SoICT '13, December 05 - 06 2013, Danang, Viet Nam
Copyright 2013 ACM 978-1-4503-2454-0/13/12…$15.00.
http://dx.doi.org/10.1145/2542050.2542056

81

further improvement is possible. The disadvantage of these
strategies is, the searching process cannot go back to previous
features. Therefore, if a feature is already removed, it cannot be
reconsidered anymore. This treatment is not good in case some
features are correlated in recognizing an entity.

Two methods often used in multiple solutions are filter and
wrapper. Filter techniques [3,6] evaluate the relevance of
features and rank them based on certain statistical criteria. The
features with the highest ranking values are selected and the low
scoring features are removed. Earlier filter-based methods
evaluated features in isolation and did not consider correlation
between them. Recently, methods have been proposed to select
features with minimum redundancy. The methods proposed use a
minimum redundancy-maximum relevance feature selection
framework. They supplement the maximum relevance criteria
along with minimum redundancy.

Wrapper methods [5,9,18] use a classifier to score feature
subsets based on their predictive power. SVM-RFE (Support
Vector Machine Recursive Feature Elimination) [18], a wrapper
method applied to cancer research, uses a backward feature
elimination scheme to recursively remove insignificant features
from subsets of features. In each recursive step, it ranks the
features based on the amount of reduction in the objective
function. Bottom ranked features are then eliminated from the
results. Many experimental results have proved that the wrapper
methods can yield better performance, although they have the
disadvantage of high computational cost.

Genetic algorithm [4,10,12] is a multiple solution that is
often considered in feature selection. It can be implemented as
either a filter approach or a wrapper one. Feature selection using
genetic algorithm is performed by combining different objectives
into one formula. Genetic algorithm does not evaluate each
feature separately, it can thus prevent the problem in forward and
backward methods. The disadvantage of genetic algorithm is that
its complexity is very high. The total number of feature subsets it
has to consider is 2M in the worst case with M is the number of
features. More ever, computing the fitness of an individual is
also time consuming. In case of NER, it is the total time of
training the system, testing it with another set of data, and
computing the system’s accuracy.

To reduce the time of computing the fitness of individuals,
Lanzi [12] introduced inconsistency rate to evaluate the fitness of
individuals in the population independently from a learning
algorithm. The inconsistency rate specifies to what extent the
reduced data still represents the original dataset and can be
considered a measure of how much inconsistent the data become
when only a subset of attributes is considered.

Umamaheswari and Radhamani [19] used fuzzy rough set
and genetic algorithm for feature selection. They applied a
roughest algorithm to select an optimal feature subset and then
applied a genetic algorithm to select another one. The union of
these two subsets is used for classification. The classification
consists of multi linear discriminent analysis and support vector
machine. Classification is done on the base of parameter
extracted by gray level co-occurrence matrix and histogram
texture feature extraction method.

Parsi et al. [14] proposed swap training method in a genetic
algorithm for feature selection in a face recognition system. K-

Nearest Neighbor is used as the NER algorithm in this approach.
In each iteration of genetic algorithm, the system switches the
training and test data with each other in order to prevent
converging to local minimums. Obtained results from
implementing the proposed technique on Yale Face database
show performance improvement of genetic algorithm in selecting
proper features.

This paper is a research on using GA to select a good subset
of features used in named entity recognition. Background of GA
and NER algorithms used in GA to evaluate the fitness of
individuals are introduced next.

3. BACKGROUND

3.1 Genetic algorithm

A genetic algorithm [7] is a method for solving optimization
problems that is based on natural selection. In a genetic
algorithm, a population of string, which encodes candidate
solutions (called individuals) to an optimization problem, evolves
toward better solutions. Each individual is evaluated by a fitness
function, which measures the quality of its corresponding
solution. The evolution usually starts from a population of
randomly generated individuals. In each generation, multiple
individuals are selected from the current population (based on
their fitness), and modified (recombined and possibly randomly
mutated) to form a new population. The new population is then
used in the next iteration of the algorithm. Commonly, the
algorithm terminates when either a maximum number of
generations has been produced, or a satisfactory fitness level has
been reached for the population. If the algorithm has terminated
due to a maximum number of generations, a satisfactory solution
may or may not have been reached.

In GA for NER, each feature subset is an individual in a
population and is encoded by a string of bits. The length of string
corresponds to the total number of features considered in NER
task. Bit’s value 1 means the feature is selected and 0 if vice
versa.

The basic flowchart of the GA system for feature selection is
shown in Figure 1 below.

Figure 1. The flowchart of the genetic algorithm for feature
selection

82

The fitness of an individual in GA is evaluated by using

machine learning algorithm for NER. In our research, two
machine learning algorithms are tested, which are Conditional
Random Fields (CRF) and k-Nearest Neighbor (kNN). A brief
introduction of CRF and kNN is introduced next.

3.2 Conditional Random Fields

3.2.1 Definition of Conditional Random Fields

The theory of Conditional Random Fields is proposed by Lafferty
et al. [11]. Conditional Random Fields are undirected graphical
models trained to maximize a conditional probability. A linear-
chain CRF with parameters = {, ...} defines a conditional
probability for a state (or label) sequence y = y1 … yT given an
input sequence x = x1 …xT (in which T is the length of sequence)
to be

),,,(exp
1

)|(1
1

txyyf
z

xyP tt

T

t k
kk

x

where Zx is the normalization constant that makes the probability
of all state sequences sum to one; fk(yt-1,yt,x,t) is a feature
function which is often binary-valued, but can be real-valued; k
is a learned weight associated with feature fk. Large positive
values for k indicate a preference for such an event, while large
negative values make the event unlikely.

3.2.2 Training CRF

The weights of a CRF, ={, ...}, are a set to maximize the
conditional log-likelihood of labeled sequences in some training
set, D = {(x,1)(1),(x,1)(2), …, (x,1)(N)}:

k

k
N

j

jj xlPL
2

2

1

)()(

2
)|(log(

in which the second sum is a Gaussian prior over parameters
(with variance) that provides smoothing to help cope with
sparesity in the training data.

When the training labels make the state sequence
unambiguous (as they often do in practice), the likelihood
function in exponential models such as CRF is convex, so there
are no local maxima, and thus finding the global optimum is
guaranteed. It has recently been shown that quasi-Newton
methods, such as L-BFGS, are significantly more efficient than
traditional iterative scaling and even conjugate gradient [13].

3.2.3 Inference in CRF

Inference in CRF is to find the most probably state sequence y*
corresponding to the given observation sequence x.

)|(maxarg* * xypy y

In order to find y*, one can apply the dynamic programming
technique with a slightly modified version of the original Viterbi
algorithm for HMMs.

As far as we known, CRF is one of the best machine
learning method for NER. The drawback of CRF is the high
complexity of its learning algorithm. To recognize named entities

from text, Stanford Named Entity Recognizer [17], written by
Finkel and his colleges, is used in our system. SNER is a CRF
toolkit for segmenting and labeling named entities, written in
Java. By using SNER, we can redefine feature sets and specify
the feature templates in a flexible way.

3.3 K_Nearest Neighbors

K_Nearest Neighbor is one of simplest classifying algorithm. In
kNN, the label of a new sample is determined by the major label
of its nearest K training cases. The distance between two
samples in our NER task is calculated as follow:

N

i ii yxsimYXD
1

),(),(

in which X and Y are two samples; xi and yi are values of feature
i in the samples X and Y.

Since the time to evaluate the goodness of a feature subset
using in a machine learning algorithm for the NER task includes
both the training and testing time, using kNN is often faster than
most machine learning algorithms. This is because kNN does not
have the training process; it only needs to calculate the distance
between the new sample and other sample in the training data to
get its nearest k training cases. However, the accuracy of kNN is
often lower than modern classification algorithms such as CRF.
Since GA requites fast fitness evaluation, kNN is a good
candidate for NER in GA. Therefore, kNN will be integrated in
our genetic algorithm for the NER task.

In kNN, a word/phrase is recognized as a certain named
entity (e.g., Person, Organization, Location) if its features’s
values are similar to those values of majority neighbors in its k
nearest neighbors.

4. OPTIMIZING GENETIC ALGORITHM
FOR FEATURE SELECTION

In this section, we propose strategies to reduce the computational
cost of GA without losing the optimality of the final solution. All
features considered in our NER system are introduced next.

4.1 Feature set

The NER task considered in this research is to recognize Person,
Organization, Location name entities from Vietnamese text. In
solving this task, 21 feature types are considered, including:
word, wordPair, firstSyllable, lastSyllable,
isNumberOrTimeOrTimeMarker, initUpcaseWord, allCapWord,
letterAndDigitWord, isPunctuation, isBracket, isQuotationMark,
firstSentenceWord, inVnFamilyName, inVnGivenName,
inVnMiddleName, inLocDict, inOrgDict, perIndicateNoun,
locIndicateNoun, orgIndicateNoun, and pos. Vietnamese
language is monosyllable. Its vocabulary has many compound
words such as “bến tàupier”, “bến xecar park” in which the first
syllable (e.g., “bếnparking place”) is a large concept, whereas the
second syllable is a specific kind of that concept (e.g., “xecar”).
Another type of compound words (e.g., “tuyến đường route”, “mặt
đườngroad”) has the last syllable is a concept (e.g., “đườngroad”),
whereas the first syllable is an attribute of that concept (e.g.,
“tuyếnline”, “mặtface”). Therefore, we propose to use firstSyllable

83

and lastSyllable in our NER system to detect words belonging to
the same group.

In general, each feature type is considered in the window
size of five (two words before the current word, the current word,
and two words after the current word). However, since some
feature types at certain positions have no meaning in the NER
task, we restrict the feature’s positions as shown in Table 1.

Table 1. Features for Named Entity Recognition

Ind
ex

Feature
group

Feature type Position

1 word 0, ±1, ±2

2 wordPair (-1 0), (0 1),
(-1 1)

3 firstSyllable (e.g., bến tàupier , bến
xecar park)

0, -1, -2

4 lastSyllable (e.g., tuyến đường route,
mặt đườngroad)

0, -1, -2

5

Context

isNumberOrTimeOrTimeMarker
(e.g., 2.1, 21, 21/08/2012, 8/1995,
6am, thángmonth, nămyear)

0, ±1, ±2

6 initUpcaseWord 0, ±1, ±2

7 allCapWord 0, ±1, ±2

8 letterAndDigitWord 0, ±1, ±2

9 isPunctuation (e.g., . ? !) ±1, ±2

10 isBracket ±1, ±2

11 isQuotationMark ±1, ±2

12

Orthogr
aphy

firstSentenceWord 0, -1, -2

13 inVnFamilyName 0, ±1, ±2

14 inVnGivenName 0, 1, 2

15 inVnMiddleName 0, ±1, ±2

16 inLocDict 0, ±1, ±2

17 inOrgDict 0, ±1, ±2

18 perIndicateNoun 0, ±1, ±2

19 locIndicateNoun 0, ±1, ±2

20

Diction
ary

orgIndicateNoun 0, ±1, ±2

21 Part-of-
Speech

pos 0, ±1, ±2

In Table 1, position 0 means the current word; positions ±1, ±2
mean the word at the position ±1, ±2 compared to the current
word. Each feature is a combination of its feature type and its
position. For example, there are five features with the feature
type “word”, including prev2Word (the word before the previous
word), prevWord (the previous word), curWord (the current
word), nextWord (the next word), next2Word (the word after the
next word), corresponding to positions -2, -1, 0, 1, and 2,
respectively. Therefore, the total number of features needed to be
considered in our GA is 92.

The search space of GA is all possible combinations of these
features, which is 292 in this case. The time to carry out an

exhausted search in the GA space is equal to the time to evaluate
the fitness of an individual multiplying by the total number of
individuals. Therefore, reducing the search space and the time to
evaluate the fitness of an individual are crucial problems in our
genetic algorithm.

4.2 Fitness Function

As mentioned in Section 4.1, the time to evaluate the fitness of
an individual in a genetic algorithm should be small. Normally,
the fitness of an individual (corresponding to a feature subset) is
evaluated by the NER system’s performance, which is F-score - a
combination measure of Precision and Recall. The time to
calculate this value is the total time of training and testing the
NER system using 10-fold validation, which is quite long in most
NER systems. To reduce the calculating time, instead of using F-
score, the error rate of the NER is used to evaluate the
individual’s fitness1. It is easy to see that, the smaller the number
of data items misclassified, the more suitable the feature subset.

The focus of this paper is to find the smallest feature subset
for which the NER system’s performance does not deteriorate
below a certain level comparing to the highest one. Therefore,
information about the size of the feature subset is also integrated
into the fitness formula, which is shown below:

Fitness(i)=w1*f/k+w2*n/ne

in which i is the individual i in the population; f is the total
number of features in the feature subset (or the total number of
values 1 in the individual i); k is the total number of features (or
the length of the individual i); n is the total words in the training
set; ne is the number of words misclassified. w1 and w2 are
weights of the size of the feature subset and the error rate of the
classifier (w1 + w2 = 1). In our experiments, w1 and w2 are
chosen as 0.2 and 0.8, respectively, meaning that the error rate is
more important than the number of features being used.

It is easy to see that the fitness is inversely proportional to
the number of features selected and the error rate of the NER
system.

4.3 The proposed genetic algorithm

To reduce computational time of our genetic algorithm, the
following strategies are used:

1. reduce individuals being visited

2. reduce the time of computing the fitness of an
individual

3. prevent repeated fitness tests.

Solution to the problem (2) has been discussed in Section 4.2.
One solution for reducing individuals being visited is to keep the
population size small. However, the system will quickly converge
to a local optimal solution in this case. To deal with this
problem, the population size is set to be large at the beginning
and reducing by the time (after one half of generations), so that
the system can explore the search space at the beginning and
converge to some optimal solutions at the end. To reduce the
computational time at the beginning when the population size is

1 The idea of using error rate to evaluate the individual’s fitness

is inherited from [2].

84

large, the data set using in GA is small at the beginning and
increasing by the time (after one half of generations).

To prevent repeated fitness tests, the individuals’ fitness is
stored in the memory so that if those individuals appear in the
future, the system does not need to re-evaluate them. This
strategy is very important when the time to compute each fitness
is long. One problem with this implementation is, when too
many individuals are kept in the memory, the memory may be
overflow, or it takes too long to find a specific individual. To
prevent this problem, a fixed size of memory is used to store
these individuals. The individual with lowest fitness will be
removed from the memory when the memory is full.

The improve GA for feature selection is shown in Figure 2
below. The algorithm terminates when the population contains
only one individual.

Input: Feature sets F = f1, f2, ..., fm
 Data set D, initial data size iniD,

initial population size N, crossover rate
c, mutation rate m

Output: The optimal feature subset
Algorithm:
1. Set population size curPopSize = N
2. Set data size curDataSize = iniD. Get a data

subset with the size curDataSize from the data
set D as the current data set.

3. Initialize population P of curPopSize
individuals.

4. Calculate the fitness of each individual in P,
using the current data set.

5. Set generation index G = 1
Do
a. Carry out selection, crossover, mutation

operations, resulting in a new population
P1

b. If G = N/2 then
i.curPopSize = N/2; N= curPopSize;

ii.curDataSize = 2 * curDataSize. Get

a data subset with the size
curDataSize from the data set D as the
current data set. This subset does not
contain the old data set in the
previous step.

iii.Update the fitness of old individuals
in the current population by the
formula:
Fitness(i)= (oldFit(i)+

2 *newFit(i))/(1+ 2)

in which Fitness(i) is the fitness of
the individual i in the current
population; oldFit(i) is the fitness
of the individual i in the old data
set; newFit(i) is the fitness of the
individual i in the current data set.
The weight of newFit(i) is increased
by sqrt(2) to reflex the new size of
the data set. The fitness of the
individual i in the old data set is
retrieved from previous runs.

c. Calculate the fitness of new individuals
in P1, using the current data set.

d. Generate a new population P from P1, with
population size curPopSize. In other
words, the algorithm selects curPopSize

individuals with the highest fitness in
P1.

e. Generation G = G + 1
6. While(curPopSize>1)
7. Return P

Figure 2. The improve GA for feature selection

5. EXPERIMENTAL RESULTS

As far as we know, there is no public data set available for the
NER task in Vietnamese. Therefore, we have to create a new
data set by our own. Our data set are documents taken from
newspaper websites on economics, politics, cultures and
education that were annotated manually with seven labels B-per,
I-per, B-loc, I-loc, B-org, I-org, and O (other). This data set
consists of 8242 sentences among which 5881 sentences
(consisting of 170230 words) were used as the training set and
2361 sentences (consisting of 62000 words) were used as the test
set.

The GA system was tested on two machine learning
algorithms for NER (CRF and kNN). By applying the GA
learning process with a training set of 2176 sentences (consisting
of 60218 words) and a test set of 1071 sentences (32416
words), we obtained a feature subset. The whole training data set
was then used to train the NER algorithms on that feature subset
to obtain a prediction model. The NER system’s error rate was
calculated on the whole test set.

In the learning process, a population size N was chosen at
the beginning. The initial training data size was set to 232
sentences (3000 words). The initial test data size was set to 121
sentences (2000 words). After N/2 generation, the population
size was reduced by a half (N = N/2). The test data size was
increased by sqrt(2).

After the optimal feature subset was obtained, the F-score of
the NER system is calculated using this feature subset.

The kNN algorithm was tested with the number of
neighbors being equal to 15. When using all features (92
features), the F-score of the NER system was 91.66% for kNN
and 92.33% for CRF. Experimental results when using GA-kNN
and GA-CRF for feature selection are shown in Table 2 below.
The final row of Table 2 displays the size of the feature subset
returned by GA.

Table 2. Experimental results when using GA-kNN and GA-
CRF for feature selection

NER
algorithm

kNN CRF

Initial
population size

16 32 64 16 32 64

F-score of the
NER system

(%)

92.93 92.79 92.65 94.23 94.23 94.23

Number of
features

33 32 38 39 41 44

85

Experimental results in Table 2 prove that we can use a
feature set smaller than the original one in the NER system
without losing the system’s accuracy.

The optimal subsets when using kNN are smaller than a half
of the original feature set and give us higher accuracies than the
original feature set. It indicates that several features in the
original feature set are redundant. Furthermore, some features
are even degraded the NER system’s accuracy. The best feature
subset when using kNN is the subset of 33 features, generated by
the GA with the initial population size of 16 individuals. The F-
score of the NER system in this case is 92.93%.

The feature subsets returned by GA-CRF system are also
smaller than a half of the original feature set. The F-score when
using these subsets increase by approximately 2%, comparing to
the accuracy when using the original data set. The best feature
subset in this case contains 39 features, resulting in the F-score
of 94.23% of the NER system. It indicates that CRF provides
higher accuracy than kNN.

To evaluate the effect of GA to feature selection, two other
feature selection methods were tested, which are hill climbing
and backward ones. The hill climbing algorithm is a kind of
forward selection. In the hill climbing algorithm, the initial
feature is chosen randomly. Other features are considered to be
added to the feature subset one by one. A feature is kept in the
subset if the F-score of the NER system increases when it is
added to the feature subset. The hill climbing algorithm
terminates when no further improvements can be found. The
backward selection works in the reverse direction. It starts with
all variables and then continuously removes features that
increase the error the most until no further improvements can be
found.

In our experiment with the hill climbing algorithm, kNN
was used as the NER algorithm. Experimental results with the
hill climbing algorithm are given in Table 3. Since the initial
feature was chosen randomly, three different tests with the hill
climbing algorithm gave us three different feature subsets.

Table 3. Experimental results when using the hill climbing
algorithm for feature selection

Run 1 2 3
F-score of the NER

system (%)
91.21 91.58 91.50

Number of features 17 11 9

The sizes of feature subsets returned by the hill climbing
algorithm in Table 3 are small. However, the F-scores of the
NER system are lower than those of the feature subsets generated
by GA. This is because the hill climbing algorithm does not
consider the correlation between features. If a feature is removed,
it cannot be reconsidered anymore. Therefore, the hill climbing
algorithm may ignore good feature subsets in recognizing named
entities. As a result, the F-score of the NER system in this case is
not high. The best feature subset generated by the hill climbing
algorithm consists of 11 features, corresponding to the F-score of
the NER system of 91.58%.

The backward algorithm starts with all features and then
continuously removes features that reduce the F-score of the
NER system the most. Experiments with the backward algorithm

using kNN as the classifier result in a subset of 82 features,
which is much larger than feature subsets produced by other
algorithms considered in this paper. The F-score of the NER
system in this case is 91.66%, approximately to the F-score of
the NER system when using the hill climbing algorithm.

It is interesting to see that our proposed features
(firstSyllable and lastSyllable) appear in all optimal subsets
returned by our experiments, meaning that they are important
features in NER for Vietnamese text.

Experiment results show that using GA in feature selection
for NER task provides better results compared to hill climbing
algorithm and backward algorithm. By using some strategies to
reduce computational cost of GA, GA can be a potential solution
for feature selection task.

6. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a genetic algorithm to
automatically select a minimal feature subset that can produce
high accuracy for the NER system. To optimize the GA learning
process, several strategies have been proposed, including: (i)
change the population size and the data size during the GA
learning process; (ii) reduce the time of computing the fitness of
an individual; and (iii) prevent repeated fitness tests during GA
learning process. Experimental results show that GA can
generate a feature subset which is smaller than a half of the
original one, but with a higher F-score of the NER system. In
addition, GA provides better performance than the hill climbing
and backward algorithms.

Our future work is to find other strategies to reduce
computation time of GA, such as improving the method to
compute the fitness of individuals in GA. Instead of computing
the real fitness of individuals, these values can be predicted
based on the fitness of individuals in the previous generations of
GA.

7. ACKNOWLEDGMENTS
This work was supported by the Vietnam National
Foundation for Science and Technology Development
(NAFOSTED), under
Grant 102.01-2011.08.

The work of the first author was partly funded by the
Vietnam Ministry project, under Grant B2012 - 01 - 24.

8. REFERENCES

[1] Abe, S. 2005. Modified backward feature selection by cross
validation. In Proceedings of ESANN 2005, pp.163-168.

[2] Bhanu, B., Lin, Y. 2003. Genetic algorithm based feature
selection for target detection in SAR images. Image and
Vision Computing. Volume 21, pages 591–608

[3] Dash, M., Choi, K., Scheuermann, P., Liu, H. 2002. Feature
selection for clustering - a filter solution. In Proceedings of
the 2002 IEEE International Conference on Data Mining
(ICDM 2002), pages 115–122.

[4] Day, M., Lu, C., Ong, C., Wu, S., and Hsu, W. 2006.
Integrating genetic algorithms with conditional random

86

fields to enhance question informer prediction. In
Proceedings of the IEEE International Conference on
Information Reuse and Integration (IEEE IRI 2006), pp.
414-419.

[5] Dy, J. G., Brodley, C. E. 2004. Feature selection for
unsupervised learning. Journal of Machine Learning
Research, 5:845–889.

[6] Hall, M. A. and Smith, L. A. 1997. Feature subset selection:
a correlation based filter approach. In Proceedings of
International Conference on Neural Information Processing
and Intelligent Information Systems (pp. 855-858). Berlin:
Springer.

[7] Holland, J. 1975. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor

[8] Kabir, M.M., Shahjahan, M., Murase, K. 2007. A Backward
Feature Selection by Creating Compact Neural Network
Using Coherence Learning and Pruning. In Proceedings of
JACIII 11, pp. 570-581.

[9] Kim, Y., Street, W. N., Menczer, F. 2002. Evolutionary
model selection in unsupervised learning. Intelligent Data
Analysis, 6(6):531–556.

[10] Kitoogo, F.E. & Baryamureeba, V. 2007. A Methodology
for Feature Selection in Named Entity Recognition. In
Special Topics in Computing and ICT Research:
Strengthening the role of ICT in Development.

[11] Lafferty, J., McCallum, A. and Pereira, F. 2001. Conditional
random fields: probabilistic models for segmenting and
labeling sequence data. In Proceedings of ICML, pages 282-
290.

[12] Lanzi, P. 1997. Fast feature selection with genetic
algorithms: a filter approach. In Proceedings of IEEE Intl.
Conf. on Evolutionary Computation, pp.537-540

[13] Malouf, R. 2002. A comparison of algorithms for maximum
entropy parameter estimation. In Proceedings of Sixth
Workshop on Computational Language Learning (CoNLL-
2002).

[14] Parsi, A., Salehi, M., and Doostmohammadi, A. 2012. Swap
Training: A Genetic Algorithm Based Feature Selection
Method Applied on Face Recognition System. World of
Computer Science and Information Technology Journal
(WCSIT). 2(4):125-130

[15] Pahikkala, T., Airola, A., Salakoski, T. 2010. Speeding Up
Greedy Forward Selection for regularized Least-Squares. In
Proc. of the Ninth International Conference on Machine
Learning and Applications, ICMLA 2010, pp. 325-330.

[16] Schaffernicht, E., Moeller, C., Debes, K., Gross, H.-M.
2009. Forward feature selection using Residual Mutual
Information. In Proceedings of 17th European Symposium
on Artificial Neural Networks, ESANN 2009, pp. 583-588.

[17] SNER 2012. Stanford Named Entity Recognizer.
http://nlp.stanford.edu/software/CRF-NER.shtml. (last
visited Aug. 2012).

[18] Tang Y., Zhang Y.Q., Huang Z. 2007. Development of two-
stage SVM-RFE gene selection strategy for microarray
expression data analysis. In Proceedings of IEEE/ACM
Transactions on Computational Biology and
Bioinformatics, Volume 4, pp. 365-81.

[19] Umamaheswari, J. and Radhamani, G. 2011. A Hybrid
Approach for Classification of DICOM Image. World of
Computer Science and Information Technology Journal
(WCSIT), 1(8):364-369.

87

