

978-1-6654-0435-8/21/$31.00 ©2021 IEEE

This work is supported by Hanoi University of Science and Technology (HUST) under the grant project number T2020-PC-208.

Keyphrase Extraction Using PageRank and Word
Features

Huong T. Le
School of Information and Communication Technology

Hanoi University of Science and Technology
Hanoi, Vietnam

huonglt@soict.hust.edu.vn

Que X. Bui
School of Information and Communication Technology

Hanoi University of Science and Technology
Hanoi, Vietnam

buixuanque8297@gmail.com

Abstract— Keyphrase extraction is a fundamental task in

natural language processing. Its purpose is to generate a set of

keyphrases representing the main idea of the input document.

Keyphrase extraction can be used in several applications such

as recommendation systems, plagiarism checking, text

summarization, and text retrieval. In this paper, we propose an

approach using PageRank and word features to compute

keyphrases’ scores. Experimental results on SemEval 2010

dataset show that our method provides promising results

compared to existing works in this field.

Keywords— keyphrase extraction, unsupervised learning,

PageRank, word embedding, word features

I. INTRODUCTION

Nowadays we can get a huge amount of documents from
the Internet. To get appropriate documents to read, it is
important to extract a set of keyphrases that reflects the main
idea of the document. Also, keyphrases are useful in several
tasks such as finding related documents for the document
being read, summarizing, clustering, or classifying
documents.

Researches on keyphrase extraction can be divided into
supervised and unsupervised learning. The supervised
learning considers the keyphrase extraction task as a binary
classification, in which candidate keyphrases are classified as
positive or negative (e.g., [1], [2], [3]). Frank et al. [1]
developed a Na¨ıve Bayes classifier for this task using only
two features: tf.idf of a phrase, and the distance of a phrase
from the beginning of a document (i.e., its relative position).
Caragea et al. [2] implemented a supervised probabilistic
approach using traditional features combined with their new
features basing on citation context information. Shi et al. [4]
use Wikipedia as an additional feature source for their
supervised keyphrase extraction method. Supervised learning
approaches require training data including documents with
their keyphrases. The supervised approaches with a large
training dataset often provide better performance compared to
the unsupervised ones. However, the system applying these
approaches is difficult to change from one domain to another,
as they depend on the domain of the training data.

Unsupervised approaches (e.g., [5]) do not have this
problem as they do not require any training data and can be
applied to any domain. These approaches are often based on
different features such as tf.idf, clustering, and graph ranking
to compute keyphrases’ scores. Campos et al. [5] used a set of
features including (1) casing; (2) word position; (3) word
frequency; (4) word relatedness to context; and (5) word in
different sentences. The drawback of the above approach is

that it bases on text matching, without considering textual
semantic meaning. Mahata et al. [6] solved this problem by
computing the cosine similarity between their phrase
embeddings. To get phrase embeddings, they extracted
unigrams, noun phrases, named entities from a text corpus,
then trained them by FastText [7] using the Skip-gram model.
However, it is impossible to generate semantic embedding
vectors for candidate keyphrases in the input document that
does not appear in the training dataset.

Another problem in existing researches of keyphrase
extraction is keyphrase overlapping. This is the case that
several keyphrases generated by the system share the same
words. This problem reduces the diversity of the keyphrase
set, which causes the keyphrase set unable to reflect all aspects
of the input document.

In this paper, we propose an algorithm to solve the above
problems by processing candidate phrases at the word level
using several word features and combining them to compute
the weight of the phrases. Also, we propose an algorithm to
solve the problem of keyphrase overlapping to get a better
keyphrase set. Our experimental results on SemEval2010
corpus [8] shown that our system provides better performance
compared to previous researches on this field.

The rest of this paper is organized as follows. Our method
for keyphrase extraction is described in Section 2. Our
experiments and results are introduced in Section 3. Finally,
Section 4 concludes the paper and gives future directions for
our work.

II. METHODOLOGY

A. Overview of the keyphrase extracting algorithm

Our keyphrase extracting algorithm includes nine steps:

1. Generating candidate keyphrases: Extracting
unigrams, noun phrases, and named entities from the
input document using the Spacy library [9]. Filtering
out named entities DATE, TIME, PERCENT,
MONEY, QUANTITY, ORDINAL, CARDINAL
from the above phrases to get candidate keyphrases.
The stopwords appearing at the beginning or at the
end of a noun phrase or a named entity are also
removed.

2. Generating the embedding vector for candidate
keyphrases: We generate word embedding vectors by
using FastText and the phrase embedding vector by
summing up all word embedding vectors of that
phrase.

3. Identifying the topic vector of the document: It is
created by extracting words with high tf.idf value in
the title and in the body of the input document. We
compute the topic vector by sum up all word
embedding vectors of the words being extracted.

4. Computing a thematic score for each word in
candidate keyphrases basing on the topic embedding
vector: The system computes the cosine similarity
between the embedding vectors of the document’s
topic and each word mentioned above.

5. Computing word scores in candidate keyphrases by a
modified version of the Pagerank algorithm in [6]. We
use words in the candidate keyphrases as nodes in the
Pagerank graph instead of using candidate keyphrases
themselves.

6. Computing word scores by theirs features described
in Section II.C.

7. Compute final word scores by combining scores in
steps 5 and 6.

8. Computing the candidate keyphrases’ score based on
the scores of words within each phrase.

9. Ranking and filtering the candidates to get the final
set of keyphrases.

The methods to compute PageRank-based scores and
feature-based scores of words are described in the following
sections.

B. Computing word scores basing on the PageRank

algorithm

To score words in candidate phrases, we use a modified
version of the PageRank algorithm in [6]. We use words
instead of phrases as nodes in the graph. First, stopwords are
removed from the input document d. Then, a directed graph G
is constructed from the remained words of that document, with
each word is a node in the graph. An edge connects two nodes
if they co-occur in a window size of 5. The weight of an edge
connecting two words �� and �� is computed by their

semantic similarity and their frequency of co-occurrence.

��� �� , ��	 = ���������� , ��	 ∗ �������(�� , ��)

In which:

• �������� �� , ��	 =
�

��������(��,�) is the cosine

similarity between two words.

• �������(�� , ��) is calculated as the Pointwise

Mutual Information (PMI) measure between two

words:

�������(�� , ��)= !"#(�� , ��)

 = log '(��,�)
'(��)'(�)

with P(��) , P(��), and P (�� , ��) is the probability

of �� , �� , and the probability of co-occurrence of

both �� and �� in the dataset. The higher value of

PMI, the more similarity between �� and �� .

The PageRank score R(wi) of a word wi is:

((��) = (1 − +)��� + + ∗ - (��� �� , ��	
.������	.)((��)

� ∈0(��)

in which:

• E(wi) is the set of all edges connecting to wi

• swi is the thematic score of wi calculated in Step

4

• d is the damping factor in the PageRank

algorithm.

• |out(wj)| is the out-degree of the node

corresponding to the word wj

Most research chooses the damping factor in the PageRank
algorithm as 0.85. In our approach, we carried out several tests
with different values of the damping factor (from 0.75 to 0.9).
The optimal damping factor’s value in our experiments is also
0.85. Therefore, the damping factor d is assigned as 0.85 in
our system.

C. Computing word scores basing on theirs features

The score of a candidate keyphrase is computed based on
the score of each word in the keyphrase. The word score is
computed based on three measures, including (i) word
frequency, (ii) the word’s surrounding context, (iii) the total
number of sentences containing that word. These features are
inherited and improved from measures in [5]. These features
are described below.

1) Word frequency

Terms that frequently appear in a document reflect the
main idea of that document. However, stopwords also appear
with high frequency in documents. To reduce the effect of
stopwords, the frequency of a candidate word is divided by the
mean of word frequencies plus their standard deviation (σ), as
in Eq. (1):

 123�4 = 52(�)
6�7�528 9 (1)

2) Word context

This value is inherited from [5], which is based on the
assumption “the higher the number of different words that co-
occur with the candidate word t on both sides, the less
significant word t will be”. The formula to compute this value
(WRel) is as follow:

 1:�; = 1 + (1< + 1() ∗ = 52(�)
67>52? (2)

In which

• WL [WR] is the ratio between the number of
different words that co-occur on the left [right] of
the considered word and the number of words
that it co-occurs on the left [right] of the
considered word.

• TF (w) is the word frequency

• MaxTF is the highest frequency of a word in the
document.

3) Number of sentences containing the considered word

A word that appears in several sentences of a document
indicates the importance of that word. If it is not a stopword,
it will be the keyword of the document. The value
WDifSentences in [5] is used to evaluate this information:

 1@�AB��C����� = B2(�)
#B��C����� (3)

In which

• SF(w) is the number of sentences containing that
word

• #Sentences is the number of sentences in the
input document

D. Computing the word score

The feature-based word score is computed by the
following formula:

 E_G�����(�) = HIJKL
HMNJO 8 HP�QRJSTJSUJV

 (4)

The smaller value of S_feature(w), the more important the
word is. Equation (4) indicates that words which appear
frequently in many sentences, and are not stopwords, are
important.

The final word score is computed by the value of
S_feature(w) combined with the word score computed in
Section II.B, as in Eq. (5):

 E(�) = �
:(�) + E_G�����(�) (5)

The smaller the S(w) value, the more important a word is.

E. Computing the candidate keyphrase’s score

The scores of a noun phrase or a named entity extracted
from the input document are computed based on the scores of
words within these phrases by the following formula:

 E(�WX) = ∑ B(�)Z∈U[\
5A(�]^)∗�_37` (6)

The final score of a candidate phrase (ckp) is determined
by the total score of each word in that phrase divided by the
frequency of that phrase in the document and the number of
words in that phrase. The smaller value of the S(ckp), the more
important the phrase is. The candidate keyphrases that appear
more frequently in the document will have higher advantages.

F. Selecting Keyphrases

As we mentioned in Section I, a problem in existing
researches on keyphrase extraction is the overlapping among
keyphrases, which reduces the diversity of the keyphrase set.
Our strategy to deal with this problem is that if the similarity
between two keyphrases is larger than a certain threshold, the
one with a higher score will be removed.

After extracting candidate keyphrases from the input
document and computing their scores, we perform keyphrase

extraction by ranking and filtering the candidates. The criteria
to select keyphases are: (i) the value S(ckp) is low; (ii) the
overlapping words among keyphrases is as small as possible.
Our algorithm to get the final set of keyphrases is as follow:

===

Input: a set of candidate keyphrases in companied with their
S(ckp) value

Output: a set of keyphrases KPs

Algorithm:

1. Sort all candidate keyphrases by their S(ckp) value in
increasing order. The result set is named CKPs.

2. Compute the embedding vector for each candidate
keyphrase. A phrase embedding vector is computed
by getting the average value of its word embedding
vector.

3. Add the candidate keyphrase with the lowest S(kw)
value to the keyphrase set KPs.

4. Consider the next candidate keyphrase (ckp) in CKPs:

1. Compute the semantic similarity between this
candidate with all keyphrases in KPs using the
cosine measure between their embedding
vectors.

2. The ckp is removed from the CKPs in the
following cases:

 The similarity between the ckp with a
keyphrase in KPs is more than 0.75

 The ckp and a keyphrase in KPs have the
same number of words and are created by
words with the same lemma

 Both the ckp and a keyphrase in KPs
contain two or three words and have at
least two common words

3. Otherwise, the ckp is added to the keyphrase set
KPs.

5. Repeat step 4 until reaching the end of the candidate
set CKPs.

==

We select top 5, top 10, top 15 of the keyphrase set KPs to
be the keyphrases of the input document.

III. EXPERIMENTS AND RESULTS

A. SemEval 2010 corpus

The SemEval 2010 dataset [8] is used to evaluate our
method. Each document in the dataset is 6 to 8-page length on
average, including tables and images. The dataset is created
by gathering scientific papers from four different research
areas, (i.e., Distributed Systems, Information Search and
Retrieval, Distributed Artificial Intelligence – Multiagent
Systems, and Social and Behavioral Sciences – Economics).
Keyphrases of each article are created by human experts. The
dataset is divided into trial, training, and test set with 44, 144,
and 100 articles, respectively.

TABLE I. THE DISTRIBUTION OF ARTICLES ON DIFFERENT TOPICS OF THE

SEMEVAL2010 DATASET.

Dataset Total #document/topic

 C H I J

Trial 40 10 10 10 10

Training 144 34 39 35 36

Test 100 25 25 25 25

B. Experimental Setting

Our experiments are conducted on a computer with Intel®
Core™ i7-6600U Processor, 16GB of RAM, and the Python
Integrated Development Environment PyCharm. We train
FastText with data collected from Wikipedia, using the
Skipgram model. The parameters using in our training step are
as follow:

 window size = 5; dimension = 100; number of epochs = 10.

Since Wikipedia is a scientific website, its vocabulary is
close to the SemEval 2010 dataset. We only use the first one
billion bytes of Wikipedia and train our system with the same
parameter as the original FastText model.

C. Experimental Results

Researches on keyphrase extractions evaluate the results
by comparing keyphrases generated by the system with the
keyphrases in the dataset at word level and computing micro-
average Precision (P), Recall (R), and F1-score (F1). We
measure the performance at three levels: top 5, top 10, and top
15 keyphrases. The final results (in percentage) are shown in
Table II below.

TABLE II. PERFORMANCE OF OUR SYSTEM WITH THE SEMEVAL 2010

DATASET

 P R F1

Micro Avg @15 47.37 28.55 35.63

Micro Avg @10 56.70 21.84 31.54

Micro Avg @5 69.20 13.33 22.35

Table III shows the comparison between our system

performance and Key2Vec [6], using the same dataset
SemEval2010.

TABLE III. COMPARISON WITH KEY2VEC ON SEMEVAL 2010 DATASET

P

@5

 R

@5

 F1

@5

P

@10

R

@10

F1

@10

P

@15

R

@15

F1

@15

Our

system

69.20 13.33 22.35 56.70 21.84 31.54 47.37 28.55 35.63

Key2vec 41.00 14.37 21.28 35.29 24.67 29.04 34.39 32.48 33.41

Table III indicates that our proposed method provides
better Precision and F1-score compared to Key2Vec [6]. The
recall is a bit lower than Key2Vec because of the following
reason.

The evaluation tool evaluates keyphrases by the sum of
word scores in the keyphrases. A word with a high score will

increase the score of the keyphrase it belongs to. Because of
that, the set in which high score words repeatedly appear in
several keyphrases will a have higher score, resulting in a high
value of recall. However, this will reduce the diversity of the
keyphrase set.

Since the purpose of our approach is to increase the
diversity of the keyphrases and reduce the overlapping among
them, we remove the overlapping keyphrases. That is the
reason we have higher Precision and lower Recall.

An example of our system output is shown in Table IV.
The output keyphrases are sorted by decreasing order of their
scores.

TABLE IV. AN EXAMPLE OF OUR SYSTEM OUTPUT USING THE SEMEVAL

2010 DATASET

Keyphrases generated by
our system

Standard keyphrases from
the SemEval 2010 dataset

‘service’,
‘resource’,
‘environment’,
‘node’,
‘object’,
‘limit’,
‘support’,
‘management’,
‘grid’,
‘migration’,
‘adaptive services’,
‘fragmented object’,
‘distributed’,
‘project’,
‘edas’

‘decentralized adaptive
service’,
‘resource management’,
‘home environment’,
‘infrastructure’,
‘client’,
‘long-term service’,
‘eda’,
‘local limit’,
‘global limit’,
‘resource’,
‘node’,
‘grid computing’,
‘fragment object’,
‘adaptability’

In the above example, the keywords/keyphrases generated
by our system are rarely overlapped and cover most of the
standard keywords/keyphrases when comparing at the word
level.

We also compared our system performance with other
research on SemEval2010 dataset. The results are represented
in Table V below.

TABLE V. COMPARISON WITH SOME RESEARCHES ON THE SEMEVAL

2010 DATASET

SemEval

2010

(Combined)

Our

system

Mahata

et al. [6]

Danesh

et al.

[10]

Lopez

and

Romary

[11]

Bougouin

et al. [12]

Micro Avg.
F1@10

31.54 29.04 26.07 22.05 12.1

Table V indicates that our proposed system is better than
other systems on F1-score.

IV. CONCLUSIONS AND FUTURE WORK

This paper proposed an approach to keyphrase extraction
that can take advantage of word features and the semantic
meaning of words and phrases. This approach can solve the
problem of keyphrase overlapping and lacking information of
keyphrases in the training data. Experimental results show that

our approach can provide better performance compared to
existing researches in this field.

Future work includes investigating other features to
compute the score of keyphrases, in order to increase the
system accuracy. Also, we will apply this method for
extracting keyphrases from Vietnamese text. We will integrate
keyphrase extraction system to other applications such as
plagiarism checking, recommendation system, etc…

REFERENCES

[1] Eibe Frank, Gordon W Paynter, Ian H Witten, Carl Gutwin, and Craig
G Nevill-Manning. 1999. Domain-specific keyphrase extraction.

[2] Caragea, C., Bulgarov, F. A., Godea, A. and Gollapalli, S. D. (2014)
Citation-enhanced keyphrase extraction from research papers: A
supervised approach. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2014,
Doha, Qatar, October 25-29, 2014, A meeting of SIGDAT, a Special
Interest Group of the ACL, 1435–1446.

[3] Wang, L. and Li, S. (2017) Pku_icl at Semeval-2017 task 10:
Keyphrase extraction with model ensemble and external knowledge. In
Proceedings of the 11th International Workshop on Semantic
Evaluation, SemEval@ACL 2017, Vancouver, Canada, August 3-4,
2017, 934–937.

[4] Shi, T., Jiao, S., Hou, J. and Li, M. (2008) Improving keyphrase
extraction using Wikipedia semantics. In Proceedings of Second

International Symposium on Intelligent Information Technology
Application, 2008. IITA’08., vol. 2, 42–46. IEEE

[5] Ricardo Campos, Vítor Mangaravite, Arian Pasquali, Alípio Jorge,
Célia Nunes, Adam Jatowt, "YAKE! Collection-Independent
Automatic Keyword Extractor," 2018.

[6] Debanjan Mahata, John Kuriakose, Rajiv Ratn Shah, Roger
Zimmermann, "Key2Vec: Automatic Ranked Keyphrase Extraction
from Scientific Articles using Phrase Embeddings," Association for
Computational Linguistics, New Orleans, Louisiana, 2018.

[7] FastText. https://github.com/facebookresearch/fastText (last visited
April 2021)

[8] Su Nam Kim, Olena Medelyan, Min-Yen Kan, Timothy Baldwin,
2010. Semeval-2010 task 5: Automatic keyphrase extraction from
scientific articles. In Proceedings of the 5th International Workshop on
Semantic Evaluation, ACL 2010

[9] Hannibal, Matt. Spacy. Available: https://spacy.io/ (last visited April
2021)

[10] Danesh, S.; Sumner, T.; and Martin, J. H. 2015. SGRank: Combining
statistical and graphical methods to improve the state of the art in
unsupervised keyphrase extraction. In Proc. Joint Conference on
Lexical and Computational Semantics

[11] Lopez, P., and Romary, L. 2010. HUMB: Automatic key term
extraction from scientific articles in GROBID. In Proc. SemEval.

[12] Bougouin, A.; Boudin, F.; and Daille, B. 2013. Topicrank: Graphbased
topic ranking for keyphrase extraction. In Proc. IJCNLP

