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Abstract— Keyphrase extraction is a fundamental task in 

natural language processing. Its purpose is to generate a set of 

keyphrases representing the main idea of the input document. 

Keyphrase extraction can be used in several applications such 

as recommendation systems, plagiarism checking, text 

summarization, and text retrieval.  In this paper, we propose an 

approach using PageRank and word features to compute 

keyphrases’ scores. Experimental results on SemEval 2010 

dataset show that our method provides promising results 

compared to existing works in this field. 
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I. INTRODUCTION 

Nowadays we can get a huge amount of documents from 
the Internet. To get appropriate documents to read, it is 
important to extract a set of keyphrases that reflects the main 
idea of the document. Also, keyphrases are useful in several 
tasks such as finding related documents for the document 
being read, summarizing, clustering, or classifying 
documents. 

Researches on keyphrase extraction can be divided into 
supervised and unsupervised learning. The supervised 
learning considers the keyphrase extraction task as a binary 
classification, in which candidate keyphrases are classified as 
positive or negative (e.g., [1], [2], [3]).  Frank et al. [1] 
developed a Na¨ıve Bayes classifier for this task using only 
two features: tf.idf of a phrase, and the distance of a phrase 
from the beginning of a document (i.e., its relative position). 
Caragea et al. [2] implemented a supervised probabilistic 
approach using traditional features combined with their new 
features basing on citation context information. Shi et al. [4] 
use Wikipedia as an additional feature source for their 
supervised keyphrase extraction method. Supervised learning 
approaches require training data including documents with 
their keyphrases. The supervised approaches with a large 
training dataset often provide better performance compared to 
the unsupervised ones. However, the system applying these 
approaches is difficult to change from one domain to another, 
as they depend on the domain of the training data. 

Unsupervised approaches (e.g., [5]) do not have this 
problem as they do not require any training data and can be 
applied to any domain. These approaches are often based on 
different features such as tf.idf, clustering, and graph ranking 
to compute keyphrases’ scores. Campos et al. [5] used a set of 
features including (1) casing; (2) word position; (3) word 
frequency; (4) word relatedness to context; and (5) word in 
different sentences. The drawback of the above approach is 

that it bases on text matching, without considering textual 
semantic meaning.  Mahata et al. [6] solved this problem by 
computing the cosine similarity between their phrase 
embeddings. To get phrase embeddings, they extracted 
unigrams, noun phrases, named entities from a text corpus, 
then trained them by FastText [7] using the Skip-gram model. 
However, it is impossible to generate semantic embedding 
vectors for candidate keyphrases in the input document that 
does not appear in the training dataset.   

Another problem in existing researches of keyphrase 
extraction is keyphrase overlapping. This is the case that 
several keyphrases generated by the system share the same 
words. This problem reduces the diversity of the keyphrase 
set, which causes the keyphrase set unable to reflect all aspects 
of the input document.  

In this paper, we propose an algorithm to solve the above 
problems by processing candidate phrases at the word level 
using several word features and combining them to compute 
the weight of the phrases. Also, we propose an algorithm to 
solve the problem of keyphrase overlapping to get a better 
keyphrase set. Our experimental results on SemEval2010 
corpus [8] shown that our system provides better performance 
compared to previous researches on this field.  

The rest of this paper is organized as follows. Our method 
for keyphrase extraction is described in Section 2. Our 
experiments and results are introduced in Section 3. Finally, 
Section 4 concludes the paper and gives future directions for 
our work. 

II. METHODOLOGY 

A. Overview of the keyphrase extracting algorithm 

Our keyphrase extracting algorithm includes nine steps: 

1. Generating candidate keyphrases: Extracting 
unigrams, noun phrases, and named entities from the 
input document using the Spacy library [9]. Filtering 
out named entities DATE, TIME, PERCENT, 
MONEY, QUANTITY, ORDINAL, CARDINAL 
from the above phrases to get candidate keyphrases. 
The stopwords appearing at the beginning or at the 
end of a noun phrase or a named entity are also 
removed.  

2. Generating the embedding vector for candidate 
keyphrases: We generate word embedding vectors by 
using FastText and the phrase embedding vector by 
summing up all word embedding vectors of that 
phrase.   



3. Identifying the topic vector of the document: It is 
created by extracting words with high tf.idf value in 
the title and in the body of the input document. We 
compute the topic vector by sum up all word 
embedding vectors of the words being extracted.   

4. Computing a thematic score for each word in 
candidate keyphrases basing on the topic embedding 
vector: The system computes the cosine similarity 
between the embedding vectors of the document’s 
topic and each word mentioned above. 

5. Computing word scores in candidate keyphrases by a 
modified version of the Pagerank algorithm in [6]. We 
use words in the candidate keyphrases as nodes in the 
Pagerank graph instead of using candidate keyphrases 
themselves.  

6. Computing word scores by theirs features described 
in Section II.C.  

7. Compute final word scores by combining scores in 
steps 5 and 6. 

8. Computing the candidate keyphrases’ score based on 
the scores of words within each phrase. 

9. Ranking and filtering the candidates to get the final 
set of keyphrases.  

The methods to compute PageRank-based scores and 
feature-based scores of words are described in the following 
sections.  

B. Computing word scores basing on the PageRank 

algorithm  

To score words in candidate phrases, we use a modified 
version of the PageRank algorithm in [6]. We use words 
instead of phrases as nodes in the graph. First, stopwords are 
removed from the input document d. Then, a directed graph G 
is constructed from the remained words of that document, with 
each word is a node in the graph. An edge connects two nodes 
if they co-occur in a window size of 5. The weight of an edge 
connecting two words ��  and ��  is computed by their 

semantic similarity and their frequency of co-occurrence.    

��� �� , ��	 = ���������� , ��	 ∗ �������( �� , ��) 

In which: 

• �������� �� , ��	 = 
�

��������( ��,� )  is the cosine 

similarity between two words. 

• �������( �� , ��) is calculated as the Pointwise 

Mutual Information (PMI) measure between two 

words: 

�������( �� , ��)= !"#(�� , ��)   

 = log '(��,� )
'(��)'( � ) 

with P(��) , P(��), and P (�� , ��) is the probability 

of �� , �� , and the probability of co-occurrence of 

both ��  and ��  in the dataset. The higher value of 

PMI, the more similarity between ��  and �� . 

 

The PageRank score R(wi) of a word wi is: 

((��) = (1 − +)��� + + ∗ - (��� �� , ��	
.������	. )((��)

� ∈0(��)
 

in which: 

• E(wi) is the set of all edges connecting to wi 

• swi is the thematic score of wi calculated in Step 

4 

• d is the damping factor in the PageRank 

algorithm.  

• |out(wj)| is the out-degree of the node 

corresponding to the word wj 

Most research chooses the damping factor in the PageRank 
algorithm as 0.85. In our approach, we carried out several tests 
with different values of the damping factor (from 0.75 to 0.9). 
The optimal damping factor’s value in our experiments is also 
0.85. Therefore, the damping factor d is assigned as 0.85 in 
our system. 

C. Computing word scores basing on theirs features 

The score of a candidate keyphrase is computed based on 
the score of each word in the keyphrase. The word score is 
computed based on three measures, including (i) word 
frequency, (ii) the word’s surrounding context, (iii) the total 
number of sentences containing that word. These features are 
inherited and improved from measures in [5]. These features 
are described below. 

1) Word frequency 

Terms that frequently appear in a document reflect the 
main idea of that document. However, stopwords also appear 
with high frequency in documents. To reduce the effect of 
stopwords, the frequency of a candidate word is divided by the 
mean of word frequencies plus their standard deviation (σ), as 
in Eq. (1):  

 123�4  =  52(�)
6�7�528 9            (1) 

2) Word context  

This value is inherited from [5], which is based on the 
assumption “the higher the number of different words that co-
occur with the candidate word t on both sides, the less 
significant word t will be”. The formula to compute this value 
(WRel) is as follow: 

 1:�; = 1 + (1< + 1() ∗ = 52(�)
67>52?         (2) 

In which 

• WL [WR] is the ratio between the number of 
different words that co-occur on the left [right] of 
the considered word and the number of words 
that it co-occurs on the left [right] of the 
considered word.  

• TF (w) is the word frequency  



• MaxTF is the highest frequency of a word in the 
document. 

3) Number of sentences containing the considered word  

A word that appears in several sentences of a document 
indicates the importance of that word. If it is not a stopword, 
it will be the keyword of the document. The value 
WDifSentences in [5] is used to evaluate this information:  

 1@�AB��C����� = B2(�)
#B��C�����          (3) 

In which 

• SF(w) is the number of sentences containing that 
word  

• #Sentences is the number of sentences in the 
input document 

D. Computing the word score 

The feature-based word score is computed by the 
following formula:  

 E_G�����(�) =  HIJKL
HMNJO 8 HP�QRJSTJSUJV

        (4) 

The smaller value of S_feature(w), the more important the 
word is.  Equation (4) indicates that words which appear 
frequently in many sentences, and are not stopwords, are 
important.   

The final word score is computed by the value of 
S_feature(w) combined with the word score computed in 
Section II.B, as in Eq. (5):   

 E(�) = �
:(�) + E_G�����(�)   (5) 

The smaller the S(w) value, the more important a word is.  

E. Computing the candidate keyphrase’s score 

The scores of a noun phrase or a named entity extracted 
from the input document are computed based on the scores of 
words within these phrases by the following formula: 

 E(�WX) =  ∑ B(�)Z∈U[\
5A(�]^)∗�_37`      (6) 

The final score of a candidate phrase (ckp) is determined 
by the total score of each word in that phrase divided by the 
frequency of that phrase in the document and the number of 
words in that phrase. The smaller value of the S(ckp), the more 
important the phrase is. The candidate keyphrases that appear 
more frequently in the document will have higher advantages.  

F. Selecting Keyphrases 

As we mentioned in Section I, a problem in existing 
researches on keyphrase extraction is the overlapping among 
keyphrases, which reduces the diversity of the keyphrase set. 
Our strategy to deal with this problem is that if the similarity 
between two keyphrases is larger than a certain threshold, the 
one with a higher score will be removed.  

After extracting candidate keyphrases from the input 
document and computing their scores, we perform keyphrase 

extraction by ranking and filtering the candidates. The criteria 
to select keyphases are: (i) the value S(ckp) is low; (ii) the 
overlapping words among keyphrases is as small as possible. 
Our algorithm to get the final set of keyphrases is as follow:   

=========================================== 

Input: a set of candidate keyphrases in companied with their 
S(ckp) value 

Output: a set of keyphrases KPs 

Algorithm: 

1. Sort all candidate keyphrases by their S(ckp) value in 
increasing order. The result set is named CKPs.  

2. Compute the embedding vector for each candidate 
keyphrase. A phrase embedding vector is computed 
by getting the average value of its word embedding 
vector. 

3. Add the candidate keyphrase with the lowest S(kw) 
value to the keyphrase set KPs. 

4. Consider the next candidate keyphrase (ckp) in CKPs: 

1. Compute the semantic similarity between this 
candidate with all keyphrases in KPs using the 
cosine measure between their embedding 
vectors.  

2. The ckp is removed from the CKPs in the 
following cases: 

 The similarity between the ckp with a 
keyphrase in KPs is more than 0.75  

 The ckp and a keyphrase in KPs have the 
same number of words and are created by 
words with the same lemma  

 Both the ckp and a keyphrase in KPs 
contain two or three words and have at 
least two common words  

3. Otherwise, the ckp is added to the keyphrase set 
KPs. 

5. Repeat step 4 until reaching the end of the candidate 
set CKPs. 

========================================== 

We select top 5, top 10, top 15 of the keyphrase set KPs to 
be the keyphrases of the input document.  

 

III. EXPERIMENTS AND RESULTS 

A. SemEval 2010 corpus 

The SemEval 2010 dataset [8] is used to evaluate our 
method. Each document in the dataset is 6 to 8-page length on 
average, including tables and images. The dataset is created 
by gathering scientific papers from four different research 
areas, (i.e., Distributed Systems, Information Search and 
Retrieval, Distributed Artificial Intelligence – Multiagent 
Systems, and Social and Behavioral Sciences – Economics). 
Keyphrases of each article are created by human experts. The 
dataset is divided into trial, training, and test set with 44, 144, 
and 100 articles, respectively.  

 



TABLE I.  THE DISTRIBUTION OF ARTICLES ON DIFFERENT TOPICS OF THE 

SEMEVAL2010 DATASET. 

Dataset Total #document/topic 

  C H I J 

Trial 40 10 10 10 10 

Training 144 34 39 35 36 

Test 100 25 25 25 25 

 

B. Experimental Setting  

Our experiments are conducted on a computer with Intel® 
Core™ i7-6600U Processor, 16GB of RAM, and the Python 
Integrated Development Environment PyCharm. We train 
FastText with data collected from Wikipedia, using the 
Skipgram model. The parameters using in our training step are 
as follow: 

 window size = 5; dimension = 100; number of epochs = 10. 

Since Wikipedia is a scientific website, its vocabulary is 
close to the SemEval 2010 dataset. We only use the first one 
billion bytes of Wikipedia and train our system with the same 
parameter as the original FastText model.  

C. Experimental Results  

Researches on keyphrase extractions evaluate the results 
by comparing keyphrases generated by the system with the 
keyphrases in the dataset at word level and computing micro-
average Precision (P), Recall (R), and F1-score (F1). We 
measure the performance at three levels: top 5, top 10, and top 
15 keyphrases. The final results (in percentage) are shown in 
Table II below.  

TABLE II.  PERFORMANCE OF OUR SYSTEM WITH THE SEMEVAL 2010 

DATASET 

 P R F1 

Micro Avg @15 47.37 28.55 35.63 

Micro Avg @10 56.70 21.84 31.54 

Micro Avg @5 69.20 13.33 22.35 

 
Table III shows the comparison between our system 

performance and Key2Vec [6], using the same dataset 
SemEval2010.  

TABLE III.  COMPARISON WITH KEY2VEC ON SEMEVAL 2010 DATASET 

 
P        

@5 

 R 

@5 

  F1 

@5 

P 

@10 

R 

@10 

F1 

@10 

P 

@15 

R 

@15 

F1 

@15 

Our 

system 

69.20 13.33 22.35 56.70 21.84 31.54 47.37 28.55 35.63 

Key2vec 41.00 14.37 21.28 35.29 24.67 29.04 34.39 32.48 33.41 

 

Table III indicates that our proposed method provides 
better Precision and F1-score compared to Key2Vec [6]. The 
recall is a bit lower than Key2Vec because of the following 
reason. 

The evaluation tool evaluates keyphrases by the sum of 
word scores in the keyphrases. A word with a high score will 

increase the score of the keyphrase it belongs to. Because of 
that, the set in which high score words repeatedly appear in 
several keyphrases will a have higher score, resulting in a high 
value of recall. However, this will reduce the diversity of the 
keyphrase set.  

Since the purpose of our approach is to increase the 
diversity of the keyphrases and reduce the overlapping among 
them, we remove the overlapping keyphrases. That is the 
reason we have higher Precision and lower Recall. 

An example of our system output is shown in Table IV.  
The output keyphrases are sorted by decreasing order of their 
scores. 

TABLE IV.  AN EXAMPLE OF OUR SYSTEM OUTPUT USING THE SEMEVAL 

2010  DATASET 

Keyphrases generated by 
our system 

Standard keyphrases from 
the SemEval 2010 dataset 

‘service’, 
‘resource’, 
‘environment’, 
‘node’, 
‘object’, 
‘limit’, 
‘support’, 
‘management’, 
‘grid’, 
‘migration’, 
‘adaptive services’, 
‘fragmented object’, 
‘distributed’, 
‘project’, 
‘edas’ 

‘decentralized adaptive 
service’, 
‘resource management’, 
‘home environment’, 
‘infrastructure’, 
‘client’, 
‘long-term service’, 
‘eda’, 
‘local limit’, 
‘global limit’, 
‘resource’, 
‘node’, 
‘grid computing’, 
‘fragment object’, 
‘adaptability’ 

 

In the above example, the keywords/keyphrases generated 
by our system are rarely overlapped and cover most of the 
standard keywords/keyphrases when comparing at the word 
level.   

We also compared our system performance with other 
research on SemEval2010 dataset. The results are represented 
in Table V below. 

TABLE V.  COMPARISON WITH SOME RESEARCHES ON THE SEMEVAL 

2010 DATASET 

SemEval 

2010 

(Combined) 

Our 

system 

Mahata 

et al. [6] 

Danesh 

et al. 

[10] 

Lopez 

and 

Romary 

[11] 

Bougouin 

et al. [12] 

Micro Avg. 
F1@10 

31.54 29.04 26.07 22.05 12.1 

 

Table V indicates that our proposed system is better than 
other systems on F1-score.   

IV. CONCLUSIONS AND FUTURE WORK 

This paper proposed an approach to keyphrase extraction 
that can take advantage of word features and the semantic 
meaning of words and phrases. This approach can solve the 
problem of keyphrase overlapping and lacking information of 
keyphrases in the training data. Experimental results show that 



our approach can provide better performance compared to 
existing researches in this field.  

Future work includes investigating other features to 
compute the score of keyphrases, in order to increase the 
system accuracy. Also, we will apply this method for 
extracting keyphrases from Vietnamese text. We will integrate 
keyphrase extraction system to other applications such as 
plagiarism checking, recommendation system, etc…  
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