

Definition

- Part of Speech (POS) tagging: assign each word in a sentence with an appropriate POS.
- Input: a string of words + a tagset
- Output: a best tag for each word

```
Example 1
Example 2
Example 3
Example 4
Example 5
```

> Tagging makes parsing easier

Why POS tagging?

- Simple: can be done by many different methods
- Can be done well with methods that look at local context
- Though should "really" do it by parsing!
- Applications:
- Text-to-speech: record - N: ['reko:d], V: [ri'ko:d]; lead N [led], V: [li:d]
- Can be a preprocessor for a parser. The parser can do it better but more expensive
- Speech recognition, parsing, information retrieval, etc.
- Easy to evaluate (how many tags are correct?)

English word classes

- Closed class (function words): fixed membership
- Prepositions: on, under, over,..
- Particles: abroad, about, around, before, in, instead, since, without,...
- Articles: a, an, the
- Conjunctions: and, or, but, that,...
- Pronouns: you, me, I, your, what, who,...
- Auxiliary verbs: can, will, may, should,...
- Open class: new words can be added

Tagsets for English

- 87 tags - Brown corpus
- Three most commonly used:
> Small: 45 Tags - Penn treebank (next slide)
> Medium size: 61 tags, British national corpus
> Large: 146 tags, C7

	Tag	Description	Example	\| Tag	Description	Example	
	CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,\%, \&	- 0
0	CD	Cardinal number	one, two, three	TO	"0"		-
0	DT	Determiner	a, the	UH	Interjection	ah, oops	-
	EX	Existential 'there'	there	VB	Verb, base form	eat	
4	FW	Foreign word	mea culpa	VBD	Verb, past tense	ate	
	IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating	
\geq	JJ	Adjective	yellow	VBN	Verb, past participle e	eaten	
E	JJR	Adj.. comparative	bigger	VBP	Verb, non-3sg pres	eat	
T	JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats	
O	LS	List item marker	I, 2, One	WDT	Wh-determiner	which, that	
	MD	Modal	can, should	WP	Wh-pronoun	what, who	
,	NN	Noun, sing, or mass	llama	WPS	Possessive wh-	whose	
	NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where	
	NNP	Proper noun, singular	IBM	\$	Dollar sign		
	NNPS	Proper noun, plural	Carolinas	\#	Pound sign		
	PDT	Predeterminer	all, both		Left quote	(' or ")	
	POS	Possessive ending	's		Right quote	('or")	
(1)	PP	Personal pronoun	I, you, he	(Left parenthesis	([, , , , , <)	
0	PPS	Possessive pronoun	your, one's	$)$)	Right parenthesis	(1,), \}, >)	
	RB	Adverb	quickly, never		Comma		
	RBR	Adverb, comparative	faster		Sentence-final punc	(! ?	
	RBS	Adverb, superlative	fastest		Mid-sentence punc	(: $;. . .-$)	7
	RP	Particle	up, off				

Example from Penn Treebank

- The grand jury commented on a number of other topics.
\Rightarrow The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
\square
Problem of POS tagging is to resolve ambiguities, choosing the proper tag for the context.

Main types of taggers

- Stochastic tagging: Maximum likelihood, Hidden Markov model tagging

Pr (Det-N) > Pr (Det-Det)

- Rule based tagging

If <some pattern>
Then ... <some part of speech>

Approaches to Tagging

Stochastic POS tagging

- HMM tagging: 'Use all the information you have and guess'
- Constrain Grammar (CG) tagging: 'Don't guess, just eliminate the impossible!'
- Transformation-based (TB) tagging:
'Guess first, then change your mind if nessessary!'

For a given sentence or word sequence, pick the most likely tag for each word.

How?

- A Hidden Markov model (HMM) tagger:

Choose the tag sequence that maximizes:
$P($ word \mid tag $) \bullet P($ tag \mid previous n tags)
The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
$\Rightarrow \mathrm{P}($ jury $\mid \mathrm{NN})=1 / 2$

Calculate Probabilities

Let's consider $P(\mathrm{VB} \mid \mathrm{TO})$ and $P(\mathrm{NN} \mid \mathrm{TO})$

- Can find these pr estimates by counting in a corpus (and normalizing)
- Expect that a verb is more likely to follow TO than a Noun is, since infinitives are common in English (to race, to walk). A noun can follow TO (run to school)
- From the Brown corpus

$$
\begin{array}{ll}
P(\mathrm{NN} \mid \mathrm{TO})= & .021 \\
P(\mathrm{VB} \mid \mathrm{TO})= & .340
\end{array}
$$

HMM tagging

- Bigram HMM Equation: choose t_{i} for w_{i} that is most probably given t_{i-1} and w_{i} :
$t_{i}=\operatorname{argmax}_{\mathrm{j}} P\left(t_{j} \mid t_{i-1}, w_{i}\right)$
(1)

$$
\log -2 x+2
$$

- A HMM simplifying assumption: the tagging problem can be solved by looking at nearby words and tags.

$$
\begin{align*}
t_{i}= & \operatorname{argmax}_{\mathrm{j}} P\left(t_{j} \mid t_{i-1}\right) P\left(w_{i} \mid t_{j}\right) \tag{2}\\
& \text { pr tag sequence word (lexical) likelihood } \\
& \text { (tag co-occurrence) }
\end{align*}
$$

Suppose we have tagged all but race

- Look at just preceding word (bigram): to/TO race/??? NN or VB? the/DT race/???
- Applying (2): $t_{i}=\operatorname{argmax}_{\mathrm{j}} P\left(t_{j} \mid t_{i-1}\right) P\left(w_{i} \mid t_{j}\right)$
- Choose tag with greater of the two probabilities: $P(\mathrm{VB} \mid \mathrm{TO}) P($ race $\mid \mathrm{VB})$ or $\quad P(\mathrm{NN} \mid \mathrm{TO}) P($ race $\mid \mathrm{NN})$

The full model

- Now we want the best sequence of tags for the whole sentence
- Given the sequence of words, W, we want to compute the most probably tag sequence, $T=t_{1}, t_{2}, \ldots, t_{n}$ or,

$$
\begin{aligned}
\hat{T} & =\underset{T \in \tau}{\arg \max } P(T \mid W) \\
& =\underset{T \in \tau}{\arg \max } \frac{P(T) P(W \mid T)}{P(W)} \quad \text { (Bayes' Theorem) } \\
& =\underset{T \in \tau}{\operatorname{argmax}} P(T) P(W \mid T)
\end{aligned}
$$

Expand this using chain rule

From chain rule for probabilities:

$$
\left.\begin{array}{l}
\mathrm{P}(\mathrm{~A}, \mathrm{~B})=\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B})=\mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{P}(\mathrm{~A}) \\
\mathrm{P}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\mathrm{P}(\mathrm{~B}, \mathrm{C} \mid \mathrm{A}) \mathrm{P}(\mathrm{~A})=\mathrm{P}(\mathrm{C} \mid \mathrm{A}, \mathrm{~B}) \mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{P}(\mathrm{~A}) \\
\\
=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{P}(\mathrm{C} \mid \mathrm{A}, \mathrm{~B})
\end{array} \begin{array}{rl}
\mathrm{P}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D} \ldots)=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{P}(\mathrm{C} \mid \mathrm{A}, \mathrm{~B}) \mathrm{P}(\mathrm{D} \mid \mathrm{A}, \mathrm{~B}, \mathrm{C} . .)
\end{array}\right] \begin{aligned}
& \mathrm{P}(T) \mathrm{P}(W \mid T)=\prod_{i=1}^{n} \underset{\text { pr word }}{P\left(w_{i} \mid w_{1} t_{1} \ldots w_{i-1} t_{i-1} t_{i}\right)} \mathrm{P} \underset{\text { tag history }}{\stackrel{\left(t_{i} \mid w_{1} t_{1} \ldots w_{i-1} t_{i-1}\right)}{\longleftrightarrow}}
\end{aligned}
$$

- Tag history approximated by two most recent tags (trigram: two most recent + current state)

$$
P\left(t_{i} \mid w_{1} t_{1} \ldots t_{i-1}\right)=P\left(t_{i} \mid t_{i-2} t_{i-1}\right)
$$

Estimate Probabilities

- Use relative frequencies from corpus to estimate these probabilities:

$$
\begin{aligned}
P\left(t_{i} \mid t_{i-1} t_{i-2}\right) & =\frac{c\left(t_{i-2} t_{i-1} t_{i}\right)}{c\left(t_{i-2} t_{i-1}\right)} \\
P\left(w_{i} \mid t_{i}\right) & =\frac{c\left(w_{i}, t_{i}\right)}{c\left(t_{i}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~T}) \mathrm{P}(\mathrm{~W} \mid \mathrm{T})= \\
& P\left(t_{1}\right) P\left(t_{2} \mid t_{1}\right) \prod_{i=3}^{n} P\left(t_{i} \mid t_{i-2} t_{i-1}\right)\left[\prod_{i=1}^{n} P\left(w_{i} \mid t_{i}\right)\right]
\end{aligned}
$$

Replacing to the equation

Problem

The problem to solve:

$$
\hat{T}=\underset{T \in \tau}{\arg \max } P(T) P(W \mid T)
$$

All $\mathrm{P}(\mathrm{T}) \mathrm{P}(\mathrm{W} \mid \mathrm{T})$ can now be computed

How do we find maximum (best) path?

- We use best-first (A^{*}) search, as in AI...

1. At each step, k best values (\hat{T}) are chosen. Each of the k values corresponds to one possible tagging combination of the visited words.
2. When tagging the next word, recompute probabilities. Go to step 1.

- Advantage: fast (do not need to check all possible combinations, but only k potential ones).
- Disadvantage: may not return the best solution, but only acceptable results.

The counts add scores - we want to find the maximum scoring path

Accuracy

- Accuracy of this method > 96\%
- Baseline? 90\%
- Baseline is performance of stupidest possible method
- Tag every word with its most frequent tag
- Tag unknown words as nouns
- Human: $97 \%+/-3 \%$; if discuss together: 100\%

Suppose we don't have training data

- Can estimate roughly:
- start with uniform probabilities,
- use Expectation Maximization (EM) algorithm to reestimate from counts
- try labeling with current estimate
- use this to correct estimate
> Not work well, a small amount of hand-tagged training data improves the accuracy

Second approach: transformationbased tagging

Transformation-based Learning (TBL):

- Combines symbolic and stochastic approaches: uses machine learning to refine its tags, via several passes
- Tag using a broadest (most general) rule; then an narrower rule, that changes a smaller number of tags, and so on.

How does the TBL system work?

How does the TBL system work?

Rules for POS tagging

```
```

pos:'NN'>'VB' <- pos:'TO'@[-1] O

```
```

pos:'NN'>'VB' <- pos:'TO'@[-1] O
pos:'VBP'>'VB' <- pos:'MD'@[-1,-2,-3] ○
pos:'VBP'>'VB' <- pos:'MD'@[-1,-2,-3] ○
pos:'NN'>'VB' <- pos:'MD'@[-1,-2] O
pos:'NN'>'VB' <- pos:'MD'@[-1,-2] O
pos:'VB'>'NN' <- pos:'DT'@[-1,-2] o
pos:'VB'>'NN' <- pos:'DT'@[-1,-2] o
pos:'VBD'>'VBN' <- pos:'VBZ'@[-1,-2,-3] ○
pos:'VBD'>'VBN' <- pos:'VBZ'@[-1,-2,-3] ○
pos:'VBN'>'VBD' <- pos:'PRP'@[-1] ○
pos:'VBN'>'VBD' <- pos:'PRP'@[-1] ○
pos:'POS'>'VBZ' <- pos:'PRP'@[-1] ०
pos:'POS'>'VBZ' <- pos:'PRP'@[-1] ०
pos:'VB'>'VBP' <- pos:'NNS'@[-1] O
pos:'VB'>'VBP' <- pos:'NNS'@[-1] O
pos:'IN'>'RB' <- wd:as@[0] \& wd:as@[2] ○
pos:'IN'>'RB' <- wd:as@[0] \& wd:as@[2] ○
pos:'IN'>'WDT' <- pos:'VB'@[1,2] ○
pos:'IN'>'WDT' <- pos:'VB'@[1,2] ○
pos:'VB'>'VBP' <- pos:'PRP'@[-1] ○
pos:'VB'>'VBP' <- pos:'PRP'@[-1] ○
pos:'IN'>'WDT' <- pos:'VBZ'@[1] ○

```
```

pos:'IN'>'WDT' <- pos:'VBZ'@[1] ○

```
```

1. Label every word with its most-likely tag (often 90\% right). From Brown corpus:
$P($ NN|race $)=0.98$
$P($ VB|race $)=0.02$
2. ...expected/VBZ to/(TO race/VB)tomorrow/NN ...the/DT race/NN for/IN outer/JJ space/NN
3. Use transformational (learned) rules:

Change NN to VB when the previous tag is TO pos: 'NN'>'VB' \leftarrow pos: ‘TO’ @[-1] o

Rules for POS tagging

```
NN VD FREVTAG TO
VB VBP PREVTAG PRP
VBD VBN PREVIOR2TAG VBD
VBN VBD PREVTAG PRP
NN VD FREVIOR2TAG MD
VB VBP PREVTAG NNS
VB NN PREV1OR2TAG DT
VBN VBD PREVTAG NNE
VDD VDN PREVIOR2OR3TAG VBZ
IN DT PREVTAG IN
VBP VB PREVIOR2OR3TAG MD
IN RB WDAND2AET as as
IN RB WDAND2AFT as as
VBD VBN PREVIOR2TAG VB
RB JU NEXTTAG NN
VBP VB PREVIOR2OR3TAG TO
POS VBZ PREVTAG PRF
NN VBP PREVTAG PRP
NN VBP PREVTAG PRP
DT PDT NEXTTAG DT
```

Learning TB rules in TBL system

Stop when score of best rule falls below threshold.

Various Corpora

- Training corpus
w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10
- Current corpus (CC 1)
dt vb nn dt vb kn dt vb ab dt vb
- Reference corpus $d t n n v b d t n n d t j j k n d t n$

Rule Templates

- In TBL, only rules that are instances of templates can be learned.
- For example, the rules tag:'VB'>'NN' \leftarrow tag:'DT'@[-1]. tag:'NN'>'VB' \leftarrow tag:'DT'@[-1].
are instances of the template
tag:A>B \leftarrow tag:C@[-1].
- Alternative syntax using anonymous variables tag:_>_ \leftarrow tag:_@[-1].

Learning TB rules in TBL system

Derive and Score Candidate Rule 1

- Template $=$ tag:_>_ \leftarrow tag:_@ $[-1]$
- R1 = tag:vb>nn \leftarrow tag:dt@[-1]

- $\operatorname{pos}(\mathrm{R} 1)=3$
- $n e g(R 1)=1$
- $\operatorname{score}(\mathrm{R} 1)=\operatorname{pos}(\mathrm{R} 1)-\operatorname{neg}(\mathrm{R} 1)=3-1=2$

Derive and Score Candidate Rule 2

- Template $=$ tag:_>_ \leftarrow tag:_@[-1]
- R2 = tag:nn>vb \leftarrow tag:vb@[-1]

CC 1	dt	vb	nn	dt	vb	kn	dt	vb	ab	dt	vb
CC i +1	dt	vb	vb	dt	vb	kn	dt	vb	ab	dt	vb

Ref. C	dt	nn	vb	dt	nn	kn	dt	nn	kn	dt	nn

- $\operatorname{pos}(\mathrm{R} 2)=1$
- $n e g(R 2)=0$
- $\operatorname{score}(\mathrm{R} 2)=\operatorname{pos}(\mathrm{R} 2)-\operatorname{neg}(\mathrm{R} 2)=1-0=1$

Select Best Rule Optimizations :日:

- Reduce redundance rules: only generate candidate rules that have at least one match in the training data.
- Incremental evaluation:
- Keep track of the leading rule candidate.
- Ignore rules that has \#positive matches < score of the leading rule

Advantages of TB Tagging

- Rules can be created/edited manually
- Rules have a declarative, logical semantics
- Simple to implement
- Can be extremely fast (but implementation is more complex)

Error analysis: what's hard for taggers

Common errors (> 4\%)

- NN (common noun) vs .NNP (proper noun) vs. JJ (adjective): hard to distinguish; important to distinguish especially for information extraction
- RP(particle) vs. RB(adverb) vs. IN(preposition): all can appear in sequences immediate after verb
- VBD vs. VBN vs. JJ: distinguish past tense, past participles, adjective (raced vs. was raced vs. the out raced horse)

Greedy Best-First Search

Evaluation function
$h(n)=$ estimated cost of the cheapest path from the state represented by the node n to a goal state

Most powerful unknown word detectors

- 3 inflectional endings (-ed, -s, -ing); 32 derivational endings (-ion, etc.); capitalization; hyphenation
- More generally:
- Morphological analysis
- Machine learning approaches

