Artificial Intelligence

For HEDSPI Project

Lecturer 9 - Propositional Logic

Lecturers

Le Thanh Huong
Dept of Information Systems
School of Information and Communication Technology HUST

Knowledge-based Agents

- Know about the world
- They maintain a collection of facts (sentences) about the world, their Knowledge Base, expressed in some formal language.
- Reason about the world
- They are able to derive new facts from those in the KB using some inference mechanism.
- Act upon the world
- They map percepts to actions by querying and updating the KB .

Propositional Logic

- Propositional Logic is about facts in the world that are either true or false, nothing else
- Propositional variables stand for basic facts
- Sentences are made of
- propositional variables ($\mathrm{A}, \mathrm{B}, \ldots$),
- logical constants (TRUE, FALSE), and
- logical connectives (not,and,or,..)
- The meaning of sentences ranges over the Boolean values \{True, False\}
- Examples: It's sunny, John is married

Language of Propositional Logic

Formal Language of Propositional
Logic

- Symbols
- Propositional variables: A,B,..,P,Q,...
- Formal Grammar
- Logical constants: TRUE, FALSE
- Logical connectives:
- Sentences
- Each propositional variable is a sentence
- Each logical constant is a sentence
- If α and β are sentences then the following are sentences
$(\alpha), \neg \alpha, \alpha \wedge \beta, \alpha \vee \beta, \alpha \Rightarrow \beta, \alpha \Leftrightarrow \beta$
- Sentence -> Asentence|Csentence
- Asentence -> TRUE |FALSE |A|B|..
- Csentence -> (Sentence)| Sentence|Sentence Connective Sentence
- Connective -> $\neg, \wedge, \vee, \Rightarrow$, \Leftrightarrow

Semantic of Propositional Logic

Semantic of Propositional Logic

- The meaning of TRUE is always True, the meaning of FALSE is always False
- The meaning of a propositional variable is either True or False
- depends on the interpretation
- assignment of Boolean values to propositional variables
- The meaning of a sentence is either True or False
- depends on the interpretation

\mathbf{P}	\mathbf{Q}	Not \mathbf{P}	\mathbf{P} and \mathbf{Q}	\mathbf{P} or Q	P implies Q	\mathbf{P} equiv Q
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

\qquad $\mathrm{a} \Rightarrow \mathrm{b} \Leftrightarrow \neg \mathrm{a} \vee \mathrm{b} \Leftrightarrow \neg \mathrm{b} \Rightarrow \neg \mathrm{a}$

Semantic of Propositional Logic

Inference in Propositional Logic

- Entailment
- Forward Chaining
- Given
- Backward Chaining
- A set of sentences S
- A sentence A
- We write

$S \vDash A$

if and only if every interpretation that makes all sentences in S true also makes A true

- We said that S entails A

Forward Chaining

- Given a set of rules, i.e. formulae of the form

$$
p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q
$$

and a set of known facts, i.e., formulae of the form

q, r, \ldots

- A new fact p is added
- Find all rules that have p as a premise
- If the other premises are already known to hold then - add the consequent to the set of know facts, and
- trigger further inferences

Forward Chaining

- Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

\qquad

Forward Chaining

Forward Chaining

Forward Chaining

\{ 1 Temp = Fact;
Sat= FindRules(Temp,R);
while Sat<>0 and Goal \notin Temp do
$\left\{_{2} \quad r \leftarrow\right.$ get(Sat); /* r : left $\rightarrow q$ */
$\mathrm{R}=\mathrm{R} \backslash\{\mathrm{r}\}$; Trace $=$ Trace $\cup\{r\} ;$
Temp $=$ Temp $\cup\{q\} ;$
Sat $=$ FindRules $($ Temp, R)
$\}_{2}$
if Goal \subseteq Temp then exit("Success")
else exit("Not success")
$\}_{1}$

Example

E1. Given Fact $=\left\{a, b, m_{a}\right\}$. Prove h_{c}

1. $\mathrm{a}, \mathrm{b}, \mathrm{m}_{\mathrm{a}} \rightarrow \mathrm{c}$
2. $a, B \rightarrow h_{c}$
3. $a, b, c \rightarrow A$
4. $A, B \rightarrow C$
5. $\mathrm{b}, \mathrm{A} \rightarrow \mathrm{h}_{\mathrm{c}}$
6. $B, C \rightarrow A$
7. $a, b, c \rightarrow B$
8. $A, C \rightarrow B$
9. $a, b, c \rightarrow C$

Backward Chaining

- Given a set of rules, and a set of known facts
- We ask whether a fact P is a consequence of the set of rules and the set of known facts
- The procedure check whether P is in the set of known facts
- Otherwise find all rules that have P as a consequent
- If the premise is a conjunction, then process the conjunction conjunct by conjunct

Exercises

Compare stack and queue

1- Given Fact=\{a\}, Goal=\{u\}

1. $a \rightarrow b$

2 - Given Fact=\{a\}, Goal=\{u\}
2. $b \rightarrow c$

1. $a \rightarrow b$
2. $\mathrm{c} \rightarrow \mathrm{d}$
3. $\mathrm{d} \rightarrow \mathrm{c}$
4. $\mathrm{a} \rightarrow \mathrm{u}$
5. $\mathrm{c} \rightarrow \mathrm{u}$
6. $a \rightarrow m$
7. $b \rightarrow n$
8. $\mathrm{m} \rightarrow \mathrm{p}$
9. $p \rightarrow q$
10. $q \rightarrow u$

Backward Chaining

- Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow B \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Backward Chaining

Variables:

- Goal: set of variables needed to be proved
- temp $=\{f \mid \mathrm{f}$ is needed to be proved until now\}
- \quad trace $=\left\{(f, j) \mid\right.$ to prove f, use rule $j:$ left $\left._{\mathrm{j}} \rightarrow f\right\}$
- Flag Back = true when backtrack false otherwise

Backward Chaining

Example:

1. $h_{a}, c \rightarrow B$
2. $a, B \rightarrow h_{c}$
3. $a, b, m_{a} \rightarrow c$
4. $b, A \rightarrow h_{c}$
5. $a, b, c \rightarrow A$
6. $c, S \rightarrow h_{c}$
7. $a, b, c \rightarrow B$
8. $a, b, c \rightarrow S$
9. $a, b, c \rightarrow C$
Fact $=\left\{a, b, m_{a}\right\} ; \quad$ Goal $=\left\{h_{c}\right\}$

Exercises

E1. Given Fact=\{a,b, ma
E2. Given Fact=\{a\}, Goal $=\left\{h_{c}\right\}$
Goal=\{u\}

- $\mathrm{a}, \mathrm{b}, \mathrm{m}_{\mathrm{a}} \rightarrow \mathrm{c}$

1. $a \rightarrow b$
$a, b, C \rightarrow s$
2. $d \rightarrow c$
$\mathrm{a}, \mathrm{s} \rightarrow \mathrm{h}_{\mathrm{a}}$
3. $\mathrm{c} \rightarrow \mathrm{u}$
$\mathrm{b}, \mathrm{s} \rightarrow \mathrm{h}_{\mathrm{b}}$
4. $a \rightarrow m$
$\mathrm{c}, \mathrm{s} \rightarrow \mathrm{h}_{\mathrm{c}}$
5. $\mathrm{b} \rightarrow \mathrm{n}$
$\mathrm{a}, \mathrm{B} \rightarrow \mathrm{h}_{\mathrm{c}}$
6. $m \rightarrow p$
7. $p \rightarrow q$
8. $q \rightarrow u$

Transformation rules

$$
\left.\begin{array}{rl}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma))
\end{array}\right\} \text { commutation } \begin{aligned}
& \\
& \neg(\neg \alpha) \equiv \alpha \text { double negation } \\
&\left.\begin{array}{rl}
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg \alpha) \text { contrast } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma))
\end{array}\right\} \text { de Morgan } \\
&(\alpha \vee(\alpha)
\end{aligned}
$$

\qquad

Transformation rules (con't)

Law of absorption:

$$
\cdot(A \vee(A \wedge B) \equiv A \quad \cdot(A \wedge(A \vee B)) \equiv A
$$

Rules about 0, 1 :

- $A \wedge 0 \Leftrightarrow 0$
- $A \vee 0 \Leftrightarrow A$
- $A \vee 1 \Leftrightarrow 1$
- $A \wedge 1 \Leftrightarrow A$
- $\neg 1 \Leftrightarrow 0$
- $\neg 0 \Leftrightarrow 1$

Law of decentralization:

- $\neg A \vee A \Leftrightarrow 1$

Law of contradiction:

- $\neg \mathrm{A} \wedge \mathrm{A} \Leftrightarrow 0$

Example

$(\mathrm{A} \vee \mathrm{B}) \rightarrow(\mathrm{C} \rightarrow \mathrm{D})$

1. Remove \Rightarrow
$\neg(A \vee B) \vee(\neg C \vee D)$
2. Move negation inward
$(\neg \mathrm{A} \wedge \neg \mathrm{B}) \vee(\neg \mathrm{C} \vee \mathrm{D})$
3. Distribution
$(\neg \mathrm{A} \vee \neg \mathrm{C} \vee \mathrm{D}) \wedge(\neg \mathrm{B} \vee \neg \mathrm{C} \vee \mathrm{D})$

Exercises

Transform the following expression into CNF.

1. $P \vee(\neg P \wedge Q \wedge R)$
2. $(\neg P \wedge Q) \vee(P \wedge \neg Q)$
3. $\neg(P \Rightarrow Q) \vee(P \vee Q)$
4. $(P \Rightarrow Q) \Rightarrow R$
5. $(P \Rightarrow(Q \Rightarrow R)) \Rightarrow((P \wedge S) \Rightarrow R)$
6. $(P \wedge(Q \Rightarrow R)) \Rightarrow S$
7. $P \wedge Q \Rightarrow R \wedge S$
8. $\quad((a \vee b) \wedge c) \rightarrow(c \wedge d)$

$$
\text { Priority: } \neg \wedge \vee \rightarrow \leftrightarrow
$$

```
    (\alpha^\beta) \equiv(\beta\wedge\alpha)
    \alpha\vee\beta)}\equiv(\beta\vee\alpha
((\alpha\wedge\beta)\wedge\gamma)}=(\alpha\wedge(\beta\wedge\gamma)
((\alpha\vee\beta)\vee\gamma)}=(\alpha\vee(\beta\vee\gamma)
        \neg(\neg\alpha)}=
    (\alpha=>\beta) \equiv(\neg\beta=>\neg\alpha)
    (\alpha=>\beta) \equiv(~\alpha\vee\beta)
    (\alpha\Leftrightarrow\beta) \equiv{(\alpha=>\beta)^(\beta=>\alpha))
        \neg(\alpha\wedge\beta)}\equiv(\neg\alpha\vee\neg\beta
        \neg(\alpha\vee\beta)=( (~\alpha\wedge\neg\beta)}\quad\mp@code{1.
(\alpha\wedge(\beta\vee\gamma)) \equiv((\alpha\wedge\beta)\vee (\alpha\wedge\gamma))
(\alpha\vee (\beta\wedge\gamma)) \equiv((\alpha\vee\beta)\wedge(\alpha\vee\gamma))
                            \neg(P=>Q)\vee(P\veeQ)
                            4. }(P=>Q)=>
                            5. (P=>(Q=>R))=>((P\wedgeS)=>R)
                            6. }(P\wedge(Q=>R))=>
                            7. }P\wedgeQ=>R\wedge
                            8. }((a\veeb)\wedgec)->(c\wedged
```


Resolution

- Herbrand's Theorem (~1930)
- A set of sentences S is unsatisfiable if and only there exists a finite subset S_{g} of the set of all ground instances $\operatorname{Gr}(\mathrm{S})$, which is unsatisfiabe
- Herbrand showed that there is a procedure to demonstrate the unsatisfiability of a unsatisfiable set of sentences
- Robinson propose the Resolution procedure (~1950)
E.g., $\frac{P_{1,3} \vee P_{2,2}, \neg P_{2,2}}{P_{1,3}}$

Idea of Resolution

- Sun: Do you love me?
- Dad: yes, of course
- Sun: If you love me, then do you pamper me?
- Dad: yes
- Sun: If you pamper me, then if I ask you anything, will you give it to me?
- Dad: fine
- Sun: Give me money?
- Dad: No
- Sun: You are a liar

Idea of Resolution

- Refutation-based procedure
- $S /=A$ if and only if $S \cup\{\neg A\}$ is unsatisfible
- Resolution procedure
- Transform $S \cup\{\neg A\}$ into a set of clauses
- Apply Resolution rule to find a the empty clause (contradiction)
- If the empty clause is found
- Conclude S /=A
- Otherwise
- No conclusion

Idea of Resolution

Robinson's Resolution

function PL-ReSolution ($K B, \alpha$) returns true or false clauses \leftarrow the set of clauses in the CNF representation of $K B \wedge \neg \alpha$ new $\leftarrow\}$ loop do
for each C_{i}, C_{j} in clauses do
resolvents $\leftarrow \operatorname{PL}-\operatorname{ResolvE}\left(C_{i}, C_{j}\right)$
if resolvents contains the empty clause then return true new \leftarrow new \cup resolvents
if new \subseteq clauses then return false
clauses \leftarrow clauses \cup new

$$
\frac{A \vee B \quad \neg B \vee C}{A \vee C}
$$

Robinson's Resolution

Given $K B=\{P 1, P 2, \ldots, P n\}$. Prove Q.
Add $\neg \mathrm{Q}$ to $\mathrm{KB}: \mathrm{KB}=\mathrm{KB} \wedge \neg \mathrm{Q}$. Prove unsatisfied.

1. Write each $\mathrm{Pi}, \neg \mathrm{Q}$ in one line.
2. Transfer to CNF representation
$\left(a_{1} \vee \ldots \vee a_{n}\right) \wedge\left(b_{1} \vee \ldots \vee b_{n}\right) \quad\left({ }^{*}\right)$
3. Rewrite each line (*) into smaller lines:

$$
\begin{aligned}
& a_{1} \vee \ldots \vee a_{n} \\
& b_{1} \vee \ldots \vee b_{n}
\end{aligned}
$$

Robinson's Resolution

Consider 2 lines

```
u) }\negp\vee
```

 v) \(p \vee r\)
 Resolution:
w) $q \vee r$

Contrast appears when KB contains 2 lines:
i) $\neg t$
ii) t
\Rightarrow done

Examples

E1)	E2)
1. a	1. $a \wedge b \rightarrow c$
2. $a \rightarrow b$	2. $b \wedge c \rightarrow d$
3. $b \rightarrow(c \rightarrow d)$	3. a
4. c	4. b
Prove d	Prove d

Exercise 5

1. $\mathrm{a} 1 \vee \mathrm{a} 2 \Rightarrow \mathrm{a} 3 \vee \mathrm{a} 4$
2. $\mathrm{a} 1 \Rightarrow \mathrm{a} 5$
3. $\mathrm{a} 2 \wedge \mathrm{a} 3 \Rightarrow \mathrm{a} 5$
4. $\mathrm{a} 2 \wedge \mathrm{a} 4 \Rightarrow \mathrm{a} 6 \wedge \mathrm{a} 7$
5. $\mathrm{a} 5 \Rightarrow \mathrm{a} 7$
6. $\mathrm{a} 1 \wedge \mathrm{a} 3 \Rightarrow \mathrm{a} 6 \vee \mathrm{a} 7$

- Given a1, a2 are true .
- Transfer the above sentences to the CNF representation
- Apply the Robinson's resolution, prove a7 is true.

Exercise 7

1. $(a \wedge b) \Rightarrow c$
2. $(a \vee b) \Rightarrow(\neg c \vee d)$
3. $(\mathrm{m} \wedge \mathrm{u}) \Rightarrow c$
4. $a \Rightarrow(g \wedge f)$
5. $(x \wedge b) \Rightarrow((d \vee m) \wedge(g \vee u))$
6. $((d \wedge e) v a) \Rightarrow(g \vee u)$
7. $(\mathrm{g} \wedge \mathrm{u}) \Rightarrow(\mathrm{y} \wedge \mathrm{d})$
8. $d \Rightarrow e$

- Transfer the above sentences to the CNF representation
- Given a, b true. Apply the Robinson's resolution, prove e is true

Exercise 6

Given

C
6. $(b \wedge d) \Rightarrow h$
2. d
7. $a \wedge c \Rightarrow f \wedge g$
3. $b \wedge d \Rightarrow g$
8. $d \vee c \Rightarrow a \vee b$
4. $b \wedge c \Rightarrow e$
9. $c \wedge e \Rightarrow g$
5. $d \Rightarrow e$

- Transfer the above sentences to the CNF representation
- Apply the Robinson's resolution, prove $\mathrm{e} \wedge \mathrm{g}$ true
\qquad

