Artificial Intelligence

For HEDSPI Project

Lecturer 9 – Propositional Logic

Lecturers :

Le Thanh Huong Dept of Information Systems School of Information and Communication Technology -HUST

Knowledge-based Agents

- Know about the world
 - They maintain a collection of facts (sentences) about the world, their Knowledge Base, expressed in some formal language.
- Reason about the world
 - They are able to derive new facts from those in the KB using some inference mechanism.
- Act upon the world
 - They map percepts to actions by querying and updating the KB.

What is Logic ?

- A logic is a triplet <L,S,R>
 - L, the language of the logic, is a class of sentences described by a precise syntax, usually a formal grammar
 - S, the logic's semantic, describes the meaning of elements in L
 - R, the logic's inference system, consisting of derivation rules over L
- Examples of logics:
 - Propositional, First Order, Higher Order, Temporal, Fuzzy, Modal, Linear, ...

Propositional Logic

- Propositional Logic is about facts in the world that are either true or false, nothing else
- Propositional variables stand for basic facts
- Sentences are made of
 - □ propositional variables (A,B,...),
 - □ logical constants (TRUE, FALSE), and
 - logical connectives (not,and,or,..)
- The meaning of sentences ranges over the Boolean values {True, False}
 - Examples: It's sunny, John is married

Semantic of Propositional Logic

True table

Р	Q	Not P	P and Q	P or Q	P implies Q	P equiv Q
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

 $a \Rightarrow b \Leftrightarrow \neg a \lor b \Leftrightarrow \neg b \Rightarrow \neg a$

Entailment

Given

- A set of sentences S
- A sentence A
- We write

S A

if and only if every interpretation that makes all sentences in S true also makes A true

We said that S entails A

Inference in Propositional Logic

Backward Chaining

Forward Chaining

Given a set of rules, i.e. formulae of the form

 $p_1 \wedge p_2 \wedge ... \wedge p_n \Rightarrow q$ and a set of known facts, i.e., formulae of the form q, r, ...

- A new fact *p* is added
- Find all rules that have *p* as a premise
- If the other premises are already known to hold then
 - $\hfill\square$ add the consequent to the set of know facts, and
 - $\hfill\square$ trigger further inferences

Example

E1. Given Fact = {a,b,m_a}. Prove h_c 1. a,b,m_a \rightarrow c6. a,B \rightarrow h_c2. a,b,c \rightarrow A7. A,B \rightarrow C3. b,A \rightarrow h_c8. B,C \rightarrow A4. a,b,c \rightarrow B9. A,C \rightarrow B5. a,b,c \rightarrow C

Backward Chaining

- Given a set of rules, and a set of known facts
- We ask whether a fact P is a consequence of the set of rules and the set of known facts
- The procedure check whether P is in the set of known facts
- Otherwise find all rules that have P as a consequent
 - If the premise is a conjunction, then process the conjunction conjunct by conjunct

Exercises

Compare stack and queue

1- Given Fact={a}, Goal={u}	2 - Given Fact={a}, Goal={u}
1. a→b	1. $a \rightarrow b$
$\mathbf{a} \mathbf{b} \to \mathbf{c}$	2. $d \rightarrow c$
$c \rightarrow d$	3. $c \rightarrow u$
4. $a \rightarrow u$	4. $a \rightarrow m$
	5. $b \rightarrow n$
	6. $m \rightarrow p$
	7. $p \rightarrow q$
	8. $q \rightarrow u$

Backward Chaining

Variables:

- Goal: set of variables needed to be proved
- temp = {f| f is needed to be proved until now}
- trace ={(f,j)| to prove f, use rule j: $left_i \rightarrow f$ }
- Flag Back = true when backtrack false otherwise

Backward Chaining			
Example: 1. $h_a, c \rightarrow B$ 2. $a, b, m_a \rightarrow c$ 3. $a, b, c \rightarrow A$ 4. $a, b, c \rightarrow B$ 5. $a, b, c \rightarrow C$ Fact={ a, b, m_a };	6. $a, B \rightarrow h_c$ 7. $b, A \rightarrow h_c$ 8. $c, S \rightarrow h_c$ 9. $a, b, c \rightarrow S$ Goal={ h_c }		
		31	

$ \begin{array}{c} \text{E1. Given Fact=} \{a,b,m_a\},\\ \text{Goal=} \{h_c\} \\ \text{1. } a,b,m_a \rightarrow c \\ \text{2. } a,b,C \rightarrow s \\ \text{3. } a,s \rightarrow h_a \\ \text{4. } b,s \rightarrow h_b \\ \text{5. } c,s \rightarrow h_c \\ \text{6. } a,B \rightarrow h_c \\ \end{array} \begin{array}{c} \text{E2. Given Fact=} \{a\}, \\ \text{Goal=} \{u\} \\ \text{1. } a \rightarrow b \\ \text{2. } a,b,C \rightarrow s \\ \text{2. } a \rightarrow b \\ \text{3. } a \rightarrow b \\ \text{3. } a \rightarrow b \\ \text{3. } a \rightarrow b \\ \text{4. } a \rightarrow m \\ \text{5. } b \rightarrow n \\ \end{array} $	Exercises	
7. $a,b,c \rightarrow B$ 7. $p \rightarrow q$ 8. $q \rightarrow u$ 32	Goal={ h_c } 1. a,b,m _a \rightarrow c 2. a,b,C \rightarrow s 3. a,s \rightarrow h _a 4. b,s \rightarrow h _b 5. c,s \rightarrow h _c	Goal={u} 1. $a \rightarrow b$ 2. $d \rightarrow c$ 3. $c \rightarrow u$ 4. $a \rightarrow m$ 5. $b \rightarrow n$ 6. $m \rightarrow p$ 7. $p \rightarrow q$ 8. $q \rightarrow u$

Transformation rules $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutation $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ combination $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ $\neg(\neg \alpha) \equiv \alpha$ double negation $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contrast $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ de Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distribution $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$ 33

Exercises Transform the following expression into CNF. 1. $P \lor (\neg P \land Q \land R)$ 2. $(\neg P \land Q) \lor (P \land \neg Q)$ 3. $\neg (P \Rightarrow Q) \lor (P \lor Q)$ 4. $(P \Rightarrow Q) \Rightarrow (P \lor Q)$ 5. $(P \Rightarrow (Q \Rightarrow R)) \Rightarrow ((P \land S) \Rightarrow R)$ 6. $(P \land (Q \Rightarrow R)) \Rightarrow S$ 7. $P \land Q \Rightarrow R \land S$ 8. $((a \lor b) \land c) \rightarrow (c \land d)$

Idea of Resolution

- Sun: Do you love me?
- Dad: yes, of course
- Sun: If you love me, then do you pamper me?
- Dad: yes
- Sun: If you pamper me, then if I ask you anything, will you give it to me?
- Dad: fine
- Sun: Give me money?
- Dad: No
- Sun: You are a liar

Idea of Resolution

- Refutation-based procedure
 S /= A if and only if S ∪ {¬A} is unsatisfible
- Resolution procedure
- □ Transform $S \cup \{\neg A\}$ into a set of clauses
- Apply Resolution rule to find a the empty clause (contradiction)
 - If the empty clause is found
 - Conclude S |= A
 - Otherwise
 No conclusion

Idea of Resolution

A clause is a disjunction of literals, i.e., has the form

$$P_1 \lor P_2 \lor \dots \lor P_n \qquad P_i \equiv [\neg]R$$

- The empty clause corresponds to a contradiction
- Resolution rule

$$\frac{A \lor B \quad \neg B \lor C}{A \lor C}$$

Robinson's Resolution

function PL-RESOLUTION(*KB*, α) returns *true* or *false* $clauses \leftarrow$ the set of clauses in the CNF representation of $KB \land \neg \alpha$ $new \leftarrow \{\}$ loop do for each C_i, C_j in *clauses* do $resolvents \leftarrow PL-RESOLVE(C_i, C_j)$ if *resolvents* contains the empty clause then return *true* $new \leftarrow new \cup resolvents$ if $new \subseteq clauses$ then return *false* $clauses \leftarrow clauses \cup new$

44

Robinson's Resolution

Given KB = {P1, P2, ..., Pn}. Prove Q. Add \neg Q to KB: KB = KB $\land \neg$ Q. Prove unsatisfied.

```
1. Write each Pi, \neg Q in one line.
```

- 2. Transfer to CNF representation $(a_1 \lor ... \lor a_n) \land (b_1 \lor ... \lor b_n)$ (*)
- 3. Rewrite each line (*) into smaller lines: $\begin{array}{c} a_1 \lor \ldots \lor a_n \\ b_1 \lor \ldots \lor b_n \end{array}$

45

Examples	E4)		
	1. ((a∨b)∧c)→(c∧d)		
E3)	2. a∧m∧d→f		
1. P	3. m→b∧c		
2. p→q	4. a→c		
3. q∧r∧s→t	5. (a∧f)→(¬e∨g)		
4. p→u	6. (m∧f)→g		
5. V→W	Given a,m are true. Prove g		
6. U→V			
7. V→t			
Given r,s are true. Prove t			
	48		

Exercise 5

- 1. $a1 \lor a2 \Rightarrow a3 \lor a4$
- 2. a1 ⇒ a5
- 3. a2 ∧ a3 ⇒ a5
- $\textbf{4.} \quad \textbf{a2} \land \textbf{a4} \Rightarrow \textbf{a6} \land \textbf{a7}$
- 5. a5 ⇒ a7
- 6. $a1 \land a3 \Rightarrow a6 \lor a7$
- Given a1, a2 are true .
- Transfer the above sentences to the CNF representation

49

• Apply the Robinson's resolution, prove a7 is true.

Exercise 6Given1. c6. $(b \land d) \Rightarrow h$ 2. d7. $a \land c \Rightarrow f \land g$ 3. $b \land d \Rightarrow g$ 8. $d \lor c \Rightarrow a \lor b$ 4. $b \land c \Rightarrow e$ 9. $c \land e \Rightarrow g$ 5. $d \Rightarrow e$ I Transfer the above sentences to the CNF representationApply the Robinson's resolution, prove $e \land g$ true

Exercise 7

- $1. \ (a \wedge b) \Rightarrow c \qquad \qquad 5. \ (x \wedge b) \Rightarrow ((d \lor m) \land (g \lor u))$
- 2. $(a \lor b) \Rightarrow (\neg c \lor d)$ 6. $((d \land e) \lor a) \Rightarrow (g \lor u)$
- $3. \ (m \wedge u) \Rightarrow c \qquad \qquad 7. \ (g \wedge u) \Rightarrow (y \wedge d)$
- 4. $a \Rightarrow (g \land f)$ 8. $d \Rightarrow e$
- Transfer the above sentences to the CNF representation
- Given a, b true. Apply the Robinson's resolution, prove e is true