
1

1

Artificial IntelligenceArtificial Intelligence
For HEDSPI Project

Lecturers :
Le Thanh Huong
Tran Duc Khanh

Dept of Information Systems
Faculty of Information Technology - HUT

Lecturer 6 - Advanced search methods

2
2

Outline

 Local beam search
 Game and search
 Alpha-beta pruning

3

Local beam search
 Like greedy search, but keep K states at all times:

 Initially: k random states
 Next: determine all successors of k states
 If any of successors is goal finished
 Else select k best from successors and repeat.

Beam SearchGreedy Search

4

Local beam search

 Major difference with random-restart search
 Information is shared among k search threads: If one state

generated good successor, but others did not “come here, the
grass is greener!”

 Can suffer from lack of diversity.
 Stochastic variant: choose k successors at

proportionally to state success.

 The best choice in MANY practical settings

2

5

Games and search

 Why study games?
 Why is search a good idea?

 Majors assumptions about games:
 Only an agent’s actions change the world
 World is deterministic and accessible

6

Why study games?

machines are better than humans in:
othello

humans are better than machines in:
go

here: perfect information zero-sum games

7

Why study games?

 Games are a form of multi-agent environment
 What do other agents do and how do they affect our success?
 Cooperative vs. competitive multi-agent environments.
 Competitive multi-agent environments give rise to adversarial

search a.k.a. games

 Why study games?
 Fun; historically entertaining
 Interesting subject of study because they are hard
 Easy to represent and agents restricted to small number of

actions

8

Relation of Games to Search
 Search – no adversary

 Solution is (heuristic) method for finding goal
 Heuristics and CSP techniques can find optimal solution
 Evaluation function: estimate of cost from start to goal through given

node
 Examples: path planning, scheduling activities

 Games – adversary
 Solution is strategy (strategy specifies move for every possible opponent

reply).
 Time limits force an approximate solution
 Evaluation function: evaluate “goodness” of game position
 Examples: chess, checkers, Othello, backgammon

 Ignoring computational complexity, games are a perfect application
for a complete search.

 Of course, ignoring complexity is a bad idea, so games are a good
place to study resource bounded searches.

3

9

Types of Games

deterministic chance

perfect
information

chess, checkers, go,
othello

backgammon
monopoly

imperfect
information

battleships, blind
tictactoe

bridge, poker, scrabble
nuclear war

10

Minimax

 Two players: MAX and MIN
 MAX moves first and they take turns until the game is over.

Winner gets award, looser gets penalty.
 Games as search:

 Initial state: e.g. board configuration of chess
 Successor function: list of (move,state) pairs specifying legal

moves.
 Terminal test: Is the game finished?
 Utility function: Gives numerical value of terminal states.
 E.g. win (+1), loose (-1) and draw (0) in tic-tac-toe

 MAX uses search tree to determine next move.
 Perfect play for deterministic games

11

Minimax

• From among the moves
available to you, take the best
one

• The best one is determined by a
search using the MiniMax
strategy

1212

Optimal strategies
 MAX maximizes a function: find a move corresponding to max value
 MIN minimizes the same function: find a move corresponding to min

value
At each step:
 If a state/node corresponds to a MAX move, the function value will

be the maximum value of its childs
 If a state/node corresponds to a MIN move, the function value will be

the minimum value of its childs
Given a game tree, the optimal strategy can be determined by using

the minimax value of each node:

MINIMAX-VALUE(n)=
UTILITY(n) If n is a terminal
maxs  successors(n) MINIMAX-VALUE(s) If n is a max node
mins  successors(n) MINIMAX-VALUE(s) If n is a min node

4

1313

Minimax

1414

Minimax algorithm

15

Properties of minimax

 Complete? Yes (if tree is finite)
 Optimal? Yes (against an optimal opponent)
 Time complexity? O(bm)
 Space complexity? O(bm) (depth-first exploration)

 For chess, b ≈ 35, m ≈100 for "reasonable" games
 exact solution completely infeasible

16

Problem of minimax search

 Number of games states is exponential to the
number of moves.
 Solution: Do not examine every node

 Alpha-beta pruning:
 Remove branches that do not influence final

decision
 Revisit example …

5

1717

α-β pruning

 Alpha values: the best values achievable for MAX, hence
the max value so far

 Beta values: the best values achievable for MIN, hence
the min value so far

 At MIN level: compare result V of node to alpha value. If
V>alpha, pass value to parent node and BREAK

 At MAX level: compare result V of node to beta value. If
V<beta, pass value to parent node and BREAK

18

α-β pruning
α: the best values achievable for MAX

β: the best values
achievable for MIN

19

α-β pruning example
Compare result V of node to β. If V< β, pass value to parent
node and BREAK

β

20

α-β pruning example

6

21

α-β pruning example

22

α-β pruning example

23

Properties of α-β
 Pruning does not affect final result
 Entire sub-trees can be pruned.

 Good move ordering improves effectiveness of pruning. With
"perfect ordering"
 time complexity = O(bm/2)

 doubles depth of search
 Branching factor of sqrt(b) !!
 Alpha-beta pruning can look twice as far as minimax in the same amount

of time

 Repeated states are again possible.
 Store them in memory = transposition table

 A simple example of the value of reasoning about which
computations are relevant (a form of metareasoning)

24

Why is it called α-β?

 α is the value of the
best (i.e., highest-
value) choice found so
far at any choice point
along the path for max

 If v is worse than α,
max will avoid it
 prune that branch

 Define β similarly for
min

7

25

The α-β algorithm

26

The α-β algorithm

27

Imperfect, real-time decisions

 Minimax and alpha-beta pruning require too much
leafnode evaluations.

 May be impractical within a reasonable amount of time.

 Suppose we have 100 secs, explore 104 nodes/sec
 106 nodes per move

 Standard approach (SHANNON, 1950):
 Cut off search earlier (replace TERMINAL-TEST by CUTOFF-

TEST)
 Apply heuristic evaluation function EVAL (replacing utility function

of alpha-beta)

28

Cut-off search

 Change:
if TERMINAL-TEST(state) then return UTILITY(state)

into:
if CUTOFF-TEST(state,depth) then return EVAL(state)

 Introduces a fixed-depth limit depth
 Is selected so that the amount of time will not exceed what

the rules of the game allow.

 When cut-off occurs, the evaluation is performed.

8

29

Heuristic evaluation (EVAL)

 Idea: produce an estimate of the expected utility of the
game from a given position.

 Requirements:
 EVAL should order terminal-nodes in the same way as UTILITY.
 Computation may not take too long.
 For non-terminal states the EVAL should be strongly correlated

with the actual chance of winning.
 Example:

Expected value e(p) for each state p:
E(p) = (# open rows, columns, diagonals for MAX)

- (# open rows, columns, diagonals for MIN)
 MAX moves all lines that don’t have o; MIN moves all lines that don’t

have x

3030

Reduces state spaces of Tictactoe based
on the symmetry of the states

MAX goes first

MIN goes

1e(p)

-1 -21

1

0 0 0 01 1 2 -2-1-1-1

 A kind of depth-first search

Expected value e(p) for each state p:
E(p) = (# open rows, columns, diagonals for MAX)

- (# open rows, columns, diagonals for MIN)
MAX moves all lines that don’t have o; MIN moves all lines that don’t have x

31

Evaluation function example

 For chess, typically linear weighted sum of features
Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

 e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black queens), etc.

32

Chess complexity

 PC can search 200 millions nodes/3min.
 Branching factor: ~35

 355 ~ 50 millions
 if use minimax, could look ahead 5 plies, defeated by average

player, planning 6-8 plies.

 Does it work in practice?
 4-ply ≈ human novice hopeless chess player
 8-ply ≈ typical PC, human master
 12-ply ≈ Deep Blue, Kasparov

 To reach grandmaster level, needs a better extensively
tuned evaluation and a large database of optimal
opening and ending of the game

9

33

Deterministic games in practice
 Checkers: Chinook ended 40-year-reign of human world

champion Marion Tinsley in 1994. Used a precomputed
endgame database defining perfect play for all positions involving
8 or fewer pieces on the board, a total of 444 billion positions.

 Chess: Deep Blue defeated human world champion Garry
Kasparov in a six-game match in 1997. Deep Blue searches 200
million positions per second, uses very sophisticated evaluation,
and undisclosed methods for extending some lines of search up
to 40 ply.

 Othello: human champions refuse to compete against computers,
who are too good.

 Go: human champions refuse to compete against computers,
who are too bad. In go, b > 300, so most programs use pattern
knowledge bases to suggest plausible moves.

34

Nondeterministic games
 Chance introduces by dice, card-shuffling, coin-flipping...
 Example with coin-flipping:

change nodes

35

Backgammon

Possible moves: (5-10,5-11), (5-11,19-24),(5-10,10-16) and (5-11,11-16)

36

Expected minimax value

EXPECTED-MINIMAX-VALUE(n)=
UTILITY(n) If n is a terminal
maxssuccessors(n) EXPECTEDMINIMAX(s) If n is a max node
minssuccessors(n) EXPECTEDMINIMAX(s) If n is a max node
Σssuccessors(n) P(s) .EXPECTEDMINIMAX(s) If n is a chance node

P(s) is probability of s occurence

10

37

Games of imperfect information

 E.g., card games, where opponent's initial cards are unknown

 Typically we can calculate a probability for each possible deal

 Seems just like having one big dice roll at the beginning of the
game

 Idea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals

 Special case: if an action is optimal for all deals, it's optimal.

 GIB, current best bridge program, approximates this idea by
 generating 100 deals consistent with bidding information
 picking the action that wins most tricks on average

