
1

1

Artificial IntelligenceArtificial Intelligence
For HEDSPI Project

Lecturers :
Le Thanh Huong
Tran Duc Khanh

Dept of Information Systems
Faculty of Information Technology - HUT

Lecturer 6 - Advanced search methods

2
2

Outline

 Local beam search
 Game and search
 Alpha-beta pruning

3

Local beam search
 Like greedy search, but keep K states at all times:

 Initially: k random states
 Next: determine all successors of k states
 If any of successors is goal finished
 Else select k best from successors and repeat.

Beam SearchGreedy Search

4

Local beam search

 Major difference with random-restart search
 Information is shared among k search threads: If one state

generated good successor, but others did not “come here, the
grass is greener!”

 Can suffer from lack of diversity.
 Stochastic variant: choose k successors at

proportionally to state success.

 The best choice in MANY practical settings

2

5

Games and search

 Why study games?
 Why is search a good idea?

 Majors assumptions about games:
 Only an agent’s actions change the world
 World is deterministic and accessible

6

Why study games?

machines are better than humans in:
othello

humans are better than machines in:
go

here: perfect information zero-sum games

7

Why study games?

 Games are a form of multi-agent environment
 What do other agents do and how do they affect our success?
 Cooperative vs. competitive multi-agent environments.
 Competitive multi-agent environments give rise to adversarial

search a.k.a. games

 Why study games?
 Fun; historically entertaining
 Interesting subject of study because they are hard
 Easy to represent and agents restricted to small number of

actions

8

Relation of Games to Search
 Search – no adversary

 Solution is (heuristic) method for finding goal
 Heuristics and CSP techniques can find optimal solution
 Evaluation function: estimate of cost from start to goal through given

node
 Examples: path planning, scheduling activities

 Games – adversary
 Solution is strategy (strategy specifies move for every possible opponent

reply).
 Time limits force an approximate solution
 Evaluation function: evaluate “goodness” of game position
 Examples: chess, checkers, Othello, backgammon

 Ignoring computational complexity, games are a perfect application
for a complete search.

 Of course, ignoring complexity is a bad idea, so games are a good
place to study resource bounded searches.

3

9

Types of Games

deterministic chance

perfect
information

chess, checkers, go,
othello

backgammon
monopoly

imperfect
information

battleships, blind
tictactoe

bridge, poker, scrabble
nuclear war

10

Minimax

 Two players: MAX and MIN
 MAX moves first and they take turns until the game is over.

Winner gets award, looser gets penalty.
 Games as search:

 Initial state: e.g. board configuration of chess
 Successor function: list of (move,state) pairs specifying legal

moves.
 Terminal test: Is the game finished?
 Utility function: Gives numerical value of terminal states.
 E.g. win (+1), loose (-1) and draw (0) in tic-tac-toe

 MAX uses search tree to determine next move.
 Perfect play for deterministic games

11

Minimax

• From among the moves
available to you, take the best
one

• The best one is determined by a
search using the MiniMax
strategy

1212

Optimal strategies
 MAX maximizes a function: find a move corresponding to max value
 MIN minimizes the same function: find a move corresponding to min

value
At each step:
 If a state/node corresponds to a MAX move, the function value will

be the maximum value of its childs
 If a state/node corresponds to a MIN move, the function value will be

the minimum value of its childs
Given a game tree, the optimal strategy can be determined by using

the minimax value of each node:

MINIMAX-VALUE(n)=
UTILITY(n) If n is a terminal
maxs successors(n) MINIMAX-VALUE(s) If n is a max node
mins successors(n) MINIMAX-VALUE(s) If n is a min node

4

1313

Minimax

1414

Minimax algorithm

15

Properties of minimax

 Complete? Yes (if tree is finite)
 Optimal? Yes (against an optimal opponent)
 Time complexity? O(bm)
 Space complexity? O(bm) (depth-first exploration)

 For chess, b ≈ 35, m ≈100 for "reasonable" games
 exact solution completely infeasible

16

Problem of minimax search

 Number of games states is exponential to the
number of moves.
 Solution: Do not examine every node

 Alpha-beta pruning:
 Remove branches that do not influence final

decision
 Revisit example …

5

1717

α-β pruning

 Alpha values: the best values achievable for MAX, hence
the max value so far

 Beta values: the best values achievable for MIN, hence
the min value so far

 At MIN level: compare result V of node to alpha value. If
V>alpha, pass value to parent node and BREAK

 At MAX level: compare result V of node to beta value. If
V<beta, pass value to parent node and BREAK

18

α-β pruning
α: the best values achievable for MAX

β: the best values
achievable for MIN

19

α-β pruning example
Compare result V of node to β. If V< β, pass value to parent
node and BREAK

β

20

α-β pruning example

6

21

α-β pruning example

22

α-β pruning example

23

Properties of α-β
 Pruning does not affect final result
 Entire sub-trees can be pruned.

 Good move ordering improves effectiveness of pruning. With
"perfect ordering"
 time complexity = O(bm/2)

 doubles depth of search
 Branching factor of sqrt(b) !!
 Alpha-beta pruning can look twice as far as minimax in the same amount

of time

 Repeated states are again possible.
 Store them in memory = transposition table

 A simple example of the value of reasoning about which
computations are relevant (a form of metareasoning)

24

Why is it called α-β?

 α is the value of the
best (i.e., highest-
value) choice found so
far at any choice point
along the path for max

 If v is worse than α,
max will avoid it
 prune that branch

 Define β similarly for
min

7

25

The α-β algorithm

26

The α-β algorithm

27

Imperfect, real-time decisions

 Minimax and alpha-beta pruning require too much
leafnode evaluations.

 May be impractical within a reasonable amount of time.

 Suppose we have 100 secs, explore 104 nodes/sec
 106 nodes per move

 Standard approach (SHANNON, 1950):
 Cut off search earlier (replace TERMINAL-TEST by CUTOFF-

TEST)
 Apply heuristic evaluation function EVAL (replacing utility function

of alpha-beta)

28

Cut-off search

 Change:
if TERMINAL-TEST(state) then return UTILITY(state)

into:
if CUTOFF-TEST(state,depth) then return EVAL(state)

 Introduces a fixed-depth limit depth
 Is selected so that the amount of time will not exceed what

the rules of the game allow.

 When cut-off occurs, the evaluation is performed.

8

29

Heuristic evaluation (EVAL)

 Idea: produce an estimate of the expected utility of the
game from a given position.

 Requirements:
 EVAL should order terminal-nodes in the same way as UTILITY.
 Computation may not take too long.
 For non-terminal states the EVAL should be strongly correlated

with the actual chance of winning.
 Example:

Expected value e(p) for each state p:
E(p) = (# open rows, columns, diagonals for MAX)

- (# open rows, columns, diagonals for MIN)
 MAX moves all lines that don’t have o; MIN moves all lines that don’t

have x

3030

Reduces state spaces of Tictactoe based
on the symmetry of the states

MAX goes first

MIN goes

1e(p)

-1 -21

1

0 0 0 01 1 2 -2-1-1-1

 A kind of depth-first search

Expected value e(p) for each state p:
E(p) = (# open rows, columns, diagonals for MAX)

- (# open rows, columns, diagonals for MIN)
MAX moves all lines that don’t have o; MIN moves all lines that don’t have x

31

Evaluation function example

 For chess, typically linear weighted sum of features
Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

 e.g., w1 = 9 with
f1(s) = (number of white queens) – (number of black queens), etc.

32

Chess complexity

 PC can search 200 millions nodes/3min.
 Branching factor: ~35

 355 ~ 50 millions
 if use minimax, could look ahead 5 plies, defeated by average

player, planning 6-8 plies.

 Does it work in practice?
 4-ply ≈ human novice hopeless chess player
 8-ply ≈ typical PC, human master
 12-ply ≈ Deep Blue, Kasparov

 To reach grandmaster level, needs a better extensively
tuned evaluation and a large database of optimal
opening and ending of the game

9

33

Deterministic games in practice
 Checkers: Chinook ended 40-year-reign of human world

champion Marion Tinsley in 1994. Used a precomputed
endgame database defining perfect play for all positions involving
8 or fewer pieces on the board, a total of 444 billion positions.

 Chess: Deep Blue defeated human world champion Garry
Kasparov in a six-game match in 1997. Deep Blue searches 200
million positions per second, uses very sophisticated evaluation,
and undisclosed methods for extending some lines of search up
to 40 ply.

 Othello: human champions refuse to compete against computers,
who are too good.

 Go: human champions refuse to compete against computers,
who are too bad. In go, b > 300, so most programs use pattern
knowledge bases to suggest plausible moves.

34

Nondeterministic games
 Chance introduces by dice, card-shuffling, coin-flipping...
 Example with coin-flipping:

change nodes

35

Backgammon

Possible moves: (5-10,5-11), (5-11,19-24),(5-10,10-16) and (5-11,11-16)

36

Expected minimax value

EXPECTED-MINIMAX-VALUE(n)=
UTILITY(n) If n is a terminal
maxssuccessors(n) EXPECTEDMINIMAX(s) If n is a max node
minssuccessors(n) EXPECTEDMINIMAX(s) If n is a max node
Σssuccessors(n) P(s) .EXPECTEDMINIMAX(s) If n is a chance node

P(s) is probability of s occurence

10

37

Games of imperfect information

 E.g., card games, where opponent's initial cards are unknown

 Typically we can calculate a probability for each possible deal

 Seems just like having one big dice roll at the beginning of the
game

 Idea: compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals

 Special case: if an action is optimal for all deals, it's optimal.

 GIB, current best bridge program, approximates this idea by
 generating 100 deals consistent with bidding information
 picking the action that wins most tricks on average

