Artificial Intelligence

For HEDSPI Project
Lecturer 6 - Advanced search methods

Lecturers:
Le Thanh Huong
Tran Duc Khanh
Dept of Information Systems
Faculty of Information Technology - HUT

Outline

- Local beam search
- Game and search
- Alpha-beta pruning

Local beam search

- Like greedy search, but keep K states at all times: - Initially: k random states
- Next: determine all successors of k states
- If any of successors is goal \rightarrow finished
- Else select k best from successors and repeat.

Greedy Search

Beam Search

Local beam search

- Major difference with random-restart search
- Information is shared among k search threads: If one state generated good successor, but others did not \rightarrow "come here, the grass is greener!"
- Can suffer from lack of diversity.
- Stochastic variant: choose k successors at proportionally to state success.
- The best choice in MANY practical settings

Games and search

- Why study games?
- Why is search a good idea?
- Majors assumptions about games:
- Only an agent's actions change the world
- World is deterministic and accessible

Why study games?

- Games are a form of multi-agent environment
- What do other agents do and how do they affect our success?
- Cooperative vs. competitive multi-agent environments.
- Competitive multi-agent environments give rise to adversarial search a.k.a. games
- Why study games?
- Fun; historically entertaining
- Interesting subject of study because they are hard
- Easy to represent and agents restricted to small number of actions

Why study games?

May 1997
Deep Blue - Garry Kasparov 3.5-2.5
machines are better than humans in: othello
humans are better than machines in:
here: perfect information zero-sum games

Relation of Games to Search

- Search - no adversary
- Solution is (heuristic) method for finding goal
- Heuristics and CSP techniques can find optimal solution
- Evaluation function: estimate of cost from start to goal through given node
- Examples: path planning, scheduling activities
- Games - adversary
- Solution is strategy (strategy specifies move for every possible opponent reply).
- Time limits force an approximate solution
- Evaluation function: evaluate "goodness" of game position
- Examples: chess, checkers, Othello, backgammon
- Ignoring computational complexity, games are a perfect application for a complete search.
- Of course, ignoring complexity is a bad idea, so games are a good place to study resource bounded searches.

Types of Games

	deterministic	chance
perfect information	chess, checkers, go, othello	backgammon monopoly
imperfect information	battleships, blind tictactoe	bridge, poker, scrabble nuclear war

Minimax

- Two players: MAX and MIN
- MAX moves first and they take turns until the game is over. Winner gets award, looser gets penalty.
- Games as search:
- Initial state: e.g. board configuration of chess
- Successor function: list of (move,state) pairs specifying legal moves.
- Terminal test: Is the game finished?
- Utility function: Gives numerical value of terminal states.
- E.g. win $(+1)$, loose (-1) and draw (0) in tic-tac-toe
- MAX uses search tree to determine next move.
- Perfect play for deterministic games
\qquad

Optimal strategies

- MAX maximizes a function: find a move corresponding to max value
- MIN minimizes the same function: find a move corresponding to min value
At each step:
- If a state/node corresponds to a MAX move, the function value will be the maximum value of its childs
- If a state/node corresponds to a MIN move, the function value will be the minimum value of its childs
Given a game tree, the optimal strategy can be determined by using the minimax value of each node.
$\operatorname{MINIMAX}-\operatorname{VALUE}(n)=$

$\operatorname{UTILITY}(n)$	If n is a terminal
$\max _{s \in \operatorname{successors(n)}} \operatorname{MINIMAX-VALUE(s)}$	If n is a max node
$\min _{s \in \operatorname{successors}(n)} \operatorname{MINIMAX-VALUE(s)}$	If n is a min node

Minimax algorithm

```
function MINIMAx-Drcision(gitate) returns arnaction
    v\leftarrowMax-VaLuE(state)
    return the action in SuCuEssors(state) with value v
```

fumetion Max-Vat,uF(stiate) returnux a whitily valuen
if Thrminal-Trsst(state) then return UTurriv(state)
$1 \%-(\mathrm{x}$
fur a, s in Sucuessonss y (ate) du
et Max (v , Min Value(s)
return
function MIN-VALUE(state) returns a utilty value

$\leftarrow \infty$
for a, s in Sueceessors (state) do
$v \leftarrow \operatorname{MrN}(v$, Max-Vat.oes(s))
return

Properties of minimax

Problem of minimax search

- Complete? Yes (if tree is finite)
- Optimal? Yes (against an optimal opponent)
- Number of games states is exponential to the number of moves.
- Time complexity? O(bm)

Solution: Do not examine every node
\Rightarrow Alpha-beta pruning:

- Remove branches that do not influence final decision
- Revisit example ...

$\alpha-\beta$ pruning

- Alpha values: the best values achievable for MAX, hence the max value so far
- Beta values: the best values achievable for MIN, hence the min value so far
- At MIN level: compare result V of node to alpha value. If V $>$ alpha, pass value to parent node and BREAK
- At MAX level: compare result V of node to beta value. If V <beta, pass value to parent node and BREAK

$$
\alpha-\beta \text { pruning }
$$

MAX
α : the best values achievable for MAX

MIN

$\alpha-\beta$ pruning example

Compare result V of node to β. If $\mathrm{V}<\beta$, pass value to paren node and BREAK

MAX

MIN

MAX

MIN

$\alpha-\beta$ pruning example

MAX

MIN

$\alpha-\beta$ pruning example

MAX

MIN

Properties of $\alpha-\beta$

- Pruning does not affect final result
- Entire sub-trees can be pruned.
- Good move ordering improves effectiveness of pruning. With "perfect ordering"
, time complexity $=0\left(b^{m / 2}\right)$
\rightarrow doubles depth of search
- Branching factor of sqrt(b) !!
- Alpha-beta pruning can look twice as far as minimax in the same amount
- Repeated states are again possible.

Store them in memory = transposition table

- A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)

Why is it called $\alpha-\beta$?

- α is the value of the best (i.e., highestvalue) choice found so far at any choice point along the path for max
- If v is worse than α, max will avoid it
\rightarrow prune that branch
- Define β similarly for min

The $\alpha-\beta$ algorithm

The $\alpha-\beta$ algorithm

```
function Alpha-Beta-Search(state) relurny un action
    inputs. state, current state in game
    L\leftarrowMAx-Vatuf(state, - (x)+\infty
    relurn the cetwon in Sccoessons(stute) with value v
```



```
    inputs: state, current state in game
            \alpha, the value of the best alternative for MAX along the path to sluic
            \beta, the value of the best alternative for wIN along the path to state.
    if Terminatr Trat(state) then retmen Uti,ITv(state)
    \leftarrow
    for a,s in Suctipssors(state) do
        v\leftarrow\operatorname{Max}(v,\operatorname{Min}-\mp@subsup{V}{ALCE}{*}(y,\alpha,\beta))
        if }:>0\mathrm{ then return v
        if }v>\beta\mathrm{ then r
    ~
```

function Min-Vadue (stute, α, β) returns a whitily velue inputs: state, current state in game
α, the value of the best alternative for M 4 X along the path to state. β, the value of the best alternative for miN along the path to slate if Terminal-Test(siate) then return Utility(siate) $\mathfrak{i} \leftarrow+\infty$
for a, s in Successurs(state) do
$v \leftarrow \operatorname{Min}(v \operatorname{Max}-\operatorname{VaLue}(s, c x, \beta)$
if $v \leq \alpha$ then return v
$\beta \leftarrow \operatorname{Mıs}(\beta, x)$
return ${ }^{*}$

Imperfect, real-time decisions

- Minimax and alpha-beta pruning require too much leafnode evaluations.

Cut-off search

- Change:
if TERMINAL-TEST(state) then return UTILITY(state)
- May be impractical within a reasonable amount of time.
- Suppose we have 100 secs, explore 10^{4} nodes/sec $\rightarrow 10^{6}$ nodes per move
- Standard approach (SHANNON, 1950):
- Cut off search earlier (replace TERMINAL-TEST by CUTOFFTEST)
Apply heuristic evaluation function EVAL (replacing utility function of alpha-beta)

into:

if CUTOFF-TEST(state,depth) then return EVAL(state)

- Introduces a fixed-depth limit depth
- Is selected so that the amount of time will not exceed what the rules of the game allow.
- When cut-off occurs, the evaluation is performed.

Heuristic evaluation (EVAL)

- Idea: produce an estimate of the expected utility of the game from a given position.
- Requirements:
, EVAL should order terminal-nodes in the same way as UTILITY.
, Computation may not take too long.
- For non-terminal states the EVAL should be strongly correlated with the actual chance of winning.
- Example:

Expected value $e(p)$ for each state p :
$\mathrm{E}(\mathrm{p})=$ (\# open rows, columns, diagonals for MAX)

- (\# open rows, columns, diagonals for MIN)
- MAX moves all lines that don't have o; MIN moves all lines that don't have x

Expected value $\mathrm{e}(\mathrm{p})$ for each state $\mathrm{p}:$
$\mathrm{E}(\mathrm{p})=(\#$ open rows, columns, diagonals for MAX
$-(\#$ open rows, columns, diagonals for MIN)
MAX moves all lines that don't have o; MIN moves all lines that don't have x
UII IIE SyाIIIIELIy Ul ine Slales

\rightarrow A kind of depth-first search

Evaluation function example

Black to move
White slightly better

White to move
Black winning

- For chess, typically linear weighted sum of features

$$
\operatorname{Eval}(s)=w_{1} f_{1}(s)+w_{2} f_{2}(s)+\ldots+w_{n} f_{n}(s)
$$

- e.g., $w_{1}=9$ with
$f_{1}(s)=$ (number of white queens) - (number of black queens), etc.

Chess complexity

- PC can search 200 millions nodes/3min.
- Branching factor: ~35
- 35^{5} ~ 50 millions
- if use minimax, could look ahead $\mathbf{5}$ plies, defeated by average player, planning 6-8 plies.
- Does it work in practice?
- 4-ply \approx human novice \rightarrow hopeless chess player
- 8-ply \approx typical PC, human master
- 12-ply \approx Deep Blue, Kasparov
- To reach grandmaster level, needs a better extensively tuned evaluation and a large database of optimal opening and ending of the game

Deterministic games in practice

- Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used a precomputed endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 444 billion positions.
- Chess: Deep Blue defeated human world champion Garry Kasparov in a six-game match in 1997. Deep Blue searches 200 miliion positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.
- Othello: human champions refuse to compete against computers, who are too good.
- Go: human champions refuse to compete against computers, who are too bad. In go, $b>300$, so most programs use pattern knowledge bases to suggest plausible moves.

Nondeterministic games

- Chance introduces by dice, card-shuffling, coin-flipping..
- Example with coin-flipping:

Expected minimax value

if state is a Max node then
return the highest LXPECTIMINimax-VALUE of Successors(state)] rate is a MIN note then
if etate is a chance node thent
if state is a chance node then
return average of Expectiminimax. Valus of Sucusssohs (etatc)

EXPECTED-MINIMAX-VALUE(n)=

$\operatorname{UTILITY}(n) \quad$ If n is a terminal

$\max _{s \in \operatorname{successors(n)}} \operatorname{EXPECTEDMINIMAX(s)}$ If n is a max node $\min _{s \in \text { successors(n) }}$ EXPECTEDMINIMAX(s) If n is a max node $\Sigma_{s \in \text { successors(n) }} P(s)$.EXPECTEDMINIMAX(s) If n is a chance node

[^0]
Games of imperfect information

- E.g., card games, where opponent's initial cards are unknown
- Typically we can calculate a probability for each possible deal
- Seems just like having one big dice roll at the beginning of the game
- Idea: compute the minimax value of each action in each deal, then choose the action with highest expected value over all deals
- Special case: if an action is optimal for all deals, it's optimal.
- GIB, current best bridge program, approximates this idea by generating 100 deals consistent with bidding information picking the action that wins most tricks on average

[^0]: $P(s)$ is probability of s occurence

