

- Evaluation function f(n) = h(n) (heuristic)
 = estimate of cost from n to goal
- e.g., h_{SLD}(n) = straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal

Can we Prove Anything? If the state space is finite and we avoid repeated states, the search is complete, but in general is not optimal If the state space is finite and we do not avoid repeated states, the search is in general not complete

 If the state space is infinite, the search is in general not complete

Admissible heuristics

The 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

5	4		
6	1	8	8
7	3	2	
\$	Start State		

1	2	3
8		4
7	6	5

Goal State

24

22

- <u>h₁(S) = ?</u>
- $h_2(S) = ?$ 2+3+3+2+4+2+0+2 = 18

Heuristic quality and dominance

- 1200 random problems with solution lengths from 2 to 24.
- If h₂(n) >= h₁(n) for all n (both admissible) then h₂ dominates h₁ and is better for search

d	Search Cost			Effective Branching Factor		
	IDS	$A^{*}(h_{1})$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^{*}(h_{2})$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	3644035	227	73	2.78	1.42	1.24
4	-	539	113	-	1.44	1.23
16	-	1301	211	-	1.45	1.25
18	-	3056	363	-	1.46	1.26
20	-	7276	676		1.47	1.27
22	-	18094	1219		1.48	1.28
24		39135	1641	1	1.48	1.26

<section-header><section-header><section-header><list-item><list-item><list-item>

