
1

Artificial IntelligenceArtificial Intelligence
For HEDSPI Project

Lecturers :
Le Thanh Huong

Lecturer 4 - Search

1

Le Thanh Huong
Tran Duc Khanh

Dept of Information Systems
Faculty of Information Technology - HUT

Outline

Graph search
Best-first search
A* search

2
2

Graph search

3

Get from Arad to Bucharest as quickly as possible

Graph search
Failure to detect repeated states can turn a linear
problem into an exponential one!

4

Very simple fix: never expand a node twice

2

Graph search

5

Never expand a node twice!

Straight Line Distances

6

Best-first search

Idea: use an evaluation function f(n) for each node
estimate of "desirability"estimate of desirability
Expand most desirable unexpanded node

Order the nodes in fringe in decreasing order of
desirability

7

Special cases:
greedy best-first search
A* search

8

3

Greedy Best-First Search

Evaluation function f(n) = h(n) (heuristic)
= estimate of cost from n to goal
e.g., hSLD(n) = straight-line distance from n to
Bucharest
Greedy best-first search expands the node
that appears to be closest to goal

9

that appears to be closest to goal

Greedy best-first search example

Arad

366

10

Greedy best-first search example

Arad

366

Sibiu

253

Timisoara

329

Zerind

374

11

Greedy best-first search example

Arad

366

Sibiu

253

Timisoara

329

Zerind

374

Ri i Vi

12

Arad

366

Fagaras

176

Oradea

380

Rimnicu Vicea

193

4

Greedy best-first search example
Arad

366

Sibiu

253

Timisoara

329

Zerind

374

Arad Fagaras Oradea Rimnicu Vicea

13

366 176 380

Sibiu

253

Bucharest

0

Greedy Best-First Search

Complete? No – can get stuck in
loops, e.g., Iasi Neamt Iasi

NeamtNeamt …
Time? O(bm), but a good heuristic
can give dramatic improvement
Space? O(bm) -- keeps all nodes
in memory
Optimal? No

14

What do we need to do to make it complete?
⇒ A* search

Can we make it optimal? No

A* search

Idea: Expand unexpanded node with lowest evaluation
valuevalue

Evaluation function f(n) = g(n) + h(n)
g(n) = cost so far to reach n
h(n) = estimated cost from n to goal
f(n) = estimated total cost of path through n to goal

15

Nodes are ordered according to f(n).

A* search example

Arad

366 = 0 + 366

16

5

A* search example

Arad

366 = 0 + 366

Sibiu

393= 40+253

Timisoara

447=118+329

Zerind

449=75+374

17

A* search example

Arad

366 = 0 + 366

Sibiu

393= 40+253

Timisoara

447=118+329

Zerind

449=75+374

Ri i Vi

18

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

Rimricu Vicea

413=220+193

A* search example
Arad

366 = 0 + 366

Sibiu

393= 40+253

Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

Rimricu Vicea

413=220+193

19

Craiova

526=366+160

Pitesti

417=317+100

Sibiu

553=300+253

A* search example
Arad

366 = 0 + 366

Sibiu

393= 40+253

Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

Rimricu Vicea

413=220+193

20

Craiova

526=366+160

Pitesti

417=317+100

Sibiu

553=300+253

Sibiu

591=338+253

Bucharest

450=450+0

6

A* search example Arad

366 = 0 + 366

Sibiu Timisoara Zerind

393= 40+253 447=118+329 449=75+374

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

Rimricu Vicea

413=220+193

SibiB h t Craiova

526=366+160

Pitesti

417=317+100

Sibiu

553=300+253

Sibiu

591=338+253

Bucharest

450=450+0

Bucharest

418=418+0

Craiova

615=455+160

Rimricu Vicea

607=414+193

Can we Prove Anything?

If the state space is finite and we avoid repeated
states the search is complete but in general is notstates, the search is complete, but in general is not
optimal

If the state space is finite and we do not avoid
repeated states, the search is in general not
complete

22

If the state space is infinite, the search is in general
not complete

Admissible heuristic

Let h*(N) be the true cost of the optimal path
from N to a goal nodefrom N to a goal node

Heuristic h(N) is admissible if:
0 ≤ h(N) ≤ h*(N)

An admissible heuristic is always optimistic

23

An admissible heuristic is always optimistic

Admissible heuristics
The 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = total Manhattan distanceh2(n) total Manhattan distance

(i.e., no. of squares from desired location of each tile)

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

24

h1(S) = ?
h2(S) = ?

7
2+3+3+2+4+2+0+2 = 18

Start State Goal State

27 67237 237 5

7

Heuristic quality

Effective branching factor b*
Is the branching factor that a uniform tree of depth d would
have in order to contain N+1 nodes.

Measure is fairly constant for sufficiently hard problems.
Can thus provide a good guide to the heuristic’s overall usefulness.
A good value of b* is 1.

N +1=1+ b*+(b*)2 + ...+ (b*)d

25

Heuristic quality and dominance
1200 random problems with solution lengths from 2 to 24.
If h2(n) >= h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search2 1

26

Inventing admissible heuristics

Admissible heuristics can be derived from the exact solution cost
of a relaxed version of the problem:

Relaxed 8-puzzle for h1 : a tile can move anywhere
As a result, h1(n) gives the shortest solution
Relaxed 8-puzzle for h2 : a tile can move to any adjacent square.
As a result, h2(n) gives the shortest solution.

The optimal solution cost of a relaxed problem is no greater than the
optimal solution cost of the real problem

27

optimal solution cost of the real problem.

Optimality of A*(standard proof)

Suppose suboptimal goal G2 in the queue.
Let n be an unexpanded node on a shortest to optimal
goal G

28

goal G.
f(G2) = g(G2) since h(G2)=0

> g(G) since G2 is suboptimal
>= f(n) since h is admissible

Since f(G2) > f(n), A* will never select G2 for expansion

8

Optimality for graphs?
Admissibility is not sufficient for graph search

In graph search, the optimal path to a repeated state could be discarded if it
is not the first one generated

Can fix problem by requiring consistency property for h(n)

A heuristic is consistent if for every successor n' of a node n generated
by any action a,

h(n) ≤ c(n,a,n') + h(n')

29

(aka “monotonic”)

admissible heuristics are generally consistent

A* is optimal with consistent heuristics

If h is consistent, we have

f(n') = g(n') + h(n')f(n) g(n) + h(n)
= g(n) + c(n,a,n') + h(n')
≥ g(n) + h(n)
= f(n)

i.e., f(n) is non-decreasing along any path.

Thus, first goal-state selected for expansion must be optimal

30

Theorem:
If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Contours of A* Search
A* expands nodes in order of increasing f value
Gradually adds "f-contours" of nodes
Contour i has all nodes with f=fi, where fi < fi+1i, i i+1

31

Contours of A* Search

32

With uniform-cost (h(n) = 0, contours will be circular
With good heuristics, contours will be focused around optimal
path
A* will expand all nodes with cost f(n) < C*

9

A* search, evaluation

Completeness: YES
Since bands of increasing f are addedSince bands of increasing f are added
Unless there are infinitely many nodes with f<f(G)

33

A* search, evaluation

Completeness: YES
Time complexity:Time complexity:

Number of nodes expanded is still exponential in the
length of the solution.

34

A* search, evaluation

Completeness: YES
Time complexity: (exponential with path length)Time complexity: (exponential with path length)
Space complexity:

It keeps all generated nodes in memory
Hence space is the major problem not time

35

A* search, evaluation

Completeness: YES
Time complexity: (exponential with path length)Time complexity: (exponential with path length)
Space complexity:(all nodes are stored)
Optimality: YES

Cannot expand fi+1 until fi is finished.
A* expands all nodes with f(n)< C*
A* expands some nodes with f(n)=C*

* f() C*

36

A* expands no nodes with f(n)>C*
Also optimally efficient (not including ties)

10

Compare Uniform Cost and A*
Uniform-cost expanded in
all directions

A* expands mainly toward the
goal, but does hedge its bets
to ensure optimality

37

