
1

Artificial IntelligenceArtificial Intelligence
For HEDSPI Project

Lecturers :
Le Thanh Huong

Lecturer 3 - Search

1

Le Thanh Huong
Tran Duc Khanh

Dept of Information Systems
Faculty of Information Technology - HUT

Outline

Problem-solving agents
Problem typesProblem types
Problem formulation
Example problems
Basic search algorithms

breadth-first search

22
2

depth-first search
depth-limited search
iterative deepening depth-first search

Problem-solving agents

33
3

Example 1: Route Planning

44

Performance: Get from Arad to Bucharest as quickly as possible
Environment: The map, with cities, roads, and guaranteed travel
times
Actions: Travel a road between adjacent cities

2

Example 2: Finding letters

Replace letters by numbers from 0 to 9Replace letters by numbers from 0 to 9
such as no different letter is replaced by
the same number and satisfying the
following constraint:

SEND CROSS

5

+ MORE + ROADS
MONEY DANGER

Example 3: Pouring water

Given 2 containers A(m litres), B(n litres). Finding a
method to measure k litres (k ≤ max(m,n)) by 2
containers A B and a container Ccontainers A, B and a container C
Actions (how):

C A; C B; A B; A C; B A; B C
Conditions: no overflow, pouring all water
Eg: m = 5, n = 6, k = 2 (what)
M th ti l d l

6

Mathematical model:
(x, y) (x’, y’)
A B A B

Example 4: The 8-puzzle
Trong bảng ô vuông n hàng, n cột, mỗi ô chứa 1 số
nằm trong phạm vi từ 1 n2 -1 sao cho không có 2 ô
có cùng giá trị. Còn đúng 1 ô bị trống. Xuất phát từ 1
cách sắp xếp nào đó của các đó của các số trongcách sắp xếp nào đó của các đó của các số trong
bảng, hãy dịch chuyển các ô trống sang phải, sang
trái, lên trên, xuống dưới để đưa về bảng:

7

Example 5: Hà Nội tower

Cho 3 cọc 1 2 3 Ở cọc 1 ban đầu có n đĩa sắp theoCho 3 cọc 1,2,3. Ở cọc 1 ban đầu có n đĩa, sắp theo
thứ tự to dần từ trên xuống dưới. Hãy tìm cách
chuyển n đĩa đó sang cọc 3 sao cho:

Mỗi lần chỉ chuyển 1 đĩa
Ở mỗi cọc không cho phép đĩa to nằm trên đĩa con

8

1 2 3 1 2 3

Bài toán tháp Hà Nội với n = 3

3

Problem types

Deterministic, fully observable single-state problem
Agent knows exactly which state it will be in; solution is a
sequence

Non-observable sensorless problem (conformant problem)
Agent may have no idea where it is; solution is a sequence

Nondeterministic and/or partially observable contingency
problem

percepts provide new information about current state
often interleave search, execution

9

Unknown state space exploration problem

Search Problem Definition
A problem is defined by four items:
1. initial state: e.g., Arad
2 actions or successor function S(x) = set of action-state2. actions or successor function S(x) = set of action-state

pairs
e.g., S(Arad) = {<Arad Zerind, Zerind>, … }

3. goal test, can be
explicit, e.g., x = Bucharest
implicit, e.g., Checkmate(x)

4. path cost (additive)
e g sum of distances number of actions executed etc

10

e.g., sum of distances, number of actions executed, etc.
c(x,a,y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions leading from the
initial state to a goal state

Example: The 8-puzzle

states?
actions?

locations of tiles
move blank left right up down

11

actions?
goal test?
path cost?

move blank left, right, up, down
= goal state (given)
1 per move

Search tree

Search trees:
Represent the branching paths through a state graph.
U ll h l th th t t h

12

Usually much larger than the state graph.
Can a finite state graph give an infinite search tree?

4

Search space of the game Tic-Tac-Toe

13

Tree and graph
B is parent of C
C is child of B
A is ancestor of C
C is decendant of A

14

Convert from search graph to search tree

We can turn graph search problems into tree
h bl b

15

search problems by:
replacing undirected links by 2 directed links
avoiding loops in path (or keeping trach of visited nodes
globally)

Tree search algorithms
Basic idea:

offline, simulated
l ti f t t

n0

nexploration of state space
by generating successors
of already-explored states

Goal
successors(n)

16

5

Implementation: general tree search

17

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes state parent node action path cost g(x) depthincludes state, parent node, action, path cost g(x), depth

18

The Expand function creates new nodes, filling in the various
fields and using the SuccessorFn of the problem to create the
corresponding states.

Implementation: states vs. nodes

19

Search strategies

A search strategy is defined by picking the order of node
expansion
Strategies are evaluated along the following dimensions:

completeness: does it always find a solution if one exists?
time complexity: number of nodes generated
space complexity: maximum number of nodes in memory
optimality: does it always find a least-cost solution?

Time and space complexity are measured in terms of
b: maximum branching factor of the search tree

20

g
d: depth of the least-cost solution
m: maximum depth of the state space (may be ∞)

6

Uninformed search strategies
Uninformed search strategies use only the information available
in the problem definition

Breadth-first search
Expand shallowest unexpanded node
fringe = queue (FIFO)

Depth-first search
Expand deepest unexpanded node
f i k (LIFO)

fringe inout n successors(n)

fringein t
successors(n)

21

fringe = stack (LIFO)

Depth-limited search: depth-first search with depth limit

Iterative deepening search

fringein out n

Breadth-first search

Expand shallowest unexpanded node

22

Breadth-first search (con’t)

Complete? Yes (if b is finite)
Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1)
Space? O(bd+1) (keeps every node in memory)
Optimal? Yes (if cost = 1 per step)

23

Depth-first search

Expand deepest unexpanded node

24

7

Depth-first search (con’t)
Complete? No: fails in infinite-depth spaces, spaces with
loops

Modify to avoid repeated states along path complete in finite spaces

Time? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space? O(bm), i.e., linear space!

Optimal? No

25

Depth-limited search
Depth-first search can get stuck on infinite path when a
different choice would lead to a solution

⇒ Depth-limited search = depth-first search with depth limit l,
i.e., nodes at depth l have no successors, p

26

8-puzzle game with depth limit l = 5

Iterative deepening search
Problem with depth-limited search: if the
shallowest goal is beyond the depth limit, no
solution is found.

⇒ Iterative deepening search:p g
1. Do a DFS which only searches for paths of length 1

or less. (DFS gives up on any path of length 2)
2. If “1” failed, do a DFS which only searches paths of

length 2 or less.
3. If “2” failed, do a DFS which only searches paths of

length 3 or less.
4. ….and so on.

28

8

Iterative deepening search (con’t)

29

Iterative deepening search (con’t)

30

Iterative deepening search (con’t)

Number of nodes generated in a depth-limited search to depth d
with branching factor b:

0 1 2 d 2 d 1 dNDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

Number of nodes generated in an iterative deepening search to
depth d with branching factor b:

NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

For b = 10, d = 5,

31

NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 - 111,111)/111,111 = 11%

Properties of iterative deepening
search

C l t ? YComplete? Yes
Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)
Space? O(bd)
Optimal? Yes, if step cost = 1

32

9

Summary of algorithms

33

