Artificial Intelligence

For HEDSPI Project

Lecturer 3 - Search

Lecturers :
Le Thanh Huong
Tran Duc Khanh
Dept of Information Systems
Faculty of Information Technology - HUT

Outline

Problem-solving agents

Problem types

Problem formulation

Example problems

Basic search algorithms

o breadth-first search

o depth-first search

o depth-limited search

o iterative deepening depth-first search

| Problem-solving agents

function SIMPLE- PROBLEM-SOLVING- AGENT(percept) returns an action
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially nul
problem, a problem fermulation
state +— UPDATE-STATE(state, percept)
if seq is empty then do
goal +— FORMULATE-GOAL(state)
problem «— FormuULATE-PROBLEM(state, goal)
seq +— SEARCH(problem)
action «— FIrsT(seq)
seg +— REST(seq)
return action

Example 1: Route Planning

M Giurgiu
= Performance: Get from Arad to Bucharest as quickly as possible

= Environment: The map, with cities, roads, and guaranteed travel
times

= Actions: Travel a road between adjacent cities

Example 2: Finding letters

Replace letters by numbers from 0 to 9
such as no different letter is replaced by
the same number and satisfying the
following constraint:

SEND CROSS
+ MORE + ROADS
MONEY DANGER

Example 3: Pouring water

Given 2 containers A(m litres), B(n litres). Finding a
method to measure k litres (k < max(m,n)) by 2
containers A, B and a container C

Actions (how):
C>A;C>B;A>B;A>C;B>A;B>C
Conditions: no overflow, pouring all water
Eg:m=5n=6,k=2 (what)
Mathematical model:
% y) > (X,Y)
AB A B

Example 4: The 8-puzzle

Trong bang 6 vuong n hang, n cot, méi 6 chtra 1 sb
nam trong pham vitlr 1 > n?-1sao cho khéng c6 2 6
co cung gla tri. Con dung 10 bj trong Xuét phat tir 1
céch sap xép nao d6 cla cac do6 cia cac sb trong
bang, hay dich chuyen cac 6 tréng sang phai, sang
trai, 1én trén, xubng duéi dé dua vé bang:

Ha B] 2]
(o] o) ediedls]
ol ez e

Start State Goal State

Example 5: Ha Noi tower

Cho 3 coc 1,2,3. O coc 1 ban dau co n dia, sap theo
thir tw to dan t trén xudng dudi. Hay tim cach
chuyén n dia dé sang coc 3 sao cho:

o M®i 1an chi chuyén 1 dia

o O méi coc khdng cho phép dia to nim trén dia ¢on

N

1 2 3 1 2
Bai toan thap Ha Noi véin =3

' Problem types Search Problem Definition

A problem is defined by four items:

1. initial state: e.g., Arad

2. actions or successor function S(x) = set of action-state
pairs
o e.g., S(Arad) = {<Arad - Zerind, Zerind>, ... }

3. goal test, can be
o explicit, e.g., x = Bucharest
o implicit, e.g., Checkmate(x)

4. path cost (additive)
o e.g., sum of distances, number of actions executed, etc.
o c(x,a,y) is the step cost, assumed to be =0

= Deterministic, fully observable = single-state problem

o Agent knows exactly which state it will be in; solution is a
sequence

= Non-observable > sensorless problem (conformant problem)
o Agent may have no idea where it is; solution is a sequence

= Nondeterministic and/or partially observable > contingency
problem

o percepts provide new information about current state
o often interleave - search, execution
= Unknown state space = exploration problem

= A solution is a sequence of actions leading from the
initial state to a goal state

| Example: The 8-puzzle | Search tree

an
e
) L

CAnd

G_i

CagarasD COradead i Ve

= e Jf -]

0L
ann

]) = Search trees:
= states? locations of tiles o Represent the branching paths through a state graph.
= actions? move blank left, right, up, down o Usually much larger than the state graph.
= goaltest? = goal state (given) o Can a finite state graph give an infinite search tree?

path cost? 1 per move

Search space of the game Tic-Tac-Toe

'Tree and graph

B is parent of C
C is child of B Tree
Alis ancestor of C

C is decendant of A

nade
(vertex)

terminal
(leaf) =
(edge)
Directed graph Undirected graph
{one-way street) (two-way streets)

= We can turn graph search problems into tree
search problems by:
o replacing undirected links by 2 directed links
o avoiding loops in path (or keeping trach of visited nodes
globally)

Tree search algorithms

= Basic idea:

o offline, simulated
exploration of state space
by generating successors
of already-explored states

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

Implementation: general tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe « INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node +— REMOVE- FRONT(fringe)
if GoaL-Test[problem](S1ATE|node]) then return SoLuTioN(node)
fringe « Inserr ALL{Exranp(node, problem), fringe)

function EXrAND(node, problem) returns a set of nodes

successors «— the empty set

for each action, result in SUccEssor-Fx|problem](STATE[node]) do
s+—a new NODE
PARENT-NODE[s] «— node; ACTION[s] ¢ action; STATE[s] ¢ result
Parn-Cost(s] « Parn-Costnede] + Srep-Cosr(node, action, 5)
DEPTH[s] + DEPTH[node] + 1
add s to successors

return successors

| Implementation: states vs. nodes

= A state is a (representation of) a physical configuration

= A node is a data structure constituting part of a search tree
includes state, parent node, action, path cost g(x), depth

parent, action

depth =6

State Node

g=6

sae

= The Expand function creates new nodes, filling in the various
fields and using the Successor Fn of the problem to create the
corresponding states.

Implementation: states vs. nodes

' Search strategies

= A search strategy is defined by picking the order of node
expansion

= Strategies are evaluated along the following dimensions:
u completeness: does it always find a solution if one exists?
o time complexity: number of nodes generated
o space complexity: maximum number of nodes in memory
o optimality: does it always find a least-cost solution?

= Time and space complexity are measured in terms of
o b: maximum branching factor of the search tree
o d: depth of the least-cost solution
o m: maximum depth of the state space (may be «)

Uninformed search strategies

Uninformed search strategies use only the information available
in the problem definition

Breadth-first search
o Expand shallowest unexpanded node
o fringe = queue (FIFO)

out «~——n fringe successors(n)«~— in

Depth-first search
o Expand deepest unexpanded node ~ __Successors(n)
o fringe = stack (LIFO) N out «——.n_fringe

Depth-limited search: depth-first search with depth limit

Iterative deepening search

21

Breadth-first search

Expand shallowest unexpanded node

(4)

pbO ©® ©® ©

22

Breadth-first search (con’t)

Complete? Yes (if b is finite)

Time? 1+b+b2+b3+... +bd + b(bd-1) = O(bd*")
Space? O(b¥+1) (keeps every node in memory)
Optimal? Yes (if cost = 1 per step)

-
1 node

b nodes

s tiers
b2 nodes

b® nodes

b™ nodes

23

Depth-first search

Expand deepest unexpanded node

Depth-first search (con’t)

= Complete? No: fails in infinite-depth spaces, spaces with
loops

o Modify to avoid repeated states along path - complete in finite spaces
Time? O(b™M): terrible if m is much larger than d

o but if solutions are dense, may be much faster than breadth-first

Space? O(bm), i.e., Iin;ar space!

n 1 node
= Optimal? No b nodes
n b2 nodes
m tiers {
b™ nodes

| Depth-limited search

= Depth-first search can get stuck on infinite path when a
different choice would lead to a solution

= Depth-limited search = depth-first search with depth limit I,
i.e., nodes at depth | have no successors

function DEPTH- LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-D LS(MAKE-NODE(INITIAL-STATE[problem]), problem, limi)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff
cutoff-occurred ? + false
if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
else if DEpPTH|node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result + RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? + true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

8-puzzle game with depth limit| =5

| Iterative deepening search

Problem with depth-limited search: if the
shallowest goal is beyond the depth limit, no
solution is found.

Iterative deepening search:

1. Do a DFS which only searches for paths of length 1
or less. (DFS gives up on any path of length 2)

2. If“1” failed, do a DFS which only searches paths of
length 2 or less.

3. If“2” failed, do a DFS which only searches paths of
length 3 or less.

4 ...and soon.

function ITERATIVE-DEEPENING- SEARCH(problem) returns a sofution, or fail-
ure
inputs: problem, a problem

for depth+ 0 to oo do

result +— DEPTH-LIMITED- SEARCH(problem, depth)
if resull +# cutoff then return resuit

[terative deepening search (con’t)

Limit =0 20} ®

oo e e e

Limit=1 0]

Limit =2 @D

OO NP

A el e

29

[terative deepening search (con’t)

Limit=3 Fo]

,mm
i

L0
£
il

| Iterative deepening search (con’t)

= Number of nodes generated in a depth-limited search to depth d
with branching factor b:

NpLs = b2+ bZ+bZ+ ... + bdZ+ a1 + pd

= Number of nodes generated in an iterative deepening search to
depth d with branching factor b:

Nips = (d+1)b0 + d b + (d-1)b2 + ... + 3bd2 +2bd-1 + 1bd
= Forb=10,d=5,
o Npsg=1+10+100+ 1,000 + 10,000 + 100,000 = 111,111
o Nps=6+50+ 400+ 3,000 + 20,000 + 100,000 = 123,456

= Overhead = (123,456 - 111,111)/111,111 = 11%

31

| Properties of iterative deepening
search

Complete? Yes

s Time? (d+1)b° + d b! + (d-1)b? + ... + bd = O(bY)
Space? O(bd)

= Optimal? Yes, if step cost = 1

| Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time o@HYy o@plc/dy o@m) o) O(b%)
Space O@pEYy o@®ICy O@m) O(bl) O(bd)
Optimal? Yes Yes No No Yes

33

