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Example 1: Route Planning
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Performance: Get from Arad to Bucharest as quickly as possible
Environment: The map, with cities, roads, and guaranteed travel 
times
Actions: Travel a road between adjacent cities
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Example 2: Finding letters

Replace letters by numbers from 0 to 9Replace letters by numbers from 0 to 9 
such as no different letter is replaced by 
the same number and satisfying the 
following constraint:

SEND              CROSS
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+   MORE          +  ROADS
MONEY           DANGER

Example 3: Pouring water

Given 2 containers A(m litres), B(n litres). Finding a 
method to measure k litres ( k ≤ max(m,n) ) by 2 
containers A B and a container Ccontainers A, B and a container C
Actions (how):

C A; C B; A B; A C; B A; B C
Conditions: no overflow, pouring all water
Eg: m = 5, n = 6, k = 2    (what)
M th ti l d l
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Mathematical model: 
(x, y) (x’, y’)
A  B       A  B

Example 4: The 8-puzzle
Trong bảng ô vuông n hàng, n cột, mỗi ô chứa 1 số
nằm trong phạm vi từ 1 n2 -1 sao cho không có 2 ô 
có cùng giá trị. Còn đúng 1 ô bị trống. Xuất phát từ 1 
cách sắp xếp nào đó của các đó của các số trongcách sắp xếp nào đó của các đó của các số trong
bảng, hãy dịch chuyển các ô trống sang phải, sang 
trái, lên trên, xuống dưới để đưa về bảng:
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Example 5: Hà Nội tower

Cho 3 cọc 1 2 3 Ở cọc 1 ban đầu có n đĩa sắp theoCho 3 cọc 1,2,3. Ở cọc 1 ban đầu có n đĩa, sắp theo 
thứ tự to dần từ trên xuống dưới. Hãy tìm cách 
chuyển n đĩa đó sang cọc 3 sao cho:

Mỗi lần chỉ chuyển 1 đĩa
Ở mỗi cọc không cho phép đĩa to nằm trên đĩa con
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1 2 3 1 2 3

Bài toán tháp Hà Nội với n = 3
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Problem types

Deterministic, fully observable single-state problem
Agent knows exactly which state it will be in; solution is a 
sequence

Non-observable sensorless problem (conformant problem)
Agent may have no idea where it is; solution is a sequence

Nondeterministic and/or partially observable contingency 
problem

percepts provide new information about current state
often interleave search, execution
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Unknown state space exploration problem

Search Problem Definition
A problem is defined by four items:
1. initial state: e.g., Arad
2 actions or successor function S(x) = set of action-state2. actions or successor function S(x) = set of action-state 

pairs
e.g., S(Arad) = {<Arad Zerind, Zerind>, … }

3. goal test, can be
explicit, e.g., x = Bucharest
implicit, e.g., Checkmate(x)

4. path cost (additive)
e g sum of distances number of actions executed etc
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e.g., sum of distances, number of actions executed, etc.
c(x,a,y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions leading from the 
initial state to a goal state

Example: The 8-puzzle

states?
actions?

locations of tiles
move blank left right up down
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actions?
goal test?
path cost?

move blank left, right, up, down
= goal state (given)
1 per move

Search tree 

Search trees:
Represent the branching paths through a state graph.
U ll h l th th t t h
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Usually much larger than the state graph.
Can a finite state graph give an infinite search tree?
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Search space of  the game Tic-Tac-Toe
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Tree and graph
B is parent of C
C is child of B
A is ancestor of C
C is decendant of A
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Convert from search graph to search tree

We can turn graph search problems into tree 
h bl b
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search problems by: 
replacing undirected links by 2 directed links
avoiding loops in path (or keeping trach of visited nodes 
globally)

Tree search algorithms
Basic idea:

offline, simulated 
l ti f t t

n0

nexploration of state space 
by generating successors 
of already-explored states

Goal
successors(n)

16



5

Implementation: general tree search
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Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree 
includes state parent node action path cost g(x) depthincludes state, parent node, action, path cost g(x), depth
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The Expand function creates new nodes, filling in the various 
fields and using the SuccessorFn of the problem to create the 
corresponding states.

Implementation: states vs. nodes
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Search strategies

A search strategy is defined by picking the order of node 
expansion
Strategies are evaluated along the following dimensions:

completeness: does it always find a solution if one exists?
time complexity: number of nodes generated
space complexity: maximum number of nodes in memory
optimality: does it always find a least-cost solution?

Time and space complexity are measured in terms of 
b: maximum branching factor of the search tree

20

g
d: depth of the least-cost solution
m: maximum depth of the state space (may be ∞)



6

Uninformed search strategies
Uninformed search strategies use only the information available 
in the problem definition

Breadth-first search
Expand shallowest unexpanded node
fringe = queue (FIFO)

Depth-first search
Expand deepest unexpanded node
f i k (LIFO)

fringe inout n successors(n)

fringein t
successors(n)
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fringe = stack (LIFO)

Depth-limited search: depth-first search with depth limit 

Iterative deepening search

fringein out n

Breadth-first search

Expand shallowest unexpanded node
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Breadth-first search (con’t)

Complete? Yes (if b is finite)
Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1)
Space? O(bd+1) (keeps every node in memory)
Optimal? Yes (if cost = 1 per step)
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Depth-first search

Expand deepest unexpanded node

24
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Depth-first search (con’t)
Complete? No: fails in infinite-depth spaces, spaces with 
loops

Modify to avoid repeated states along path complete in finite spaces

Time? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space? O(bm), i.e., linear space!

Optimal? No
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Depth-limited search
Depth-first search can get stuck on infinite path when a 
different choice would lead to a solution

⇒ Depth-limited search = depth-first search with depth limit l, 
i.e., nodes at depth l have no successors, p
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8-puzzle game with depth limit l = 5

Iterative deepening search
Problem with depth-limited search: if the 
shallowest goal is beyond the depth limit, no 
solution is found. 

⇒ Iterative deepening search:p g
1. Do a DFS which only searches for paths of length 1 

or less. (DFS gives up on any path of length 2)
2. If “1” failed, do a DFS which only searches paths of 

length 2 or less.
3. If “2” failed, do a DFS which only searches paths of 

length 3 or less.
4. ….and so on.
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Iterative deepening search (con’t)
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Iterative deepening search (con’t)
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Iterative deepening search (con’t)

Number of nodes generated in a depth-limited search to depth d
with branching factor b: 

0 1 2 d 2 d 1 dNDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

Number of nodes generated in an iterative deepening search to 
depth d with branching factor b: 

NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

For b = 10, d = 5,
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NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 - 111,111)/111,111 = 11%

Properties of iterative deepening 
search

C l t ? YComplete? Yes
Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)
Space? O(bd)
Optimal? Yes, if step cost = 1

32



9

Summary of algorithms
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