

Reinforcement Learning (RL)

- RL is ML method that optimize the reward
 - A class of tasks
 - □ A process of trial-and-error learning
 - Good actions are "rewarded"
 - Bad actions are "punished"

Features of RL

- Learning from numerical rewards
- Interaction with the task; sequences of states, actions and rewards
- Uncertainty and non-deterministic worlds
- Delayed consequences
- The explore/exploit dilemma
- The whole problem of goal-directed learning

Points of view

- From the point of view of agents
 - RL is a process of trial-and-error learning
 - □ How much reward will I get if I do this action?
- From the point of view of trainers
 - RL is training by rewards and punishments
 - Train computers like we train animals

Applications of RL

- Robot
- Animal training
- Scheduling
- Games
- Control systems
- ...

Examples

- Chess
 - □ Win +1, loose -1
- Elevator dispatching
 - reward based on mean squared time for elevator to arrive (optimization problem)
- Channel allocation for cellular phones
 - Lower rewards the more calls are blocked

Supervised Learning vs. Reinforcement Learning Supervised learning Reinforcement learning Teacher: Is this an AI World: You are in state 9. course or a Math course? Choose action A or B Leaner: Math Leaner: A Teacher: No, AI • World: Your reward is 100 • ··· o ... Teacher: Is this an AI World: You are in state 15. course or a Math course? Choose action C or D Leaner : Al Learner: D Teacher : Yes World : Your reward is 50

Policy, Reward and Goal

- Policy
 - defines the agent's behaviour at a given time
 - maps from perceptions to actions
 - can be defined by: look-up table, neural net, search algorithm...
 - may be stochastic
- Reward Function
 - defines the goal(s) in an RL problem
 - maps from states, state-action pairs, or state-action-successor state, triplets to a numerical reward
 - goal of the agent is to maximise the total reward in the long run
 - the policy is altered to achieve this goal

Reward and Return

- The reward function indicates how good things are right now
- But the agent wants to maximize reward in the long-term i.e. over many time steps
- We refer to long-term (multi-step) reward as return

$$R_t = r_{t+1} + r_{t+2} + \dots + r_T$$

where

T is the last time step of the world

Optimal Policies

- An RL agent adapts its policy in order to increase return
- A policy p₁ is at least as good as a policy p₂ if its expected return is at least as great in each possible initial state
- An optimal policy p is at least as good as any other policy

Policy Adaptation Methods

- Value function-based methods
 - □ Learn a value function for the policy
 - Generate a new policy from the value function
 - Q-learning, Dynamic Programming

Value Functions

- A value function maps each state to an estimate of return under a policy
- An action-value function maps from stateaction pairs to estimates of return
- Learning a value function is referred to as the "prediction" problem or 'policy evaluation' in the Dynamic Programming literature

Q-learning

- Learns action-values Q(s,a) rather than statevalues V(s)
- Action-values learning

 $Q(s,a) = R(s,a) + \gamma \max_{a'} Q(T(s,a),a')$

 Q-learning improves action-values iteratively until it converges

