

Decision tree – Representation (1)

- Each internal node represents an attribute to be tested by instances
- Each *branch* from a node corresponds to *a possible value* of the attribute associated with that node
- Each leaf node represents a classification (e.g., a class label)
- A learned DT classifies an instance by sorting it down the tree, from the root to some leaf node
 - \rightarrow The classification associated with the leaf node is used for the instance

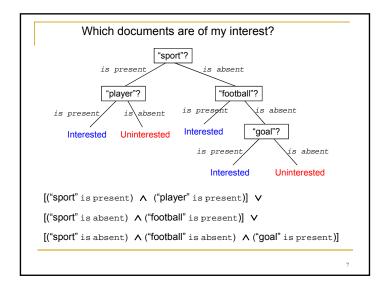
5

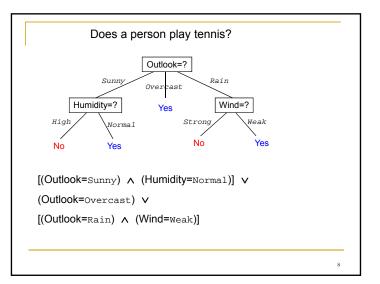
Decision tree – Representation (2)

- A DT represents a disjunction of conjunctions of constraints on the attribute values of instances
- Each path from the root to a leaf corresponds to a conjunction of attribute tests
- The tree itself is a disjunction of these conjunctions

6

- Examples
 - \rightarrow Let's consider the two previous example DTs...





Decision tree learning – ID3 algorithm ID3_alg(Training_Set, Class_Labels, Attributes) Create a node Root for the tree If all instances in Training_Set have the same class label c, <u>Return</u> the tree of the single-node Root associated with class label c If the set Attributes is empty, <u>Return</u> the tree of the single-node Root associated with class label = Majority_Class_Label(Training_Set) A ← The attribute in Attributes that "best" classifies Training_Set The test attribute for node Root ← A For each possible value v of attribute A

Add a new tree branch under Root, corresponding to the test: "value of attribute A is v"

Create a leaf node with class label = Majority_Class_Label(Training_Set)

Compute Training_Set_v = {instance $x | x \subseteq$ Training_Set, $x_a = v$ }

Else Attach to the new branch the sub-tree ID3_alg(Training_Set,

If (Training Set., is empty) Then

Return Root

Attach the leaf node to the new branch

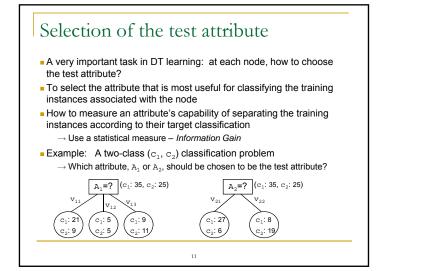
Class_Labels, {Attributes \ A})

ID3 algorithm – Intuitive idea

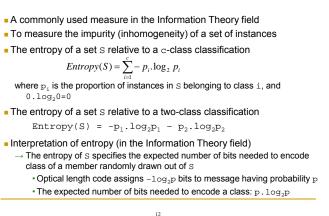
- Perform a greedy search through the space of possible DTs
- Construct (i.e., learn) a DT in a top-down fashion, starting from its root node
- At each node, the test attribute is the one (of the candidate attributes) that best classifies the training instances associated with the node
- A descendant (sub-tree) of the node is created for each possible value of the test attribute, and the training instances are sorted to the appropriate descendant node
- Every attribute can appear at most once along any path of the tree
- The tree growing process continues
 - Until the (learned) DT perfectly classifies the training instances, or

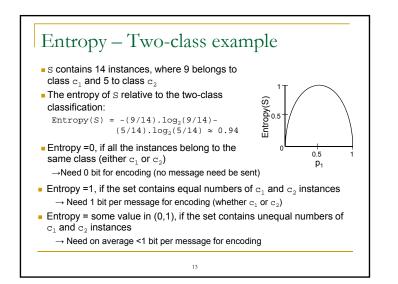
10

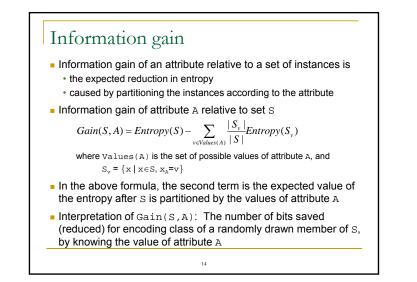
Until all the attributes have been used



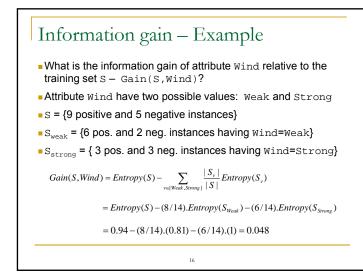
Entropy

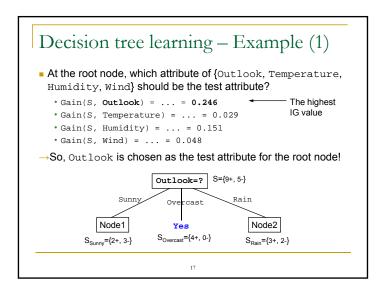


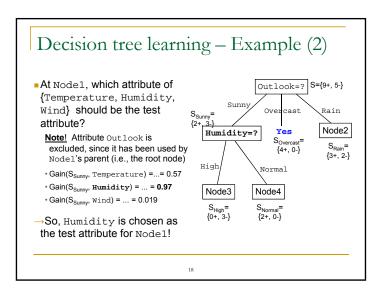




et's consider the following dataset (of a person) S:					
Day	Outlook	Temperature	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

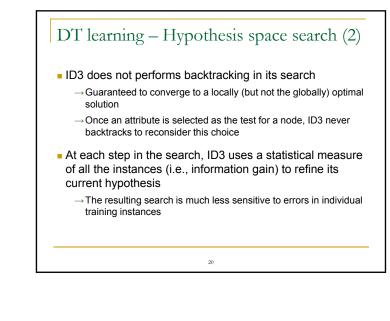


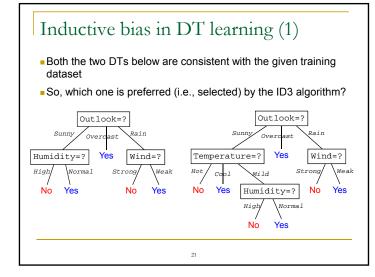




DT learning – Hypothesis space search (1) ID3 searches in a space of hypotheses (i.e., of possible DTs) for one that fits the training instances ID3 performs a simple-to-complex, hill-climbing search, beginning with the empty tree The hill-climbing search is guided by an evaluation metric – the information gain measure ID3 searches only one (rather than all possible) DT consistent with the training instances

19





Issues in DT learning

- Over-fitting the training data
- Handling continuous-valued (i.e., real-valued) attributes
- Choosing appropriate measures for attribute selection
- Handling training data with missing attribute values
- Handling attributes with differing costs
- → An extension of the ID3 algorithm with the above mentioned issues resolved results in the C4.5 algorithm

23

