Artificial Intelligence

First Order Logic

- Syntax
- Semantic

Lecturer 10 - First Order Logic

- Inference
- Resolution

Lecturers:
Le Thanh Huong
Tran Duc Khanh
Dept of Information Systems
School of Information and Communication Technology - HUST

First Order Logic (FOL)

- First Order Logic is about
- Objects (e.g., people, houses)
- Relations(e.g., red, bigger than, father of)
- Facts
- The world is made of objects
- Objects are things with individual identities and properties to distinguish them
- Various relations hold among objects. Some of these relations are functional
- Every fact involving objects and their relations are either true or false

FOL

- Syntax
- Semantic
- Inference
- Resolution

FOL Syntax

- Symbols

- Variables: x, y, z, \ldots
- Constants: a, b, c, ...
- Function symbols (with arities): f, g, h, ..
- Relation symbols (with arities): p, r, s
- Logical connectives: $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$
- Quantifiers: $\quad \exists, \forall$

FOL Syntax

- Variables, constants and function symbols are used to build terms
- X, Bill, FatherOf(X), ..
- Relations and terms are used to build predicates
- Tall(FatherOf(Bill)), Odd(X), Married(Tom,Marry), Loves(Y,MotherOf(Y)), ..
- Predicates and logical connective are used to build sentences
- Even(4)
- $\forall X$. Even $(X) \Rightarrow \operatorname{Odd}(X+1)$
- $\exists \mathrm{X} . \mathrm{X}>0$

FOL

FOL Semantic

- Syntax
- Variables
- Objects
- Constants
- Entities
- Function symbol

Function from objects to objects

- Relation symbol
- Relation between objects
- Quantifiers
- $\exists x . P$ true if P is true under some value of x
- $\forall x . P$ true if P is true under every value of x
- Logical connectives
- Similar to Propositional Logic

Example

- Symbols
- Variables: x,y,z, ...
- Constants: $0,1,2, \ldots$
- Function symbols: +,*
- Relation symbols: >, =
- Semantic
- Universe: N (natural numbers)
- The meaning of symbols
- Constants: the meaning of 0 is the number zero, .
- Function symbols: the meaning of + is the natural number addition,
- Relation symbols: the meaning of $>$ is the relation greater than,..

Robinson's Resolution for FOL

Given $K B=\{P 1(\ldots), \mathrm{P} 2(\ldots), \ldots, \mathrm{Pn}(\ldots)\}$. Prove $\mathrm{Q}(\ldots)$.
Add $\neg Q(\ldots)$ to $K B: K B=K B \wedge \neg Q(\ldots)$. Prove unsatisfied.
Theorem: A set of clauses S is unsatisfiable if and only if upon the input S, Resolution procedure finds the empty clause (after a finite time).

1. Write each $\mathrm{Pi}(\ldots), \neg \mathrm{Q}(\ldots)$ in one line.
2. Transfer to CNF representation
$\forall x_{1} \forall x_{2} \ldots \forall x_{n}\left[p_{1}(\ldots) \vee \ldots \vee p_{n}(\ldots)\right] \wedge\left[q_{1}(\ldots) \vee \ldots \vee q_{m}(\ldots)\right] \quad(*)$
3. Break (*) into smaller clauses at the logic connective \wedge :
$\forall x_{1} \forall x_{2} \ldots \forall x_{n}\left[p_{1}(\ldots) \vee \ldots \vee p_{n}(\ldots)\right]$
$\forall x_{1} \forall x_{2} \ldots \forall x_{n}\left[q_{1}(\ldots) \vee \ldots \vee q_{m}(\ldots)\right]$

Transform sentences to FOL

	b. Anyone who owns a dog is a lover-of-animals
	$\forall x .(\exists \mathrm{y} . \mathrm{D}(\mathrm{y}) \wedge(\mathrm{O}(\mathrm{x}, \mathrm{y})) \rightarrow \mathrm{L}(\mathrm{x})$
a. John owns a dog	$\forall x \cdot(-\exists y \cdot(D(y) \wedge O(x, y)) \vee L(x)$
$\exists x . D(x) \wedge O(J, x)$	$\forall x . y y . \neg(D(y) \wedge O(x, y)) \vee L(x)$
$D($ Fido $) \wedge O(J$, Fido $)$	$\forall x . y y . \neg D(y) \vee \neg O(x, y) \vee L(x)$
	$\neg D(y) \vee \neg \mathrm{O}(\mathrm{x}, \mathrm{y}) \vee \mathrm{L}(\mathrm{x})$

c. Lovers-of-animals do not kill animals
$\forall x . L(x) \rightarrow(\forall y . A(y) \rightarrow-K(x, y))$
$\forall x . \neg L(x) \vee(\forall y . A(y) \rightarrow \neg K(x, y))$
$\forall x . \neg L(x) \vee(\forall y . \neg A(y) \vee \neg K(x, y))$
$\neg L(x) v \neg A(y) \vee \neg K(x, y)$

Robinson's Resolution for FOL

4. Resolution:
u) $\neg \mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \vee \mathrm{q}(\ldots)$
v) $p\left(y_{1}, y_{2}, \ldots, y_{n}\right) \vee r(\ldots)$
with substitution $\theta=\left\{\frac{z_{1}}{x_{1}}, \frac{z_{1}}{y_{1}}, \ldots, \frac{z_{n}}{x_{n}}, \frac{z_{n}}{y_{n}}\right\}$
5. Contrast appears when KB contains 2 lines:
i) $\neg p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad$ ii) $\left.\left.p\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right\} \Rightarrow w\right) q(\ldots) \vee r(\ldots)$ with substitution

$$
\theta=\left\{\frac{z_{1}}{x_{1}}, \frac{z_{1}}{y_{1}}, \ldots, \frac{z_{n}}{x_{n}}, \frac{z_{n}}{y_{n}}\right\}
$$

Step 4 - Example

- Which substitution θ is used for resolving:
$P(a, x, b)$, and
$\neg P(y, z, z)$

$$
\theta=\left\{\frac{a}{y}, \frac{b}{z}, \frac{b}{x}\right\}
$$

- $P(a, b, b)$
- ${ }_{\neg} P(a, b, b)$

Step 4 - Example

- Which substitution θ is used for resolving:

Step 4 - Example

$$
\frac{\neg \operatorname{Pet}(J o e) \vee \operatorname{Cat}(J o e) \vee \operatorname{Bird}(J o e) \quad \operatorname{Parrot}(x) \vee \neg \operatorname{Bird}(x)}{\neg \operatorname{Pet}\left({ }^{\frac{1}{2}}\right)} \text { (1) }
$$

(1) $m g u(\operatorname{Bird}(x), \operatorname{Bird}(J o e))=\{x / J o e\}$

$$
\begin{aligned}
& \quad \frac{\neg \operatorname{On}(x, y) \vee \operatorname{Above}(x, y) \quad O n(B, A) \vee \operatorname{On}(A, B)}{\operatorname{Above}(A, B) \vee O n(B, A)} \text { (2) } \\
& \text { (2) } m u g u(O n(x, y), O n(A, B))=\{x / A, y / B\}
\end{aligned}
$$

$$
\frac{\neg \operatorname{Bird}(x) \vee \text { Feathers }(x) \quad \neg \text { Feathers }(y) \vee \text { Flies }(y)}{\neg \operatorname{Bird}(x) \vee \text { Flies }(x)}
$$

(3) $m g u($ Feathers (x), Feathers $(y))=\{y / x\}$

Step 4 - Example

- Given $p(a, b), p(c, d), q(d, c, c)$ are true
- Rule
$p(x, y) \wedge q(y, x, x) \Rightarrow r(x, y)$
- Using substitutions with the above rule, generate new predicate
- Idea:
- Try with $p(x, y) \equiv p(a, b)$ or $p(x, y) \equiv p(c, d)$

Resolution - Example

$$
\begin{array}{cc}
\forall x & P(x) \rightarrow Q(x) \\
\forall x & \neg P(x) \rightarrow R(x)
\end{array} \quad \text { Resolve } 1 \text { and } 30 . \neg P(x) \vee S(x)
$$

Exercice 1

- John owns a dog
- Anyone who owns a dog is a lover of animals
- Lovers of animals do not kill animals
- Proves that John does not kill animals?

Transform the problem to a set of clauses and apply Robinson's resolution

$\exists x . \mathrm{D}(\mathrm{x}) \wedge \mathrm{O}($ John, x$)$	$\mathrm{D}($ Fido $) \wedge \mathrm{O}($ John, Fido $)$
$\forall \mathrm{x} .(\exists \mathrm{y} . \mathrm{D}(\mathrm{y}) \wedge \mathrm{O}(\mathrm{x}, \mathrm{y})) \rightarrow \mathrm{L}(\mathrm{x})$	$\neg \mathrm{D}(\mathrm{y}) \vee \neg \mathrm{O}(\mathrm{x}, \mathrm{y}) \vee \mathrm{L}(\mathrm{x})$
$\forall \mathrm{x} . \mathrm{L}(\mathrm{x}) \rightarrow(\forall \mathrm{y} . \mathrm{A}(\mathrm{y}) \rightarrow \neg \mathrm{K}(\mathrm{x}, \mathrm{y}))$	$\neg \mathrm{L}(\mathrm{x}) \vee \neg \mathrm{A}(\mathrm{y}) \vee \neg \mathrm{K}(\mathrm{x}, \mathrm{y})$
$\forall \mathrm{x} . \mathrm{D}(\mathrm{x}) \Rightarrow \mathrm{A}(\mathrm{x})$	$\neg \mathrm{D}(\mathrm{x}) \vee \mathrm{A}(\mathrm{x})$
$\forall \mathrm{x} . \mathrm{A}(\mathrm{x}) \Rightarrow \neg \mathrm{K}($ John, x$)$	$\mathrm{A}($ Fido $) \wedge \mathrm{K}($ John, Fido $)$

Exercice 2

- Jack owns a dog
- Every dog owner is an animal lover
- No animal lover kills an animal
- Either Jack or Curiosity killed the cat, who is named Tuna
- Prove that Curiosity kill the cat.

Jack owns a dog own(Jack, dog)
 Every dog owner is an animal lover
 No animal lover kills an animal
 Either Jack or Curiosity killed the cat, who is named Tuna
 Did Curiosity kill the cat? Kills(Curiosity,Tuna)

$\exists x . \operatorname{Dog}(x) \wedge O w n s($ Jack, $x)$
$\forall x \forall y .(\operatorname{Dog}(y) \wedge O w n s(x, y)) \Rightarrow$ AnimalLover (x)
$\forall x .(\exists y . \operatorname{Dog}(y) \wedge O w n s(x, y)) \Rightarrow$ AnimalLover (x)
$\forall x \forall y .($ AnimalLover $(x) \wedge \operatorname{Animal}(y) \Rightarrow \neg \operatorname{Kills}(x, y))$
Kills(Jack,Tuna) $\vee \operatorname{Kill}($ Curiosity,Tuna)
Cat(Tuna)
$\forall x \cdot \operatorname{Cat}(x) \Rightarrow \operatorname{Animal}(x)$

Transform the problem to set of clauses
$\operatorname{Dog}(D)$
Owns(Jack, D)
$\neg \operatorname{Dog}(y) \vee \neg$ Owns $(x, y) \vee$ AnimalLover (x)
\neg AnimalLover $(x) \wedge \neg$ Animal $(y) \vee \neg \operatorname{Kills}(x, y)$
Kills(Jack,Tuna) $\vee \operatorname{Kill}(C u r i o s i t y, T u n a)$
Cat(Tuna)
$\neg \operatorname{Cat}(x) \vee \operatorname{Animal}(x)$
\neg Kills(Curiosity,Tuna)

Exercice 3

- The law says that it is a crime for an American to sell weapons to hostile nations
- The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American
- Is West a criminal?

```
The country Nono, an enemy of America, has some missiles, and all of its missiles were
sold to l= by Golonel West, who is American
sold to \jby Golonel West
    "... it is a crime for an American to sell weapons to hostile nations";
        V }x,y,z American(x) A Weapon(y)A Nation(z)A Hostile(z
        A Selis(x, z, y) = Criminal(x)
    "Nono ... has some missiles"
        \existsx Owns(Nono,x)^Missile(x)
    "All of its missiles were sold to it by Colonel West"
        \forallx Owns(Nono,x)A Missile(x) => Sells(West.Nono,x)
    We will also need to know that missiles are weapons
        \forall Missile(x) => Weapon(x)
    and that an enemy of America counts as "hostile"
        \forallx Enemy(x.America) }=>\mathrm{ Hostile(x)
    "West, who is American ...":
        American(West)
    "The country Nono ...":
        Nation(Nono)
            "Nono, an enemy of America ...":
        Enemy(Nono, America)
        Nation(America)

Transform the problem to set of clauses and Resolution
```

