Syllabus

Course Title: Artificial Intelligence

Course Code: 08-02

Product Code:

First Creation (Date - Version No.) : 090502-01 <u>* Sample: 070606-01</u>

Rev	Revision History (Date - Version No.)				
1	09-May-02: 090502-01	16			
2	09-May-19: 090519-01	17			
3	09-June-14:090519-01	18			
4	09-June-19:090619-01	19			
5	09-June-19: 090619-02	20			
6	25-June-09: 090625-01	21			
7		22			
8		23			
9		24			
10		25			
11		26			
12		27			
13		28			
14		29			
15		30			

Final Version (Date - Version No.) :

Official Approval	Date of Report to PIU

Course Title <japan-side></japan-side>	Semester	Day of the week, Period	Credit	Instructor
Artificial Intelligence	8		2	Le Thanh Huong

Course Description

Artificial intelligence (AI) is a research field that studies how to realize the intelligent problem solving on a computer. AI leans many of its basic ideas from human, but its realization is primarily based on engineering concerns. Although AI has a more than 50 years history, it cannot reach to the final goal, there are many fruitful findings and inventions. The main research topics in AI include planning, reasoning, learning, natural language understanding and generation, computer vision, automatic programming, and so on. This course describes the fundamental knowledge of AI technologies on some of the topics described above.

Focus and Goal

Focuses:

- 1. Description of the total image of Artificial Intelligence.
- 2. Basic concepts of AI.
- 3. Major techniques of AI.

Goals:

The students must understand the total image and the basic concepts of AI.

The students must learn major techniques of AI, especially on planning and reasoning.

Courses which students are recommended to enroll in, but not required to

The students must attend [Data structures and Algorithms] class because AI is based on knowledge representation and problem solving algorithms.

Schedu	le <japan-side></japan-side>
1st	Theme:
	Introduction
	Keywords:
	Foundations of AI, short history of AI, philosophical discussions
2nd	Theme:
	Agents
	Keywords:
	Agents and environments, reflex agents, model-based agents, goal-based agents, utility-based agents,
	learning agents, knowledge-based agents, multi-agent planning
3rd	Theme:
	Problem solving by searching (1) – Basics of searching
	Keywords:
	Formulating problems, search tree, breadth-first search, depth-first search, depth-limited search, iterative
	deepening depth-first search
4th	Theme:
	Problem solving by searching (2) – A* search
	Keywords:
	bidirectional search, avoiding repeated states, best-first search, A* search

5th	Theme: Problem solving by searching (3) – Advanced search methods				
	Keywords: memory-bounded heuristic search, hill-climbing search, simulated annealing search, genetic algorithms				
6th	Theme: Problem solving by searching (4) – alpha-beta pruning				
	Keywords: local beam search , game and search, alpha-beta pruning				
7th	Theme: Constraint Satisfaction Problems				
	Keywords: Constraint, constraint graph, backtracking search, constraint propagation, local search, structure of problems				
8th	Theme: Midterm test				
	Keywords: Examination for first half lectures and its solution				
9th	Theme: Logics and knowledge-based inference (1) – Propositional logic				
	Keywords: Logic, propositional logic, forward chaining, backward chaining, resolution				
10th	Theme: Logics and knowledge-based inference (2) – First-order logic (1)				
	Keywords: First-order logic, syntax and semantics, unification				
11th	Theme: Logics and knowledge-based inference (2) – First-order logic (2)				
	Keywords: Forward chaining, backward chaining, resolution				
12th	Theme: Planning				
	Keywords: Planning problem, state-space search, partial-order planning, planning graphs, planning with propositional logic				

13th	Theme:				
	Learning (1) - Supervised learning				
	Keywords				
	Inductive learning, decision tree learning				
14th	Theme:				
	Learning (2) - Reinforcement learning				
	Keywords:				
	Temporal difference learning, Q learning				
15th	Theme:				
	Learning (3) - Neural networks				
	Keywords:				
	Neuron, units/links/weight/activation, hidden units, perceptrons, multilayer neural networks, kernel				
	machines				
Note					

Out of class assignment Homework will be assigned.

Grading Criteria and Method of Evaluation					
Kind	Percentage	Evaluation Criteria			
Examination	70%	Achievement Test			
Report	%				
Continuous Assessment	30%	Short tests or quizzes every week (including midterm test)			
Others	%				
Note					

Educational advice for enrolled students

The students are strongly recommended to build their own images of what is intelligence as algorithms through the observation of daily human cognitions and behaviors.

Textbooks						
Title	Author	Publisher	ISBN code	Comment		
Note						

A hand-out will be provided in every lecture.

Reference books						
Title	Author	Publisher	ISBN code	Comment		
Artificial Intelligence – A Modern	Stuart Russell and	Prentice	0-13-080302-2			
Approach (2 nd Ed.)	Peter Norvig	Hall				

Note:		

Internet Websites related to the Course

http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-034Spring-2005/CourseHome/index.htm http://www.doc.ic.ac.uk/~sgc/teaching/v231/

http://www.cs.uiowa.edu/~tinelli/classes/145/

Contact

Le Thanh Huong@soict.hust.edu.vn

Others