JAVA Socket Programming

What Is a socket?

e Socket

— The combination of an IP address and a port number. (RFC
793 ,original TCP specification)

— The name of the Berkeley-derived application programming
interfaces (APIs) for applications using TCP/IP protocols.

— Two types
e Stream socket : reliable two-way connected communication streams
e Datagram socket

e Socket pair

— Specified the two end points that uniquely identifies each TCP
connection in an internet.

— 4-tuple: (client IP address, client port number, server IP address,
server port number)

Presenter
Presentation Notes
TLI (Transport Layer Interface)

Client-server applications

» Implementation of a protocol standard defined in an RFC. (FTP,
HTTP, SMTP...)

— Conform to the rules dictated by the RFC.
— Should use the port number associated with the protocol.

» Proprietary client-server application.

— A single developer(or team) creates both client and server
program.

— The developer has complete control.

— Must be careful not to use one of the well-known port number
defined in the RFCs.

* well-known port number : managed by the Internet Assigned
Numbers Authority(1IANA)

Sockets Working Model

client process server process

Socket Programming with TCP

|
| socket : : socket |
| | ' |
| |
| TCP with | | | TCP with |
| |
i process m;‘::%rs 1 ' D:T;ra process | |
: variahles | | : variahles :
| |
| | | |
| |
|- B > | I g -
' controlled bycontrolled by : | controlied by controlled by |
| application Operating ! | operating application
| developer system : . System developer !
| |
: host | | host I
|
|

The application developer has the ability to fix a few TCP parameters,
such as maximum buffer and maximum segment sizes.

Sockets for server and client

e Server
— Welcoming socket
e \Welcomes some initial contact from a client.
— Connection socket
e |s created at initial contact of client.
e New socket that is dedicated to the particular client.

e Client

— Client socket

e Initiate a TCP connection to the server by creating a socket
object. (Three-way handshake)

e Specify the address of the server process, namely, the IP
address of the server and the port number of the process.

Unix/Linux Socket functional calls

e socket (): Create a socket

e Dbind(): bind a socket to a local IP address and port #
e listen(): passively waiting for connections

e connect(): initiating connection to another socket

e accept(): accept a new connection

e Write(): write data to a socket

e Read(): read data from a socket

e sendto(): send a datagram to another UDP socket

e recvfrom(): read a datagram from a UDP socket

e close(): close a socket (tear down the connection)

Socket-programming using TCP

TCP service: reliable byte stream transfer

ggcg(e’)f()
in
| cocket() hstenly Server
client bind()
connect() w
accept()
_, send() < FEPAEK—
: recv() <
— recy() serznd() —
close() > close()
controlled by m | l
applica’rionI process PV:CQss
developer 1:m: = cocket™
controlled by [[TCP with TCP with
operating | |buffers, Internet
system | |variables mzﬁﬁé

Socket programming with TCP

keyboard monitor

Example client-server app: l
e client reads line from standard / oot 3
input (inFromUser stream) , strear 5
' Client £
sends to server via socket "l Input stream:
(outToServer stream) process sequence of bytes
= server reads line from socket output stream: into process
e server converts line to sequence of bytes
uppercase, sends back to client ~ outofjprocess ™~

output
stream

input
stream

e client reads, prints modified
line from socket
(inFromServer stream)

outToServer |<—
=

inFromServer

client TCP
socket

socket

to network from'network

Client/server socket interaction: TCP

Server (running on hostid) Client

create socket,
port=x, for
incoming request:
welcomeSocket =
ServerSocket()

—_—

TCP

wait for incoming <= = == = = = — —p Create socket,
connection request connection setup connect to hostid, port=x

connectionSocket = C“enthCkitt:
welcomeSocket.accept() ocket()

A 4
l send request using
read request from / clientSocket
connectionSocket

write reply to
connectionSocket

!

+

— read reply from
clientSocket

close 1

connectionSocket clpse 1
clientSocket

JAVA Sockets

e In Package java.net

— java.net.Socket
e Implements client sockets (also called just “sockets™).
e An endpoint for communication between two machines.
e Constructor and Methods

— Socket(String host, int port): Creates a stream socket and connects it to the
specified port number on the named host.

— InputStream getlnputStream()
— OutputStream getOutputStream()
— close()

— Java.net.ServerSocket
e Implements server sockets.
e Waits for requests to come in over the network.
e Performs some operation based on the request.

e Constructor and Methods

— ServerSocket(int port)
— Socket Accept(): Listens for a connection to be made to this socket and
accepts it. This method blocks until a connection is made.

TCPServer.java

import java.io.*;
import java.net.*;
class TCPServer {
public static void main(String argv[]) throws Exception {
String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {
Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient = new BufferedReader(new
InputStreamReader(connectionSocket.getlnputStream()));

DataOutputStream outToClient =
new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();
capitalizedSentence = clientSentence.toUpperCase() + '\n’;

outToClient.writeBytes(capitalizedSentence);

TCPClient.java

import java.io.*;
import java.net.*;

class TCPClient {

public static void main(String argv[]) throws Exception {
String sentence;
String modifiedSentence;

Socket clientSocket = new Socket(''server IP address", 6789);
DataOutputStream outToServer = new DataOutputStream(clientSocket.getOutputStream());

BufferedReader inFromServer = new BufferedReader(
new InputStreamReader(clientSocket.getInputStream()));

BufferedReader inFromUser = new BufferedReader(
new InputStreamReader(System.in));

sentence = inFromUser.readLine();
outToServer.writeBytes(sentence + "\n');
modifiedSentence = inFromServer.readLine();
System.out.printin("FROM SERVER: " + modifiedSentence);

clientSocket.close();

Socket Programming with UDP

e UDP
— Connectionless and unreliable service.

— There isn’t an initial handshaking phase.

— Doesn’'t have a pipe.
— transmitted data may be received out of order, or lost

e Socket Programming with UDP
— No need for a welcoming socket.
— No streams are attached to the sockets.
— the sending hosts creates “packets” by attaching the IP destination
address and port number to each batch of bytes.
— The receiving process must unravel to received packet to obtain
the packet’s information bytes.

Client/server socket interaction: UDP

Server (running on hostid) Client

create socket, create socket,

port=Xx, for clientSocket =
incoming request: DatagramSocket()
serverSocket =

DatagramSocket() 1

— Create, address (hostid, port=x,

l / send datagram request
read request from using clientSocket
serverSocket

write reply to

serverSocket ; o
specifying client — fead reply irom
host address clientSocket
port umber close 1

| clientSocket

Example: Java client (UDP)

~

keyboard monitor
A

input
stream

| inFromUser |<—

Client

Input: receives
process packet (TCP
Output: sends r'eceive"d ‘byte
packet (TCP senN stream’)

" by1’€ stream”) UDP

packet

sendPacket
ceivePacket

client UDP

socket

to network from network

JAVA UDP Sockets

In Package java.net

— Java.net.DatagramSocket

e A socket for sending and receiving datagram
packets.

e Constructor and Methods

— DatagramSocket(int port): Constructs a datagram
socket and binds it to the specified port on the local
host machine.

— void receive(DatagramPacket p)
— void send(DatagramPacket p)
— void close()

UDPServer.java

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception {

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true) {

DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length);
serverSocket.receive(receivePacket);

String sentence = new String(receivePacket.getData());
InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();
String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress, port);

serverSocket.send(sendPacket);

UDPClient.java

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception {
BufferedReader inFromUser = new BufferedReader(new InputStreamReader(System.in));

DatagramsSocket clientSocket = new DatagramSocket();
InetAddress IPAddress = InetAddress.getByName('hostname");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();
sendData = sentence.getBytes();

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress, 9876);
clientSocket.send(sendPacket);

DatagramPacket receivePacket = _ _
new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence = new String(receivePacket.getData());
System.out.printin("FROM SERVER:" + modifiedSentence);

clientSocket.close();

Building a Simple Web Server

 Handles only one HTTP request
e Accepts and parses the HTTP request

e Gets the required file from the server’s
file system.

e Creates an HTTP response message
consisting of the requested file
preceded by header lines

e Sends the response directly to the client

WebServer.java

import java.io.™;
import java.net.”*;
import java.util.™;
class WebServer{
public static void main(String argv[]) throws Exception {

String requestMessageLine;
String fileName;

ServerSocket listenSocket = new ServerSocket(6789);
Socket connectionSocket = listenSocket.accept();

BufferedReader inFromClient =
new BufferedReader(new
InputStreamReader(connectionSocket.getlnputStream()));

DataOutputStream outToClient =
new DataOutputStream(connectionSocket.getOutputStream());

WebServer.java

requestMessageLine = inFromClient.readLine();

StringTokenizer tokenizedLine =
new StringTokenizer(requestMessageline);

If (tokenizedLine.nextToken().equals("GET™)){
fleName = tokenizedLine.nextToken();

If (fleName.startsWith("/") == true)
fleName = fileName.substring(1);

File file = new File(fileName);
int numOfBytes = (int) file.length();

FileInputStream inFile = new FilelnputStream (fileName);
byte[] filelInBytes = new byte[numOfBytes];

InFile.read(fileInBytes);

WebServer.java

outToClient.writeBytes("HTTP/1.0 200 Document Follows\r\n");

if (fileName.endsWith(".jpg™))
outToClient.writeBytes("Content-Type: image/jpeg\r\n");

If (fleName.endsWith(".qif"))
outToClient.writeBytes("Content-Type: image/gif\r\n");

outToClient.writeBytes("Content-Length: " + numOfBytes + "\r\n");

outToClient.writeBytes("\r\n");
outToClient.write(fileInBytes, 0, numOfBytes);
connectionSocket.close();

}

else System.out.printin("Bad Request Message");

Concurrent Server

e Servers need to handle a new
connection request while processing
previous requests.

— Most TCP servers are designed to be
concurrent.

e \When a new connection request arrives
at a server, the server accepts and
Invokes a new process to handle the
new client.

How to handle the port numbers

cosmos% netstat —a —n —f inet

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 *.23 ** LISTEN

cosmos% netstat —a —n —f inet

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 192.249.24.2.23 192.249.24.31.1029 ESTABLISHED
tcp 0 0 *.23 ** LISTEN

cosmos% netstat —a —n —f inet

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp 0 0 192.249.24.2.23 192.249.24.31.1029 ESTABLISHED
tcp 0 0 192.249.24.2.23 192.249.24.31.1030 ESTABLISHED

tcp 0 0 *.23 *x LISTEN

Socket programming: references

C-language tutorial (audio/slides):
e “Unix Network Programming” (J. Kurose),
http://manic.cs.umass.edu/~amldemo/courseware/intro.htmi

Java-tutorials:

e “All About Sockets” (Sun tutorial),
http://www.javaworld.com/javaworld/jw-12-1996/jw-12-
sockets.html

e “Socket Programming in Java: a tutorial,”
http://www.javaworld.com/javaworld/jw-12-1996/jw-12-
sockets.html

	JAVA Socket Programming
	What is a socket?
	Client-server applications
	Sockets Working Model
	Socket Programming with TCP
	Sockets for server and client
	Unix/Linux Socket functional calls
	Socket-programming using TCP
	Socket programming with TCP
	Client/server socket interaction: TCP
	JAVA Sockets
	TCPServer.java
	TCPClient.java
	Socket Programming with UDP
	Client/server socket interaction: UDP
	Example: Java client (UDP)
	JAVA UDP Sockets
	UDPServer.java
	UDPClient.java
	Building a Simple Web Server
	WebServer.java
	WebServer.java
	WebServer.java
	Concurrent Server
	How to handle the port numbers
	Socket programming: references

