
gdb for debugging (1)

 gdb: the Gnu DeBugger

 http://www.cs.caltech.edu/courses/cs

11/material/c/mike/misc/gdb.html

 Use when program core dumps

 or when want to walk through

execution of program line-by-line

gdb for debugging (2)

 Before using gdb:

 Must compile C code with additional flag:

-g

 This puts all the source code into the

binary executable

 Then can execute as: gdb myprogram

 Brings up an interpreted environment

gdb for debugging (3)

gdb> run

 Program runs...

 If all is well, program exits

successfully, returning you to prompt

 If there is (e.g.) a core dump, gdb

will tell you and abort the program

gdb – basic commands (1)

 Stack backtrace ("where")

 Your program core dumps

 Where was the last line in the program that

was executed before the core dump?

 That's what the where command tells you

gdb – basic commands (2)

gdb> where

#0 0x4006cb26 in free () from /lib/libc.so.6

#1 0x4006ca0d in free () from /lib/libc.so.6

#2 0x8048951 in board_updater (array=0x8049bd0,

ncells=2) at 1dCA2.c:148

#3 0x80486be in main (argc=3, argv=0xbffff7b4) at

1dCA2.c:44

#4 0x40035a52 in __libc_start_main () from

/lib/libc.so.6

stack backtrace

last call in your codelast call

gdb – basic commands (3)

 Look for topmost location in stack backtrace

that corresponds to your code

 Watch out for

 freeing memory you didn't allocate

 accessing arrays beyond their maximum elements

 dereferencing pointers that don't point to part of a

malloc()ed block

gdb – basic commands (4)

 break, continue, next, step commands

 break causes execution to stop on a given line

gdb> break foo.c: 100 (setting a breakpoint)

 continue resumes execution from that point

 next executes the next line, then stops

 step executes the next statement

 goes into functions if necessary (next doesn't)

gdb – basic commands (5)

 print and display commands

 print prints the value of any program

expression

gdb> print i

$1 = 100

 display prints a particular value every time

execution stops

gdb> display i

gdb – printing arrays (1)

 print will print arrays as well

int arr[] = { 1, 2, 3 };

gdb> print arr

$1 = {1, 2, 3}

 N.B. the $1 is just a name for the result

print $1

$2 = {1, 2, 3}

gdb – printing arrays (2)

 print has problems with dynamically-allocated arrays

int *arr;

arr = (int *)malloc(3 * sizeof(int));

arr[0] = 1; arr[1] = 2; arr[2] = 3;

gdb> print arr

$1 = (int *) 0x8094610

 Not very useful...

gdb – printing arrays (3)

 Can print this array by using @ (gdb special syntax)

int *arr;

arr = (int *)malloc(3 * sizeof(int));

arr[0] = 1; arr[1] = 2; arr[2] = 3;

gdb> print *arr@3

$2 = {1, 2, 3}

gdb – abbreviations

 Common gdb commands have abbreviations

p (same as print)

c (same as continue)

n (same as next)

s (same as step)

 More convenient to use when interactively

debugging

