
gdb for debugging (1)

 gdb: the Gnu DeBugger

 http://www.cs.caltech.edu/courses/cs

11/material/c/mike/misc/gdb.html

 Use when program core dumps

 or when want to walk through

execution of program line-by-line

gdb for debugging (2)

 Before using gdb:

 Must compile C code with additional flag:

-g

 This puts all the source code into the

binary executable

 Then can execute as: gdb myprogram

 Brings up an interpreted environment

gdb for debugging (3)

gdb> run

 Program runs...

 If all is well, program exits

successfully, returning you to prompt

 If there is (e.g.) a core dump, gdb

will tell you and abort the program

gdb – basic commands (1)

 Stack backtrace ("where")

 Your program core dumps

 Where was the last line in the program that

was executed before the core dump?

 That's what the where command tells you

gdb – basic commands (2)

gdb> where

#0 0x4006cb26 in free () from /lib/libc.so.6

#1 0x4006ca0d in free () from /lib/libc.so.6

#2 0x8048951 in board_updater (array=0x8049bd0,

ncells=2) at 1dCA2.c:148

#3 0x80486be in main (argc=3, argv=0xbffff7b4) at

1dCA2.c:44

#4 0x40035a52 in __libc_start_main () from

/lib/libc.so.6

stack backtrace

last call in your codelast call

gdb – basic commands (3)

 Look for topmost location in stack backtrace

that corresponds to your code

 Watch out for

 freeing memory you didn't allocate

 accessing arrays beyond their maximum elements

 dereferencing pointers that don't point to part of a

malloc()ed block

gdb – basic commands (4)

 break, continue, next, step commands

 break causes execution to stop on a given line

gdb> break foo.c: 100 (setting a breakpoint)

 continue resumes execution from that point

 next executes the next line, then stops

 step executes the next statement

 goes into functions if necessary (next doesn't)

gdb – basic commands (5)

 print and display commands

 print prints the value of any program

expression

gdb> print i

$1 = 100

 display prints a particular value every time

execution stops

gdb> display i

gdb – printing arrays (1)

 print will print arrays as well

int arr[] = { 1, 2, 3 };

gdb> print arr

$1 = {1, 2, 3}

 N.B. the $1 is just a name for the result

print $1

$2 = {1, 2, 3}

gdb – printing arrays (2)

 print has problems with dynamically-allocated arrays

int *arr;

arr = (int *)malloc(3 * sizeof(int));

arr[0] = 1; arr[1] = 2; arr[2] = 3;

gdb> print arr

$1 = (int *) 0x8094610

 Not very useful...

gdb – printing arrays (3)

 Can print this array by using @ (gdb special syntax)

int *arr;

arr = (int *)malloc(3 * sizeof(int));

arr[0] = 1; arr[1] = 2; arr[2] = 3;

gdb> print *arr@3

$2 = {1, 2, 3}

gdb – abbreviations

 Common gdb commands have abbreviations

p (same as print)

c (same as continue)

n (same as next)

s (same as step)

 More convenient to use when interactively

debugging

