Data Structure &
Algorithm Basic Lab
- week 7

Binary Search

113 |5 |6 101114]|25|26|40| 41| 78

e The binary search algorithm uses a divide-
and-conquer technique to search the list.

e First, the search item is compared with the
middle element of the list.

e If the search item is less than the middle
element of the list, restrict the search to
the first half of the list.

o IC)therwise, search the second half of the
Ist.

Binary Search

e Binary Search is an incredibly
powerful technique for searching an
ordered list

o [t is familiar to everyone who uses a
telephone book!

Illustration
e Searching for a key=/8

11 3|5|6 1011|1425 (26|40 41|78
13|56 |10l 14]25]26|40]41]7 11 <= 78
14 25-40 41 | 78 26 <=178

78 41 <= 78
. 78 =78

4 opérations necessary for finding out the good element.
How many operations in case of sequential search?

40

Example

e First, compare 75 with the middle
element in this list, L[6] (which is
39).

e Because 75 > L[6] = 39, restrict the

search to the list L[7 . .. 12], as
shown in Figure.

Binary Search Code

int binSearch(int List[], int Target, int Size) {
int Mid,
Lo = 0O,
Hi = Size - 1;
while (Lo <= Hi) {
Mid = (Lo + Hi) / 2;
if (List[Mid] == Target)

return Mid;
else if (Target < List[Mid])
Hi = Mid - 1;
else
Lo = Mid + 1;
b
return -1;

Test Program

#include <stdio.h>
#define NotFound (-1)
typedef int ElementType;

int BinarySearch(ElementType A[], ElementType X, int N) {
int Low, Mid, High;
Low = 0; High =N - 1;
while(Low <= High) {
Mid = (Low + High) / 2;
if(Al Mid] < X))
Low = Mid + 1;
elseif(A[Mid] > X))
High = Mid - 1;
else
return Mid; /* Found */
b

return NotFound; /* NotFound is defined as -1 */

b
main()
{

staticintA[]1={1,3,5,7,9, 13, 15 };

int SizeofA = sizeof(A) / sizeof(A[0]);

inti;

for(i=0;i<20;i++)

printf("BinarySearch of %d returns %d\n",
i, BinarySearch(A, i, SizeofA));
return O;

Exercise: Recursive Binary
Search

e Implement a recursive version of a
binary search function.

Solution

#define NotFound (-1)
typedef int ElementType;

intHBi)na{rySearch(EIementType A[], ElementType X, int Lo, int
|

if (Lo > High) return NotFound;

Mid = (Low + High) / 2;

if (A[Mid] < X) return BinarySearch(A, X, Mid+1, Hi);

elseif (Al Mid] > X)

return BinarySearch(A, X, Lo, Mid - 1);
else

}

return NotFound; /* NotFound is defined as -1 */

)i
Usage: BinarySearch(A, X, 0O, size -1);

return Mid; /* Found */

Binary Search Performance
Test

e Dynamically allocatie 2MB array of
INt.

e Set the value of element in
ascending order

e Apply the binary search and print out
the number of searching time.

Big O Notation

e Definition: Suppose that f(n) and g(n) are
nonnegative functions of n. Then we say that f(n)
is O(g(n)) provided that there are constants C >
O and N > 0 such that for alln > N, f(n) < Cg(n).

e This says that function f(n) grows at a rate no
faster than g(n),; thus g(n) is an upper bound on

f(n).

e Big-O expresses an upper bound on the growth
rate of a function, for sufficiently large values of
n.

Running time analysis in
searching algorithms

e Mesure the number of comparison
operations

e Compare results with the problem's
size (size of input data)

e Sequential Search: O(n)
e Binary Search: O(log,n)

Exercise

e Define an array of integers, load from 1
to 100 in order to the array.

e Read a number from the standard input,
perform the binary search for an array.
ﬁ)utput "Not Found" if the array does not

ave It.

e When you perform the binary search,
output the array index compared to the
standard output. Also, display the number
of comparisons achieved until the target
number is found.

Hint

e With each comparison:
—increment a global variable counter

Execise

e Use recursive function for binary
search operation

e Print out the number of function call
of the Binary Search until the target
number is found

e Compare it with the non recursive
version.

Dictionary Order and Binary
Search

e When you search for a string value,
the comparison between two values
is based on dictionnary order.

e \We have:
_Ial < ldI’ IBI < IMI
— "acerbook" < "addition"
—"Chu Trong Hien" > "Bui Minh Hai"

e Just use: strcmp function.

Exercise

We assume that you make a mobile
phone’s address book.

Declare the structure which can store at
least ' name" "telephone number”, "e-mail
address.". And declare an array of the
structure that can handle about 100
address data.

Read this array data of about 10 from an
input file, and write a name which is equal
to a speaﬂed name and whose array index
is the smallest to an output file. Use the
binary search for this exercise

Solution

#include <stdio.h>
#include <string.h>

enum {SUCCESS, FAIL, MAX ELEMENT = 100};

// the phone book structure
typedef struct phoneaddress t
char name[20];
char tel[1l1l];
char email[25];

}phoneaddress;

Solution: implement Dictionary
order Binary Search

int BinarySearch(phoneaddress A[], char name[] , int N) {
int Low, Mid, High;
Low = 0; High =N -1;
while(Low <= High) {
Mid = (Low + High) / 2;
if(strcemp(A[Mid].name, name) < 0)
Low = Mid + 1;
else if(strcmp(A[Mid].name, name) > 0)
High = Mid - 1;
else
return Mid; /* Found */
by

return NotFound; /* NotFound is defined as -1 */

»

Solution

int main(void)
{
FILE *fp, fpout;
phoneaddress phonearr [MAX ELEMENT];
int i,n, irc; // return code
char name[20];
int reval = SUCCESS

printf ("How many contacts do you want to enter
(<100)?2™); scanf("sd", &n);

1f ((fp = fopen ("phonebook.dat","rb")) == NULL) {
printf ("Can not open %s.\n", "phonebook.dat");
reval = FAIL;

}

irc = fread(phonearr, sizeof (phoneaddress), n, fp);
printf (" fread return code = %d\n", irc); fclose (fp);
if (irc <0) {

printf (" Can not read from file!");

return -1;

Solution (next)

printf ("Let me know the name you want to search:");
gets (name) ;

irc = BinarySearch (phonearr, name,n);
i1f (irc <0) {
printf (" No contact match the criterial';

return -1;

}

// write result to outputfile

1f ((fpout = fopen("result.txt","w")) == NULL) {
printf ("Can create file to write.\n");
reval = FATIL;

}

else

fprintf (fpout, "%s have the email address $s and
telephone number:%s", phonearr[i].name,
phonearr[i] .email, phonearr[i].tel);

fclose (fpout) ;
return reval;

Exercise (BTVN)

e Return to SortedList exercise in Week4 (student
management) (Linked List) with structure of an element:

typedef struct Student t {
char id[ID LENGTH] ;
char name [NAME LENGTH] ;

int grade;

struct Student t *next;
} Student;

implement the function BinarySearch for this list based on
- the name
- the grade

of students

List verification

e Compare lists to verify that they are
identical or identify the
discrepancies.

e example

- international revenue service (e.qg.,
employee vs. employer)

e complexities
—random order: O(mn)

—ordered list:
O(tsort(n)+tsort(m)+m+n)

List verification

e Given two lists whose elements are
in the same type. Find

e (a) all records found in listl but not
in list2

e (b) all records found in list2 but not
in listl

e (¢) all records that are in listl and

list2 with the same key but have
different values for different fields.

Solution: Element type and
List declaration

o # define MAX-SIZE 1000/* maximum size of list plus one */
typedef struct {

int key;

/* other fields */

} element;
element listfMAX_SIZE];

Binary Search Function

e int binsearch(element list[], int searchnum, int n)
{
/* search list [0], ..., list[n-1]*/
int left = 0, right = n-1, middle;
while (left <= right) {
middle = (left+ right)/2;
switch (COMPARE(listf middle].key, searchnum)) {
case -1: left = middle +1;
break;
case 0: return middle;
case 1:right = middle - 1;
¥
¥

return -1;

verifying using a sequential
search

void verifyl(element listl[], element list2[], int n, int m)
/* compare two unordered lists list] and list2 */

‘{) °
mt1i, J,
int marked[MAX _SIZE];

for(i = 0; i<m; 1++)

marked[i] = FALSE;
for (i=0; i<n; i++)

if ((j = seqsearch(list2, m, listl[i].key)) < 0)

printf{“%d is not in list 2\n “, list1[i].key);

else
/* check each of the other fields from list1[1] and list2[j], and
print out any discrepancies */

marked[j] = TRUE;
for (i=0; i<m; i++)
if ("marked[i])
printf("%d is not in list1\n", list2[ilkey);

BT4EF1

e Cai dat ham so sanh hai danh sach

e Khdi tao hai danh sach tu 2 file
nokiadb1l.dat va nokiadb2.dat

e In ra danh sach cac model dién thoai
thuoc filel khong co trong file2.

verifying using a binary
search

void verify2(element listl[], element list2 [], int n, int m)
/* Same task as verifyl, but listl and list2 are sorted */
{
int i, j;
sort(listl, n);
sort(list2, m);
i=j=0;
while (1<n && j <m)
if (listl[i).key < list2[j].key) {
printf (“%d is not in list 2 \n”, list1[i].key);
i+
!
else if (listl1[i].key == list2[j].key) {
/* compare list1[i] and list2[j] on each of the other field
and report any discrepancies */
i+

}

verifying using a binary

search
else {
printf(*“%.d is not in list 1\n”, list2[j].key);
s
}

for(; 1 <n; 1++)

printf (“%d is not in list 2\n”, list1[i].key);
for(; j <m; j++)

printf{“%d is not in list 1\n”, list2[j].key);
i

