
Data Structure & Data Structure &
Algorithm Basic Lab Algorithm Basic Lab

– week 6– week 6

Topics of this weekTopics of this week
• Search algorithm

–Sequential
searching

–Sentinel
–Self organized

searching

Why Search ?Why Search ?
• Everyday life -We always Looking for something –

builder yellow pages, universities, hairdressers
• Computers can search for us
• World wide web –different searching

mechanisms, yahoo.com, ask.co.uk, google.com
• Spreadsheet –list of names –searching

mechanism to find a name
• Databases –use to search for a record -select *

from ..
• Large records –1000s takes time -many

comparison slow system –user wont wait long
time

Sequential searchSequential search
(Linear search)(Linear search)

• Visit all the elements of array from the
beginning

• Compare the key with each element of a
list (or of an array).

• If the search item is found, its index (that
is its location in array) is returned. If
search is unsuccessful, -1 is returned

• Note the sequential search does not
require the list elements to be in any
particular order

Sequential SearchSequential Search
int LinearSearch (T M[], int N,
T X){

int k = 0;

while (M[k] != X && k < N)

k++;

if (k < N) return (k);

return (-1);

}

ExempleExemple
#include<stdio.h>

 int sequential_search(char *items, int count, char key)
 {
 register int t;

 for(t=0; t < count; ++t)
 if(key == items[t]) return t;
 return -1; /* no match */
 }

 int main(void){
 char *str = "asdf";

 int index = sequential_search(str, 4, 's');

 printf("%d",index);

 }

SentinelSentinel
• Note that each iteration require two

conditions to be checked and one
statement to be executed.

• We can avoid checking for the end of the
array on every iteration by inserting the
target as an extra ‘sentinel’ element at the
end of the array.

• We place it at position n and follow the
algorithm:

SentinelSentinel
• Search sequentially from position 0

until the target is found (it will
definitely be found).

• If the target is found in position n
then the sentinel has been found –
search has ‘failed’,

• else search was successful, return
first index where target was found.

Sentinel searchSentinel search

int LinearSentinelSearch (T M[],
int N, T X){
int k = 0; M[N]=X;
while (M[k] != X)
k++;
return k-1;

}

Exercise 6-1Exercise 6-1
• We assume that you write a mobile phone’s

address book.
• Declare a structure "Address" that can hold at

least name, telephone number, and e-mail
address, and write a program that can handle
about 100 address data.

• Read about 10 address data from the input file,
search a name by the linear search, and write the
data matched first to the output file.
– (1) Implement this program using an array of structure.
– (2) Implement this program using a singly-linked list or

a doubly-linked list. Confirm the second search is
accelerated by moving data matched to the head of list
(self-organizing search).

Exercise 6-2: Exercise 6-2: Searching Searching
Arrays by Linear SearchArrays by Linear Search

• Read 11 integers from the standard input and assign first
ten integers to the array.

• Then if the 11th integer is in the array, output the position
of the element (1 – 10). If not, output 0.

Queue (move to front)Queue (move to front)
• Make a queue that holds integers. The size

of the queue is fixed to 10.
• Read integers separated by spaces from

the standard input, and add them to the
queue. When the program reads the 11th
integer, the queue is already full. So the
program removes the first integer and
adds the 11th integer. Print the removed
integer to the standard output.

• Process all the integers in this way.

Self organizing searchSelf organizing search
(move to front)(move to front)

• Any element searched/requested is
moved to the front

Self organizing searchSelf organizing search
(move to front)(move to front)

int search(int key,int r[], int n)
 {

int i,j;
int tempr;
for (i=0; i<n-1 && r[i] != key; i++);
if (key == r[i])
{ if (i>0) {

tempr = r[i];
for (j=i-1, j>=0; j--) r[j+1]=r[j];
r[0]=tempr;

};
return(i);
} else return(-1);

Self-organizing (Transpose) Self-organizing (Transpose)
sequential searchsequential search

int search(int key,int r[], int n)
 {

int i;
int tempr;
for (i=0; i<n && r[i] != key; i++);
if (key == r[i])
{ if (i>0) {

 /*** Transpose with predecessor ***/
tempr = r[i];
r[i] = r[i-1];
r[--i] = tempr;
};
return(i);
} else return(-1);

Exercise: Self Organized ListExercise: Self Organized List
• Modify a list that you have created in

previous exercises which support the
capacity of self-organizing using
"move to front" strategy.

• Infact, develop the function search
an element in a list.

Exercise: Self Organized ListExercise: Self Organized List
• Implement a Self Organized List

using Transpose strategy.

BTVN 4EFBTVN 4EF
• Cài đặt các chiến lược movetofront

và transpose cho thư viện List.

• Áp dụng cho bài toán quản lý các
model điện thoại Nokia DB.
–Khi tìm kiếm và cập nhật điện thoại theo

model
• VD: E71, N8,…

–Sử dụng lại menu của CT BT Tuần trước.

Exercises (advance)4EFExercises (advance)4EF
• Write a program that meets the following

specifications.

[Format] look character string
 [Description] All the words that begin with character strings

registered in /user/share/dict/words are displayed.
 [Example]
 % look computer
 computer
 computerize
 computerized
 computerizes
 computerizing
 computers

Binary SearchBinary Search

• The binary search algorithm uses a divide-
and-conquer technique to search the list.

• First, the search item is compared with the
middle element of the list.

• If the search item is less than the middle
element of the list, restrict the search to
the first half of the list.

• Otherwise, search the second half of the
list.

1 3 5 6 10 11 14 25 26 40 41 78

Binary SearchBinary Search
• Binary Search is an incredibly

powerful technique for searching an
ordered list

• It is familiar to everyone who uses a
telephone book!

IllustrationIllustration
• Searching for a key=78

1 3 5 6 10 11 14 25 26 40 41 78

11 <= 781 3 5 6 10 11 14 25 26 40 41 78

14 25 26 40 41 78 26 <= 78

40 41 78 41 <= 78

78 78 = 78

4 opérations necessary for finding out the good element.

How many operations in case of sequential search?

ExampleExample
• First, compare 75 with the middle

element in this list, L[6] (which is
39).

• Because 75 > L[6] = 39, restrict the
search to the list L[7 . . . 12], as
shown in Figure.

Binary Search CodeBinary Search Code
int binSearch(int List[], int Target, int Size) {

int Mid,
Lo = 0,
Hi = Size – 1;

while (Lo <= Hi) {
Mid = (Lo + Hi) / 2;
if (List[Mid] == Target)

return Mid;
else if (Target < List[Mid])

Hi = Mid – 1;
else

Lo = Mid + 1;
}
return -1;

}

Test ProgramTest Program
#include <stdio.h>
#define NotFound (-1)
typedef int ElementType;

int BinarySearch(ElementType A[], ElementType X, int N) {
 int Low, Mid, High;

Low = 0; High = N - 1;
while(Low <= High) {

Mid = (Low + High) / 2;
if(A[Mid] < X)

Low = Mid + 1;
 elseif(A[Mid] > X)

High = Mid - 1;
 else

return Mid; /* Found */
 }

return NotFound; /* NotFound is defined as -1 */
}
main()
{
 static int A[] = { 1, 3, 5, 7, 9, 13, 15 };
 int SizeofA = sizeof(A) / sizeof(A[0]);
 int i;
 for(i = 0; i < 20; i++)
 printf("BinarySearch of %d returns %d\n",
 i, BinarySearch(A, i, SizeofA));
 return 0;
}

Exercise: Recursive Binary Exercise: Recursive Binary
SearchSearch

• Implement a recursive version of a
binary search function.

SolutionSolution
#define NotFound (-1)
typedef int ElementType;

int BinarySearch(ElementType A[], ElementType X, int Lo, int
Hi) {
if (Lo > High) return NotFound;
Mid = (Low + High) / 2;
if (A[Mid] < X) return BinarySearch(A, X, Mid+1, Hi);
elseif (A[Mid] > X)

 return BinarySearch(A, X, Lo, Mid – 1);
 else

return Mid; /* Found */
 }

return NotFound; /* NotFound is defined as -1 */
}

Usage: BinarySearch(A, X, 0, size -1);

Big O NotationBig O Notation
• Definition: Suppose that f(n) and g(n) are

nonnegative functions of n. Then we say that f(n)
is O(g(n)) provided that there are constants C >
0 and N > 0 such that for all n > N, f(n) ≤ Cg(n).

• This says that function f(n) grows at a rate no
faster than g(n); thus g(n) is an upper bound on
f(n).

• Big-O expresses an upper bound on the growth
rate of a function, for sufficiently large values of
n.

Running time analysis in Running time analysis in
searching algorithmssearching algorithms

• Mesure the number of comparison
operations

• Compare results with the problem's
size (size of input data)

• Sequential Search: O(n)

• Binary Search: O(log2n)

ExerciseExercise
• Define an array of integers, load from 1

to 100 in order to the array.
• Read a number from the standard input,

perform the binary search for an array.
Output "Not Found" if the array does not
have it.

• When you perform the binary search,
output the array index compared to the
standard output. Also, display the number
of comparisons achieved until the target
number is found.

HintHint
• With each comparison:

– increment a global variable counter

ExeciseExecise
• Use recursive function for binary

search operation
• Print out the number of function call

of the Binary Search until the target
number is found

• Compare it with the non recursive
version.

Dictionary Order and Binary Dictionary Order and Binary
SearchSearch

• When you search for a string value,
the comparison between two values
is based on dictionnary order.

• We have:
– 'a' < 'd', 'B' < 'M'
– "acerbook" < "addition"
– "Chu Trong Hien" > "Bui Minh Hai"

• Just use: strcmp function.

ExerciseExercise
• We assume that you make a mobile phone’s

address book.
• Declare the structure which can store at least

"name", "telephone number", "e-mail address.".
And declare an array of the structure that can
handle about 100 address data.

• Read this array data of about 10 from an input
file (sorted by name in alphabetic order), and
write a name which is equal to a specified name
and whose array index is the smallest to an
output file. Use the binary search for this exercise

SolutionSolution
#include <stdio.h>

#include <string.h>

enum {SUCCESS, FAIL, MAX_ELEMENT = 100};

// the phone book structure

typedef struct phoneaddress_t {

 char name[20];

 char tel[11];

 char email[25];

}phoneaddress;

Solution: implement Dictionary Solution: implement Dictionary
order Binary Searchorder Binary Search

int BinarySearch(phoneaddress A[], char name[] , int N) {
 int Low, Mid, High;

Low = 0; High = N - 1;
while(Low <= High) {

Mid = (Low + High) / 2;
if(strcmp(A[Mid].name, name) < 0)

Low = Mid + 1;
 else if(strcmp(A[Mid].name, name) > 0)

High = Mid - 1;
 else

return Mid; /* Found */
 }

return NotFound; /* NotFound is defined as -1 */
 }

SolutionSolution
int main(void)
{
 FILE *fp, fpout;
 phoneaddress phonearr[MAX_ELEMENT];

 int i,n, irc; // return code
 char name[20];

 int reval = SUCCESS

printf("How many contacts do you want to enter
(<100)?"); scanf("%d", &n);

 if ((fp = fopen("phonebook.dat","rb")) == NULL){
printf("Can not open %s.\n", "phonebook.dat");
reval = FAIL;

}
 irc = fread(phonearr, sizeof(phoneaddress), n, fp);
 printf(" fread return code = %d\n", irc); fclose(fp);

if (irc <0) {
printf (" Can not read from file!");
return -1;

 }

Solution (next)Solution (next)
printf("Let me know the name you want to search:");
gets(name);
irc = BinarySearch(phonearr, name,n);
if (irc <0) {

printf (" No contact match the criteria!";
return -1;

 }
// write result to outputfile
if ((fpout = fopen("result.txt","w")) == NULL){

printf("Can create file to write.\n");
reval = FAIL;

}
else
 fprintf(fpout, "%s have the email address %s and
telephone number:%s", phonearr[irc].name,
phonearr[irc].email, phonearr[irc].tel);
fclose(fpout);
return reval;

}

ExerciseExercise
• Return to SortedList exercise in Week4 (student

management) (Linked List) with structure of an element:
typedef struct Student_t {

char id[ID_LENGTH];
char name[NAME_LENGTH];
int grade;

struct Student_t *next;
} Student;

implement the function BinarySearch for this list based on
- the name
- the grade

of students

List verificationList verification
• Compare lists to verify that they are

identical or identify the
discrepancies.

• example
– international revenue service (e.g.,

employee vs. employer)
• complexities

–random order: O(mn)
–ordered list:

O(tsort(n)+tsort(m)+m+n)

List verificationList verification
• Given two list whose elements are in

the same type. Find
• (a) all records found in list1 but not

in list2
• (b) all records found in list2 but not

in list1
• (c) all records that are in list1 and

list2 with the same key but have
different values for different fields.

Solution: Element type and Solution: Element type and
List declarationList declaration

• # define MAX-SIZE 1000/* maximum size of list plus one */
typedef struct {
 int key;
 /* other fields */
 } element;
element list[MAX_SIZE];

Binary Search FunctionBinary Search Function
• int binsearch(element list[], int searchnum, int n)

{
/* search list [0], ..., list[n-1]*/
 int left = 0, right = n-1, middle;
 while (left <= right) {
 middle = (left+ right)/2;
 switch (COMPARE(list[middle].key, searchnum)) {
 case -1: left = middle +1;
 break;
 case 0: return middle;
 case 1:right = middle - 1;
 }
 }
 return -1;
}

void verify1(element list1[], element list2[], int n, int m)void verify1(element list1[], element list2[], int n, int m)
/* compare two unordered lists list1 and list2 *//* compare two unordered lists list1 and list2 */
{{
int i, j;int i, j;
int marked[MAX_SIZE];int marked[MAX_SIZE];

for(i = 0; i<m; i++)for(i = 0; i<m; i++)
 marked[i] = FALSE; marked[i] = FALSE;
for (i=0; i<n; i++)for (i=0; i<n; i++)
 if ((j = seqsearch(list2, m, list1[i].key)) < 0) if ((j = seqsearch(list2, m, list1[i].key)) < 0)
 printf(“%d is not in list 2\n “, list1[i].key); printf(“%d is not in list 2\n “, list1[i].key);
 else else
 /* check each of the other fields from list1[i] and list2[j], and /* check each of the other fields from list1[i] and list2[j], and
print out any discrepancies */ print out any discrepancies */

verifying using a sequential verifying using a sequential
searchsearch

 marked[j] = TRUE;marked[j] = TRUE;
for (i=0; i<m; i++)for (i=0; i<m; i++)
 if (!marked[i]) if (!marked[i])
 printf(“%d is not in list1\n”, list2[i]key); printf(“%d is not in list1\n”, list2[i]key);
}}

void verify2(element list1[], element list2 [], int n, int m)void verify2(element list1[], element list2 [], int n, int m)
/* Same task as verify1, but list1 and list2 are sorted *//* Same task as verify1, but list1 and list2 are sorted */
{{
 int i, j; int i, j;
 sort(list1, n); sort(list1, n);
 sort(list2, m); sort(list2, m);
 i = j = 0; i = j = 0;
 while (i < n && j < m) while (i < n && j < m)
 if (list1[i].key < list2[j].key) { if (list1[i].key < list2[j].key) {
 printf (“%d is not in list 2 \n”, list1[i].key); printf (“%d is not in list 2 \n”, list1[i].key);
 i++; i++;
 } }
 else if (list1[i].key == list2[j].key) { else if (list1[i].key == list2[j].key) {
 /* compare list1[i] and list2[j] on each of the other field /* compare list1[i] and list2[j] on each of the other field
 and report any discrepancies */ and report any discrepancies */
 i++; j++; i++; j++;
 } }

verifying using a sorting verifying using a sorting
techniquetechnique

else {else {
 printf(“%d is not in list 1\n”, list2[j].key); printf(“%d is not in list 1\n”, list2[j].key);
 j++; j++;
 } }
for(; i < n; i++)for(; i < n; i++)
 printf (“%d is not in list 2\n”, list1[i].key); printf (“%d is not in list 2\n”, list1[i].key);
for(; j < m; j++)for(; j < m; j++)
 printf(“%d is not in list 1\n”, list2[j].key); printf(“%d is not in list 1\n”, list2[j].key);
}}

verifying using a sorting verifying using a sorting
techniquetechnique

