Data Structure &
Algorithm Basic Lab
- week 13

Topics of this week

e String pattern matching algorithms
- Naive algorithm
— Knuth-Morris-Pratt algorithm
— Boyer-Moore algorithm

e Exercises

Q
oy
Q
0
Q
QY |ITC|- |Y
N

String matching problem

e Let P be a string of size m

— A substring PJ[i .. j] of P is the subsequence of P
consisting of the characters with ranks between i and j

— A prefix of P is a substring of the type P[O .. i]
— A suffix of P is a substring of the type P[i ..m — 1]

e Given strings T (text) and P (pattern), the pattern
matching problem consists of finding a substring
of T equal to P

e Applications:
— Text editors, Search engines, Biological research

Brute Force Matching

e The brute-force pattern matching algorithm
compares the pattern P with the text T for each
possible shift of P relative to T, until either
— a match is found, or

— all placements of the pattern have been tried
e Brute-force pattern matching runs in time O(nm)

e Example of worst case:
- T = aaa ... ah
- P = aaah
— may occur in images and DNA sequences
— unlikely in English text

Algorithm

Algorithm BruteForceMatch(T, P)

// Input text T of size n and pattern P of size m

// Output starting index of a substring of T equal to P or
-1

1f no such substring exists
for 1 « 0 ton — m {
test shift 1 of the pattern
}
J <« 0
while 3 < m A T[i + 3] = P[7]
J <~ 373+ 1
if J =m
return 1 {match at 1}
else
break while loop {mismatch}
return -1 {no match anywhere}

Exercise 13.1

e Make a random string that has about 2000
characters consisting of a set of
characters..

e For example:

— set of characters: abcdef
— string: abcadacaeeeffaadbfacddedcedfbeccae...
e Write the program that searches the

pattern, for example “aadbf”, from the
string.

e Note: use Simple searching string
Algorithm

Boyer-Moore Heuristics

e The Boyer-Moore’s pattern matching
algorithm is based on two heuristics

e Looking-glass heuristic: Compare P with a
subsequence of T

e moving backwards
e Character-jump heuristic: When a

mismatch occurs at T[i] = ¢

— If P contains c, shift P to align the last
occurrence of c in P with T[i]

— Else, shift P to align P[O] with T[i + 1]

Example

rlilt|h|m

a|ll|lglo

mla|t|c|h|i|n|g

t\e|r|n

f

i

P

i

1110 9 8 7

5

t|h|m

t | h|m

rli|lt|h|m

[

r

]

r

m

t|h

[

r

t | h|m

i

r

t | h|m

t | h|m

]

i

r

F

Last-Occurrence Function

Boyer-Moore’s algorithm preprocesses the pattern
P and the alphabet 2 to build the last-occurrence
function L mapping 2 to integers, where L(c) is
defined as

- the largest index i such that P[i] = c or

— —1 if no such index exists

Example:
- > ={a, b, c d} c a | b c d

— P = abacab L (c) 4 5 3 1

The last-occurrence function can be represented
by an array indexed by the numeric codes of the
characters

The last-occurrence function can be computed in
time O(m + s), where m is the size of P and s is
the size of 2

Algorithm Boyer Moore

Algorithm BoyerMooreMatch(T, P, 2)
L < lastOccurenceFunction(P, 2’)
i<—m— 1
je—m—1
repeat
if T[i] = P[j]

ifj=0
return i { match ati}
else
i«—i—1
Je—j—1
else
{ character-jump }
[— L[T[i]]
i«— i +m—min(, 1 +1)
je—m—1
until i>n — 1
return —1 { no match |

Case 1: j<1+1

|
bla |
jii |
lm — jl
<>
. bla
[. !
J '
Case 2: 1 +1<j
B Tal.
i
|
al .| .| b]. |
/ j |
lm—(1+1) |
T]
al.|.|b].
«
I +1°

10

Exercise 13.2: Searching
string by Boyer-Moore

Make a random string that has about 2000
characters consisting of a set of
characters.

set of characters: abcdef

string:
abcadacaeeeffaadbfacddedcedfbeccae...

Write the program that search the pattern,
for example “aadbf”, from the string.

Note: use Boyer-Moore Algorithm

11

KMP string matching

e Knuth-Morris-Pratt’s algorithm
compares the pattern to the text in
left-to-right, but shifts the pattern
more intelligently than the brute-
force algorithm.

e When a mismatch occurs, what is the
most we can shift the pattern so as
to avoid redundant comparisons?

e Answer: the largest prefix of P[0..j]
that is a suffix of P[1..j]

12

al bl a| a| b| a

«—»l

No need tDr l \ Resume

repeat these comparing
comparisons here

KMP Failure Function

e Knuth-Morris-Pratt’s algorithm
preprocesses the pattern to find matches
of prefixes of the pattern with the pattern

itself
e The failure function F(j) is defined as the

size of the largest prefix of P[0..j] that is
also a suffix of P[1..j]

o Knuth-Morris-Pratt’s algorithm modifies
the brute-force algorithm so that if a
mismatch occurs at P[j] # T[i] we set

JeFG - 1)

14

=
.
=
-
]
]
-
L & |

15

Algorithm failureFunction(P)
F[O] « O
| « 1
je< 0
while i < m
if P[i] = P[j]
{we have matched j + 1 chars}
Fli] «j+ 1
< i+ 1
Jej+ 1
else if j > 0 then
{use failure function to shift P}
Je F[j—1]
else
F[i] « O { no match }
[« i+ 1

16

Exercise 13.3

e Repeat the exercise 13.2 using the
KMP algorithm.

e Calculate the number of
comparisons.

17

The KMP algorithm

e The failure function can be represented by
an array and can be computed in O(m)
time

e At each iteration of the while-loop, either
— | increases by one, or

— the shift amount i — j increases by at least one
(observe that F(j — 1) < j)

e Hence, there are no more than 2n
iterations of the while-loop

e Thus, KMP’s algorithm runs in optimal time
O(m + n)

18

Algorithm KMPMatch(T, P)
F « failureFunction(P)

1<—0
j<0
while 1 <n
if T[1] = P[j]
if j=m—1
return 1—j { match }
else
1<—1+1
j(—j-l—l
else
if j>0
j—F—1]
else
1<—1+1

return —1 { no match }

19

Example

albla|c|la|b

8 9 1011 12

alblalcl|lal|b

albla|cla|b

albla|clala|bla|lc|lcl|lal|lblalcl|la|b|la|a|b|b

1 2 3 4 5 6

albla|clal|b

L

L

Plj]
F(j)

20

