
Data Structure & Data Structure &
Algorithm Basic Lab Algorithm Basic Lab

– week 11+12– week 11+12

Topics of this weekTopics of this week
• Advanced Sorting Algorithm

–Quick sort
–Merge sort
–Recursive processing

• Exercises

Quicksort AlgorithmQuicksort Algorithm

Given an array of n elements (e.g.,
integers):

• If array only contains one element, return
• Else

– pick one element to use as pivot.
– Partition elements into two sub-arrays:

• Elements less than or equal to pivot
• Elements greater than pivot

– Quicksort two sub-arrays
– Return results

ExampleExample

• We are given array of n integers to
sort:

40 20 10 80 60 50 7 30 100

Quick Sort Quick Sort (Hoare)(Hoare)
• Given (R0, R1, …, Rn-1)

Ki: pivot key
if Ki is placed in S(i),
then Kj Ks(i) for j < S(i),

 Kj Ks(i) for j > S(i).

• R0, …, RS(i)-1, RS(i), RS(i)+1, …, RS(n-1)

two partitions

Partitioning ArrayPartitioning Array

• Given a pivot, partition the elements of
the array such that the resulting array
consists of:

• 1. One sub-array that contains elements
>= pivot

• 2. Another sub-array that contains
elements < pivot

• The sub-arrays are stored in the original
data array.

• Partitioning loops through, swapping
elements below/above pivot.

Partition ResultPartition Result

<= data[pivot]

7 20 10 30 40 50 60 80 100

[0] [1] [2] [3] [4] [5] [6] [7] [8]

> data[pivot]

Recursion: Quicksort Recursion: Quicksort
SubarraysSubarrays

<= data[pivot]

7 20 10 30 40 50 60 80 100

[0] [1] [2] [3] [4] [5] [6] [7] [8]

> data[pivot]

Example for Quick SortExample for Quick Sort

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 left right
26 5 37 1 61 11 59 15 48 19 0 9
11 5 19 1 15 26 59 61 48 37 0 4
1 5 11 19 15 26 59 61 48 37 0 1
1 5 11 15 19 26 59 61 48 37 3 4
1 5 11 15 19 26 48 37 59 61 6 9
1 5 11 15 19 26 37 48 59 61 6 7
1 5 11 15 19 26 37 48 59 61 9 9
1 5 11 15 19 26 37 48 59 61

{ }
{ } { }
{ } { } { }

{ }

{ }
{

} {
}

Quick SortQuick Sort
void quicksort(element list[], int left,
 int right)

{
 int pivot, i, j;
 element temp;
 if (left < right) {
 i = left; j = right+1;
 pivot = list[left].key;
 do {
 do i++; while (list[i].key < pivot);
 do j--; while (list[j].key > pivot);
 if (i < j) SWAP(list[i], list[j], temp);
 } while (i < j);
 SWAP(list[left], list[j], temp);
 quicksort(list, left, j-1);
 quicksort(list, j+1, right);
 }
}

Exercise 11-1: Quick sortExercise 11-1: Quick sort
• We assume that you make a mobile

phone’s address book.
• At the very least, you should declare the

structure that can store “name”, “phone
number” and “e-mail address”. And, you
should declare the array that can store
about 100 data that have this structure.

• You write a program that reads about 10
data from an input file to the array and
writes the data to an output file after
sorting in ascending order for name.

• You must use Quick sort for sorting.

Exercise 11-2Exercise 11-2
• Initiate an array of n random

integers. n is entered by user.
• Sort the array with the insertion sort
• And using quicksort
• Compare the execution time of two

algorithms.
• Run the program with various values

of n to view the effect.

Exercise 11-3 Exercise 11-3 Combination of Combination of
quick sort and insertion sortquick sort and insertion sort

• When a program sorts a little number of the data,
a program using insertion sort is faster than a
program using quick sort and so on. So, a
program sorts efficiently, if a program changes
sorting algorithms by the number of data.

• You write a function that selects sorting
algorithms – If number of the data is more than x
numbers, the function selects quick sort. If not
so, it selects insertion sort.

• Note: get the number “x” as the program
argument.

• Read the text file that has more than 100
characters, sort the first 100 characters, and
show the result by standard output.

Merge SortMerge Sort
• Problem: Given n elements, sort elements

into non-decreasing order
• Apply divide-and-conquer to sorting

problem
– If n=1 terminate (every one-element list is

already sorted)
– If n>1, partition elements into two sub-arrays;

sort each; combine into a single sorted array

AlgorithmAlgorithm

MergeSort (E[0 .. N])
if N < threshold

 InsertionSort (E[0..N])
else

copy E[0.. N/2] to U[0.. N/2]
copy E[N/2 .. N] to V[0 .. N-N/2]
MergeSort(U[0 .. N/2])

 MergeSort(V[0 .. N-N/2])
Merge(U[0 .. N/2], V[0 .. N-N/2},

E[0 .. N])

Merge Sort: ExampleMerge Sort: Example
5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6

5 2 4 6 2 6 1 3

5 2 4 6 1 3 2 6

2 5 4 6 1 3 2 6

2 4 5 6 1 3 2 6

1 2 2 3 4 5 6 6

17

Process of mergeProcess of merge

103 5 7 8

41 2 96

103 5 7 8

4

1

2 96

103 5 7 8

4

1 2

96

10

3

5 7 8

4

1 2

96

10

3

5 7 8

41 2

96

Merge algorithmMerge algorithm
Merge(U[0..m],V[0..n],E[0..n+m])
i = 0 , j = 0
k = 0
while k < n+m

if U[i] < V [j]
E[k] = U[i] , i++

else
E[k] = V[j] , j++

k++

Exercise: 11-3 Merge sortExercise: 11-3 Merge sort
• We assume that you make a mobile phone’s

address book.
• At the very least, you should declare the

structure that can store “name”, “phone number”
and “e-mail address”. And, you should declare the
singly-linked list that can store about 100 data
that have this structure.

• You write a program that reads about 10 data
from an input file to the list and writes the data
to an output file after sorting in ascending order
for name.

• You must use Merge sort for sorting.

Exercise: Recursive Exercise: Recursive
ProcessingProcessing

• Write a recursive algorithm for dealing a
deck of cards. The parameters should be
(i) the deck of undealt cards, and (ii) the
person who is to receive the next card.
Assume:
– the players are seated around a table;
– dealing begins with the player to the dealer’s

left;
– each dealing step involves dealing one card to

a player, then the dealer’s attention moves to
the next player to the left; and

– dealing continues until no cards are left in the
deck.

HintHint
function dealCards (deck, person)
{
 if (deck is empty)
 return;
 deal top card from deck to person;
 dealCards (rest of deck, personLeftOf(person));
}

Exercise: Recursive Exercise: Recursive
ProcessingProcessing

• Write a recursive function void recurTriangle (
int n, char ch) which prints out an upside-
down triangle. The parameter ch is the
character to be used for drawing the triangle,
and n is the number of characters on the first
row. For example, if n is 7 and ch is ’+’, then
the output of the function should be:
+++++++
++++++
+++++
++++
+++
++
+

void recurTriangle(int n, char ch)
{
int i;

if(n > 0)
{
for(i = 0; i < n; i++) printf("%c", ch);
printf("\n");
recurTriangle(n-1, ch);
}

}

Exercise 11-4: String Exercise 11-4: String
sortingsorting

• Write a program that sorts strings
with quick sort by alphabetical order
based on the following instructions.

I. Compare the character I. Compare the character
stringsstrings

• Write the function “preceding()” to search which
of two character strings comes before by
alphabetical order.
int preceding(char *first, char *second)

• A return value is by alphabetical order
– Case that the character string of the argument “first” is

before the character string of the argument “second” : 1
– Case that the character string of the argument “first” is

equal to the character string of the argument “second” :
0

– Case that the character string of the argument “first” is
after the character string of the argument “second” : -1

II. Input the character II. Input the character
string from the file string from the file

• Write the function “setup_nameList()” to
read the name of more than 2 persons
and less than 25 persons from the file and
set them to the array “nameList[]” of a
character string (in fact, the array of the
pointer to the character string)
int setup_nameList(char *namelist[], char
*filename)

III. Implement Quicksort III. Implement Quicksort
• Write the function “qsort_name()” to

sort the character string of the array
“namelist[]” by alphabetical order
with quick sort using the function
you made ever.

HomeworkHomework
• Write a quicksort function to sort a

singly linked list. Add this function to
the linked list library.

• Hint: You should have a function
– for getting the Nth element in the linked

list
–Swapping two nodes in listed

Improve QuicksortImprove Quicksort
• Change the Pivot Selection strategy:

–random element

–median of three strategy

