Data Structure &
Algorithm Basic Lab
- week 11+12

Topics of this week

e Advanced Sorting Algorithm
— Quick sort
— Merge sort
— Recursive processing

e Exercises

Quicksort Algorithm

Given an array of n elements (e.qg.,
integers):
e If array only contains one element, return

o Else
— pick one element to use as pivot.

— Partition elements into two sub-arrays:
e Elements less than or equal to pivot
e Elements greater than pivot

— Quicksort two sub-arrays
— Return results

Example

e We are given array of n integers to
sort:

Quick Sort (Hoare)

e Given (R,, R;, ..., R ;)
K.: pivot key
if K. is placed in S(i),
then K, <K, forj < S(i),
K Ky for j > S(i).

e Ry, ...y RS(i)-ll RS(i)I RS(i)+1I Y RS(n-1)

two partitions

Partitioning Array

e Given a pivot, partition the elements of
the array such that the resulting array
consists of:

e 1. One sub-array that contains elements
>= pivot

e 2. Another sub-array that contains
elements < pivot

e The sub-arrays are stored in the original
data array.

e Partitioning loops through, swapping
elements below/above pivot.

Partition Result

7

20

10

30

40

50

60 80 100

[O]

<= datal[pivot]

<

[1]

[2]

[3]

[4]

[5]

61 [7] [8]

>

> data[pivot]

Recursion: Quicksort
Subarrays

AN AN
4 N 4 N

7 20 10 30 40 50 60 80 100

o1 M1 [2 (8|4 | Bl [[7] 8]

> >
<= data[pivot] > data[pivot]

Example for Quick Sort

RO | RI | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | left | right

{26 5 37 1 61 11 59 15 48 19}/| 0 9

{11 5 19 1 15/ | 26 [{59 61 48 37'| 0O 4

i1 50 11 [119 151 26 [{59 61 48 37'| 0 1

T 5 |11 | 15 | 19 | 26 [{59 61 48 375| 3 4
1 5 | 11 | 15| 19 | 26 [{48 37\ 59 { 61| 6 9
1 5 |11 | 15] 19 | 26 | 37 48 | 59 { 61| 6 7
1 5 |11 | 15] 19 | 26 | 37 | 48 | 59 | 61 | 9 9
1 5 |11 | 15] 19 | 26 | 37 | 48 | 59 | 6l

Quick Sort

void quicksort (element list[], int left,
int right)
{

int pivot, 1, j;
element temp;
if (left < right) {

i = left; J = right+l;
pivot = list[left] .key;
do {

do i++; while (list[i] .key < pivot);

do j--; while (list[]j].key > pivot);

if (1 < j) SWAP(list[i], 1list[]j], temp)
} while (1 < j);
SWAP (list[left], list[]j], temp);
quicksort(list, left, j-1);
quicksort(list, j+1, right);

Exercise 11-1: Quick sort

e We assume that you make a mobile
phone’s address book.

o At the very least, you should declare the
structure that can store "name”, "phone

number” and “e-mail address”. And, you

should declare the array that can store

about 100 data that have this structure.

e You write a program that reads about 10
data from an input file to the array and
writes the data to an output file after
sorting in ascending order for name.

e You must use Quick sort for sorting.

Exercise 11-2

e Initiate an array of n random
integers. n is entered by user.

e Sort the array with the insertion sort
e And using quicksort

e Compare the execution time of two
algorithms.

e Run the program with various values
of n to view the effect.

Exercise 11-3 Combination of
quick sort and insertion sort

When a program sorts a little number of the data,
a program using insertion sort is faster than a
program using quick sort and so on. So, a
program sorts efficiently, if a program changes
sorting algorithms by the number of data.

You write a function that selects sorting
algorithms — If number of the data is more than x
numbers, the function selects quick sort. If not
SO, it selects insertion sort.

Note: get the number “"x” as the program
argument.

Read the text file that has more than 100
characters, sort the first 100 characters, and
show the result by standard output.

Merge Sort

e Problem: Given n elements, sort elements
into non-decreasing order

e Apply divide-and-conquer to sorting
problem

- If n=1 terminate (every one-element list is
already sorted)

- If n>1, partition elements into two sub-arrays;
sort each; combine into a single sorted array

Algorithm

MergeSort (E[0 .. N])

if N < threshold
InsertionSort (E[0..N])

else
copy E[0.. N/2] to U[O.. N/2]
copy E[N/2 .. N] to V[O .. N-N/2]
MergeSort(U[O .. N/2])
MergeSort(V[0 .. N-N/2])

Merge(U[O .. N/2], V[O .. N-N/2},
E[O.. NJ)

Example

b2 4 6 1 3 2 6

Merge Sort

3 2 6

3 2 6

52 4%

6

4

5

/

2 4§ 6

22 3 45 6 b

f

11

10

Process of merge

10

10

10

10

17

Merge algorithm

Merge (U[O0..m] ,V[O0..n],E[O. .n+m])
i= 0, 3=0
k=0
while k < n+m
if U[i] < V [7]
E[k] = U[1i] , i++
else
E[k] = V[j] , j++
k++

Exercise: 11-3 Merge sort

We assume that you make a mobile phone’s
address book.

At the very least, you should declare the
structure that can store “name”, “phone number”
and “e-mail address”. And, you should declare the
singly-linked list that can store about 100 data

that have this structure.

You write a program that reads about 10 data
from an input file to the list and writes the data
to an output file after sorting in ascending order
for name.

You must use Merge sort for sorting.

Exercise: Recursive
Processing

e Write a recursive algorithm for dealing a
deck of cards. The parameters should be
(i) the deck of undealt cards, and (ii) the

person who is to receive the next card.
Assume:

- the players are seated around a table;

X f:lefaling begins with the player to the dealer’s
eft;

— each dealing step involves dealing one card to
a player, then the dealer’s attention moves to
the next player to the left; and

— dealing continues until no cards are left in the
deck.

Hint

function dealCards (deck, person)
{
if (deck is empty)
return;
deal top card from deck to person;
dealCards (rest of deck, personLeftOf(person));

Exercise: Recursive
Processing

Write a recursive function void recurTriangle (
int n, char ch) which prints out an upside-
down triangle. The parameter ch is the
character to be used for drawing the triangle,
and n is the number of characters on the first
row. For example, if nis 7 and ch is "+’, then
the output of the function should be:

+++++++

++++++

+++++

++++

+++

++

+

void recurTriangle(int n, char ch)

{

int i;

if(n > 0)
{
for(i = 0; i < n; i++) printf("%c", ch);
printf("\n");
recurTriangle(n-1, ch);

»

Exercise 11-4: String
sorting
e Write a program that sorts strings

with quick sort by alphabetical order
based on the following instructions.

I. Compare the character
strings

e Write the function “preceding()” to search which
of two character strings comes before by
alphabetical order.

int preceding(char *first, char *second)

e A return value is by alphabetical order

— Case that the character string of the argument “first” is
before the character string of the argument “second” : 1

— Case that the character string of the argument “first” is
equal to the character string of the argument “second” :
0

— Case that the character string of the argument “first” is
after the character string of the argument “second” : -1

II. Input the character
string from the file

e Write the function "setup nameList ()" to
read the name of more than 2 persons
and less than 25 persons from the file and
set them to the array "namelList[]” of a
character string (in fact, the array of the
pointer to the character string)

int setup namelist (char *namelist[], char
*filename)

III. Implement Quicksort

e Write the function “gsort_name()” to
sort the character string of the array
“namelist[]” by alphabetical order
with quick sort using the function
you made ever.

Homework

e Write a quicksort function to sort a
singly linked list. Add this function to
the linked list library.

e Hint: You should have a function

— for getting the Nth element in the linked
list
- Swapping two nodes in listed

Improve Quicksort

e Change the Pivot Selection strategy:
- random element

— median of three strategy

