
C Programming C Programming
Basic – week 13Basic – week 13

2

Topics of this weekTopics of this week
• String pattern matching algorithms

–Naive algorithm
–Knuth-Morris-Pratt algorithm
–Boyer-Moore algorithm

• Exercises
a b a c a a b

a b a c a b

1

a b a c a b

4 3 2

3

String matching problemString matching problem
• Let P be a string of size m

– A substring P[i .. j] of P is the subsequence of P
consisting of the characters with ranks between i and j

– A prefix of P is a substring of the type P[0 .. i]
– A suffix of P is a substring of the type P[i ..m − 1]

• Given strings T (text) and P (pattern), the pattern
matching problem consists of finding a substring
of T equal to P

• Applications:
– Text editors, Search engines, Biological research

4

Brute Force Matching Brute Force Matching
• The brute-force pattern matching algorithm

compares the pattern P with the text T for each
possible shift of P relative to T, until either
– a match is found, or
– all placements of the pattern have been tried

• Brute-force pattern matching runs in time O(nm)
• Example of worst case:

– T = aaa … ah
– P = aaah
– may occur in images and DNA sequences
– unlikely in English text

5

AlgorithmAlgorithm
Algorithm BruteForceMatch(T, P)
// Input text T of size n and pattern P of size m
// Output starting index of a substring of T equal to P or

−1
if no such substring exists

for i ← 0 to n − m {
test shift i of the pattern

}
j ← 0
while j < m T[i + j] = P[j]∧

j ← j + 1
if j = m

return i {match at i}
else
break while loop {mismatch}

return -1 {no match anywhere}

6

Exercise 13.1Exercise 13.1
• Make a random string that has about 2000

characters consisting of a set of
characters..

• For example:
– set of characters: abcdef
– string: abcadacaeeeffaadbfacddedcedfbeccae…

• Write the program that searches the
pattern, for example “aadbf”, from the
string.

• Note: use Simple searching string
Algorithm

7

Boyer-Moore HeuristicsBoyer-Moore Heuristics
• The Boyer-Moore’s pattern matching

algorithm is based on two heuristics
• Looking-glass heuristic: Compare P with a

subsequence of T
• moving backwards
• Character-jump heuristic: When a

mismatch occurs at T[i] = c
– If P contains c, shift P to align the last

occurrence of c in P with T[i]
– Else, shift P to align P[0] with T[i + 1]

8

Example Example

9

Last-Occurrence FunctionLast-Occurrence Function
• Boyer-Moore’s algorithm preprocesses the pattern

P and the alphabet Σ to build the last-occurrence
function L mapping Σ to integers, where L(c) is
defined as
– the largest index i such that P[i] = c or
– −1 if no such index exists

• Example:
– Σ = {a, b, c, d}
– P = abacab

• The last-occurrence function can be represented
by an array indexed by the numeric codes of the
characters

• The last-occurrence function can be computed in
time O(m + s), where m is the size of P and s is
the size of Σ

c a b c d

L(c) 4 5 3 -1

10

Algorithm Boyer MooreAlgorithm Boyer Moore
Algorithm BoyerMooreMatch(T, P, Σ)

L ← lastOccurenceFunction(P, Σ)
i ← m − 1
j ← m − 1
repeat
if T[i] = P[j]

if j = 0
return i { match at i }
else
i ← i − 1
j ← j − 1

else
{ character-jump }

l ← L[T[i]]
i ← i + m – min(j, 1 + l)
j ← m − 1

until i > n − 1
return −1 { no match }

11

Exercise 13.2Exercise 13.2
• Make a random string that has about 2000

characters consisting of a set of
characters.

• set of characters: abcdef
• string:

abcadacaeeeffaadbfacddedcedfbeccae…
• Write the program that search the pattern,

for example “aadbf”, from the string.
• Note: use Boyer-Moore Algorithm

12

KMP string matchingKMP string matching
• Knuth-Morris-Pratt’s algorithm

compares the pattern to the text in
left-to-right, but shifts the pattern
more intelligently than the brute-
force algorithm.

• When a mismatch occurs, what is the
most we can shift the pattern so as
to avoid redundant comparisons?

• Answer: the largest prefix of P[0..j]
that is a suffix of P[1..j]

13

ExampleExample

14

KMP Failure FunctionKMP Failure Function

• Knuth-Morris-Pratt’s algorithm
preprocesses the pattern to find matches
of prefixes of the pattern with the pattern
itself

• The failure function F(j) is defined as the
size of the largest prefix of P[0..j] that is
also a suffix of P[1..j]

• Knuth-Morris-Pratt’s algorithm modifies
the brute-force algorithm so that if a
mismatch occurs at P[j] ≠ T[i] we set

 j F(j − 1)←

15

ExampleExample

16

Algorithm failureFunction(P)
F[0] 0←
i 1←
j 0←
while i < m

if P[i] = P[j]
{we have matched j + 1 chars}

F[i] j + 1←
i i + 1←
j j + 1←

else if j > 0 then
{use failure function to shift P}

j F[j − 1]←
else

F[i] 0 { no match }←
i i + 1←

17

Exercise 13.3Exercise 13.3
• Repeat the exercise 13.2 using the

KMP algorithm.
• Calculate the number of

comparisons.

18

The KMP algorithmThe KMP algorithm
• The failure function can be represented by

an array and can be computed in O(m)
time

• At each iteration of the while-loop, either
– i increases by one, or
– the shift amount i − j increases by at least one

(observe that F(j − 1) < j)
• Hence, there are no more than 2n

iterations of the while-loop
• Thus, KMP’s algorithm runs in optimal time

O(m + n)

19

Algorithm KMPMatch(T, P)
F ← failureFunction(P)
i ← 0
j ← 0
while i < n

if T[i] = P[j]
if j = m − 1

return i − j { match }
else

i ← i + 1
j ← j + 1

else
if j > 0

j ← F[j − 1]
else

i ← i + 1
return −1 { no match }

20

ExampleExample

